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Interpolation of Mixed Type Data

by Bivariate Polynomials
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and Rumen Uluchev‡

We consider the problem of interpolation of bivariate functions on the
unit disk by polynomials. The data known for the function consist of
Radon projections along chords in multiple directions and function values
at points lying on the unit circle. We prove a sufficient condition for a
configuration of chords and points to be regular, i.e. the interpolation
problem to be poised. Regularity of a particular scheme of chords and
points is considered. Numerical experiments are presented.

1. Introduction and Preliminaries

In medicine, biology, materials science, radiology, geophysics, oceanography,
archeology, astrophysics, and other sciences, the idea of tomography (imaging
by sections or sectioning) is used. Modern methods of tomography involve
gathering projection data from multiple directions and applying this data into
a tomographic reconstruction software algorithm processed by a computer.
Various types of signal acquisition can be used in similar algorithms in order
to create a 3D image. However, in the general case the output from these
reconstruction procedures appears as 2D slice images.

There exist different reconstruction algorithms: filtered back projection,
iterative reconstruction, direct methods, etc. These procedures give inexact
results: they represent a compromise between accuracy and computation time
required.

∗Supported by the National Science Fund of the Bulgarian Ministry of Education, Youth
and Science under Grant DDVU-02/30.

†Supported by the Austrian Science Fund (FWF) under Grant DK W1214.
‡Supported by the National Science Fund of the Bulgarian Ministry of Education, Youth

and Science under Grant VU-I-303/07.



94 Interpolation by Bivariate Polynomials

Because of the importance of such methods for applications in science and
practice they have been intensively investigated by many mathematicians [2],
[6], [13], [14], [15], [16], and others. Besides the algorithms based on the inverse
Radon transform (see [14], [15] and the bibliography therein), other direct
interpolation and fitting methods have been recently studied (see [1], [4], [7],
[8], [9], [11], [13]).

We denote by Π2
n the set of all algebraic polynomials in two variables of

total degree at most n and real coefficients. Then, Π2
n is a linear space of

dimension
(

n+2
2

)

, and P ∈ Π2
n if and only if

P (x, y) =
∑

i+j≤n

αijx
iyj , αij ∈ R.

Let B := {x = (x, y) ∈ R
2 : ‖x‖ ≤ 1} be the unit disk in the plane, where

‖x‖ =
√

x2 + y2. Given t ∈ [−1, 1] and an angle of measure θ ∈ [0, π), the
equation x cos θ + y sin θ − t = 0 defines a line ℓ perpendicular to the vector
〈cos θ, sin θ〉 and passing through the point (t cos θ, t sin θ). The set I(θ, t) :=
ℓ ∩B is a chord of the unit disk B which can be parameterized in the manner

{

x = t cos θ − s sin θ,

y = t sin θ + s cos θ,
s ∈ [−

√

1 − t2,
√

1 − t2],

where the quantity θ is the direction of I(θ, t) and t is the distance of the chord
from the origin. Suppose that for a given function f : R

2 → R the integrals of
f exist along all line segments on the unit disk B. Radon projection (or X-ray)
of the function f over the segment I(θ, t) is defined by

Rθ(f ; t) :=

∫

I(θ,t)

f(x) dx =

∫

√
1−t2

−
√

1−t2
f(t cos θ − s sin θ, t sin θ + s cos θ) ds.

Clearly, Rθ( · ; t) is a linear functional. Since I(θ, t) ≡ I(θ + π,−t) it follows
that Rθ(f ; t) = Rθ+π(f ;−t). Thus, the assumption above for the direction of
the chords 0 ≤ θ < π incurs no loss of generality.

It is well-known that the set of Radon projections

{

Rθ(f ; t) : −1 ≤ t ≤ 1, 0 ≤ θ < π
}

determines f uniquely (see [12], [16]). According to a more recent result in [17],
an arbitrary function f ∈ L1(R2) with compact support in B is uniquely
determined by any infinite set of X-rays. Since the function f ≡ 0 has all
its projections equal to zero, it follows that the only function which has the
zero Radon transform is the constant zero function. It was shown by Marr [13]
that every polynomial P ∈ Π2

n can be reconstructed uniquely by its projections
only on a finite number of directions.

Another important property (see [13], [3]) is the following:
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Lemma 1. If P ∈ Π2
n then for each fixed θ there exists a univariate polynomial

p of degree n such that

Rθ(P ; t) =
√

1 − t2 p(t), −1 ≤ t ≤ 1,

and
p(−1) = 2P (− cos θ,− sin θ) and p(1) = 2P (cos θ, sin θ).

The space Π2
n has a standard basis of the power functions {xiyj}. Studying

various problems for functions on the unit disk, it is often helpful to use
some orthonormal basis. In [2], the following orthonormal basis of Π2

n was
constructed. Denote the Chebyshev polynomial of second kind of degree m as
usual by

Um(t) :=
1√
π

sin(m + 1)θ

sin θ
, t = cos θ

and the bivariate ridge polynomial in direction θ by

Um(θ;x) := Um(x cos θ + y sin θ).

For θmj := jπ
m+1 , m = 0, . . . , n, j = 0, . . . ,m, the ridge polynomials

Umj(x) := Um(θmj ;x), m = 0, . . . , n, j = 0, . . . ,m, (1)

form an orthonormal basis of Π2
n on the unit disk B.

The following important relation was proved by Marr [13] and we shall call
it Marr’s formula.

Lemma 2. For each t ∈ (−1, 1), θ and ϕ, we have

Rϕ(Um(θ; ·); t) =
2

m + 1

√

1 − t2 Um(t)
sin(m + 1)(ϕ − θ)

sin(ϕ − θ)
.

2. Interpolation Problem for Radon Projections Type

of Data

For a given scheme of chords Ik, k = 1, . . . ,
(

n+2
2

)

, of the unit circle ∂B,
find a polynomial P ∈ Π2

n satisfying the conditions:

∫

Ik

P (x) dx = γk, k = 1, . . . ,
(

n+2
2

)

. (2)

If (2) has a unique solution for every given set of values {γk}, the interpolation
problem is called poised and the scheme of chords – regular.

The first known scheme which is regular for every degree n of the inter-
polating polynomial was found by Hakopian [11]. Hakopian’s scheme consists
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of all
(

n+2
2

)

chords, connecting given n+2 points on the unit circle ∂B. Bojanov
and Xu [4] proposed a regular scheme consisting of 2⌊n+1

2 ⌋ + 1 equally spaced
directions with ⌊n

2 ⌋ + 1 chords, associated with the zeros of the Chebyshev
polynomials of certain degree, in each direction.

Another family of regular schemes was provided by Bojanov and Georgieva [1].
There the Radon projections are taken along n + 1 directions

Θ := {θ0, θ1, . . . , θn}, 0 ≤ θ0 < · · · < θn < π.

To every direction θk are associated n − k + 1 chords with the distances

1 > tkk > tk,k+1 > · · · > tkn > −1.

This results in
(

n+2
2

)

chords of the unit circle, {I(θk, tki)}n
k=0,

n
i=k. The scheme is

thus fully described by (Θ, T ), where T := {tki} is the upper triangular matrix
of chord distances to the origin.

The following regularity result for schemes of this type was proved by
Bojanov and Georgieva [1].

Theorem 1. For (Θ, T ) as above, the interpolation problem

∫

I(θk,tki)

P (x) dx = γki, k = 0, . . . , n, i = k, . . . , n, P ∈ Π2
n, (3)

is poised if
detUk 6= 0 for k = 0, . . . , n,

where

Uk = U
(n)
k :=









Uk(tkk) Uk+1(tkk) · · · Un(tkk)
Uk(tk,k+1) Uk+1(tk,k+1) · · · Un(tk,k+1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Uk(tkn) Uk+1(tkn) · · · Un(tkn)









.

Several regular schemes of this type were suggested by Georgieva and Ismail [7]
and by Georgieva and Uluchev [8]. In particular, we will make use of the
following result from [7].

Theorem 2. Let tki = ηi = cos (i+1)π
n+2 , k = 0, . . . , n, i = k, . . . , n, be the

zeros of the Chebyshev polynomial of second kind Un+1. Then detUk 6= 0 for
k = 0, . . . , n, and thus the problem (3) is poised.

3. Interpolation Problem for Mixed Type of Data

We consider interpolation using mixed type of data – both Radon projections
and function values at points lying on the unit circle. Let



I. Georgieva, C. Hofreither and R. Uluchev 97

• Θ := {θ0, θ1, . . . , θn}, 0 ≤ θ0 < · · · < θn < π;

• T := {tki} be an upper triangular matrix with 1> tkk > · · ·> tk,n−1 >−1,
k = 0, . . . , n − 1;

• X := {x0, . . . ,xn}, where xk are points on the unit circle.

The problem is to find a polynomial P ∈ Π2
n satisfying the

(

n+2
2

)

interpolation
conditions

∫

I(θk,tki)

P (x) dx = γki, k = 0, . . . , n − 1, i = k, . . . , n − 1,

P (xk) = fk, k = 0, . . . , n.

(4)

The difference to problem (3) is that we replace the interpolation condition on
the last chord in each direction θk with a function value interpolation condition
at a point xk. If (4) has a unique solution for every given set of values {γki} and
{fk}, the interpolation problem (4) is called poised and the scheme of chords
and points (Θ, T,X) – regular.

In the following we state and prove a condition for the interpolation problem
(4) to be poised with a particular choice of X.

Theorem 3. For a given set of chords and points (Θ, T,X) with X =
{xk = (− cos θk,− sin θk)}n

k=0, the interpolation problem (4) is poised if

detU∗
k 6= 0, k = 0, . . . , n,

where

U∗
k :=













Uk(tkk) Uk+1(tkk) . . . Un−1(tkk) Un(tkk)
Uk(tk,k+1) Uk+1(tk,k+1) . . . Un−1(tk,k+1) Un(tk,k+1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Uk(tk,n−1) Uk+1(tk,n−1) . . . Un−1(tk,n−1) Un(tk,n−1)
Uk(−1) Uk+1(−1) . . . Un−1(−1) Un(−1)













.

Proof. It if sufficient to show that the only bivariate polynomial P ∈ Π2
n

satisfying zero interpolation conditions is the trivial polynomial, P (x) ≡ 0.
For P ∈ Π2

n, let amj(P ) denote the coefficients of P in the basis of ridge
polynomials, see (1),

amj(P ) :=

∫

B

P (x)Umj(x) dx, P (x) =
n

∑

m=0

m
∑

j=0

amj(P )Umj(x).

By Lemma 1, for each k we can write

Rθk
(P ; t) =

√

1 − t2 pk(t)
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with some univariate polynomial pk(t) of degree at most n. Expanding pk in
Chebyshev-Fourier series, we obtain

Rθk
(P ; t) =

√

1 − t2
n

∑

i=0

bki(P )Ui(t)

where

bki(P ) := 2

∫ 1

−1

Rθk
(P ; t)Ui(t) dt = 2

∫

B

P (x)Ui(θk;x) dx. (5)

On the other hand, using Marr’s formula (Lemma 2), we can express Rθk
(P ; t)

in terms of {amj = amj(P )}. Indeed,

Rθk
(P ; t) =

n
∑

m=0

m
∑

j=0

amjRθk
(Umj ; t)

=

n
∑

m=0

m
∑

j=0

amj

2

m + 1

√

1 − t2 Um(t)
sin(m + 1)(θk − θmj)

sin(θk − θmj)

=
√

1 − t2
n

∑

m=0

(

m
∑

j=0

smkjamj

)

Um(t),

where we have used the notation

smkj :=
2

m + 1

sin(m + 1)(θk − θmj)

sin(θk − θmj)
.

The last two representations of Rθk
(P ; t) lead to the equality

n
∑

m=0

(

m
∑

j=0

smkj amj

)

Um(t) =
n

∑

i=0

bkiUi(t), (6)

where bki = bki(P ). Comparing the coefficients of Um(t) on the both sides of
(6) yields smk0 am0 + · · ·+ smkm amm = bkm. Since k was arbitrary, we obtain
the system

sm00 am0 + · · ·+ sm0m amm = b0m

...
...

...
...

smm0 am0 + · · ·+ smmm amm = bmm.

(7)

Consider the matrix Sm := {smkj} of this system. It is shown in the proof
of Theorem 1 in [1] that detSm 6= 0 for any m = 0, . . . , n. Consequently,
given b0m, . . . , bmm, the coefficients am0, . . . , amm are uniquely determined by
the linear system (7).

We have just proved the following auxiliary proposition:
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Given any numbers {βmj}n
m=0,

n
j=m, there exists a unique polynomial P ∈Π2

n

such that
bmj(P ) = βmj , m = 0, . . . , n, j = m, . . . , n.

Note in particular that only the functionals bmj(P ) with j ≥ m are needed
to determine P uniquely, while those with j < m are redundant.

The next task is to show that any of the functionals bmj(P ) can be determined
uniquely from the functionals in the set

M :=
{

Rθk
(P ; tki)

}n−1 n−1

k=0, i=k
∪

{

P (xk)
}n

k=0
.

Note that the set M consists of
(

n+2
2

)

linear functionals on Π2
n. Then, for

a fixed pair of indices (m, j), there exists a representation of the form

bmj(P ) =

n−1
∑

k=0

n−1
∑

i=k

ckiRθk
(P ; tki) +

n
∑

k=0

dkP (xk) for all P ∈ Π2
n

if and only if
{

Rθk
(P ; tki) = 0, k = 0, . . . , n−1, i = k, . . . , n−1,

P (xk) = 0, k = 0, . . . , n
=⇒ bmj(P ) = 0. (8)

This follows from simple linear algebra arguments.
Assume that the left hand side of (8) holds. We shall prove by induction

on k that bmj(P ) = 0, m = 0, . . . , n, for all j = 0, . . . , n.
First consider the case k = 0. The assumption

Rθ0
(P ; t00) = · · · = Rθ0

(P ; t0,n−1) = 0 with − 1 < t0,n−1 < · · · < t00 < 1

gives n zeros of the polynomial p0(t) in (−1, 1). Moreover, by Lemma 1, we
have the equality p0(−1) = 2P (x0) = 2P (− cos θ0,− sin θ0). From P (x0) = 0
it follows that p0(t) has another zero at t = −1. Therefore

0 ≡ p0(t) =

n
∑

i=0

b0i(P )Ui(t)

and hence b0i(P ) = 0, i = 0, . . . , n, because of the linear independence of the
Chebyshev polynomials {Ui(t)}.

From the definition of a00, from (5) and since U0(t) is a constant, we get
a00 = 1

2 b00(P ). Therefore, in the first induction step we have shown that

P (x) = a10U10(x) + a11U11(x) + · · · + annUnn(x).

Assume that after k induction steps, we have proved that bij(P ) = 0 for
i < k and that P reduces to

P (x) =

n
∑

i=k

i
∑

j=0

aijUij(x).
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In other words, P (x) is a linear combination of Uij with i ≥ k. Applying
Marr’s formula (Lemma 2), we see that its Radon projection Rθk

(P ; t) must
therefore be a linear combination of Ui with i ≥ k as well. Thus,

Rθk
(P ; t) =

√

1 − t2
(

bkk(P )Uk(t) + · · · + bkn(P )Un(t)
)

,

and it follows that bki(P ) = 0, i = 0, . . . , k − 1. In order to prove that the
remaining coefficients are equal to zero we use the assumptions

Rθk
(P ; tkk) = · · · = Rθk

(P ; tk,n−1) = 0 and P (xk) = 0.

They produce a homogeneous linear system with respect to the coefficients
bki(P ):

bkk(P )Uk(tkk) + · · ·+ bkn(P )Un(tkk) = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
bkk(P )Uk(tk,n−1) + · · ·+ bkn(P )Un(tk,n−1) = 0,
bkk(P )Uk(−1) + · · ·+ bkn(P )Un(−1) = 0.

Using Lemma 1, the last equation follows from

0 = 2P (xk) = pk(−1) =
n

∑

i=k

bki(P )Ui(−1),

since bk0(P ) = · · · = bk,k−1(P ) = 0 was already shown above.
By the assumption detU∗

k 6= 0, the only solution to the system is the trivial
solution, i.e.

bki(P ) = 0, i = k, . . . , n.

All in all, we have shown bki(P ) = 0 for all i = 0, . . . , n. It follows then from
(7) that ak0 = · · · = akk = 0, and therefore

P (x) =

n
∑

i=k+1

i
∑

j=0

aijUij(x).

By the induction hypothesis we get P (x) ≡ 0. The proof is complete. �

4. Regular Schemes for Mixed Type of Data

Here we give a regular interpolatory scheme based on mixed type of data.
For the sake of completeness we give a new shorter proof.

Theorem 4 ([10]). Let n be a positive integer, and

(i) Θ = {θ0, . . . , θn}, 0 ≤ θ0 < · · · < θn < π;
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(ii) tki = ηi = cos (i+1)π
n+1 , i = k, . . . , n−1, be the zeros of Chebyshev polynomials

of second kind Un(x);

(iii) X = {xk = (− cos θk,− sin θk)}n
k=0.

Then the interpolation problem (4) is poised, i.e., the scheme (Θ, T,X) is
regular.

Proof. According to Theorem 3, it is sufficient to prove that detU∗
k 6= 0 for

all k = 0, . . . , n. Recall that

U∗
k :=













Uk(tkk) Uk+1(tkk) . . . Un−1(tkk) Un(tkk)
Uk(tk,k+1) Uk+1(tk,k+1) . . . Un−1(tk,k+1) Un(tk,k+1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Uk(tk,n−1) Uk+1(tk,n−1) . . . Un−1(tk,n−1) Un(tk,n−1)
Uk(−1) Uk+1(−1) . . . Un−1(−1) Un(−1)













.

We now fix some k ∈ {0, . . . , n}.By definition, (tki)i are the zeros of Un. Thus,
the last column has exactly one nonzero entry, Un(−1) = (n + 1)(−1)n, and
the determinant of U∗

k can be expanded as

detU∗
k = (n + 1)(−1)n detU

(n−1)
k

with

U
(n−1)
k =









Uk(tkk) Uk+1(tkk) . . . Un−1(tkk)
Uk(tk,k+1) Uk+1(tk,k+1) . . . Un−1(tk,k+1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Uk(tk,n−1) Uk+1(tk,n−1) . . . Un−1(tk,n−1)









as in Theorem 1. By Theorem 2, the determinants of all U
(n−1)
k are nonzero,

which finishes the proof. �

5. Numerical Experiments

For simplicity, we have implemented our interpolation scheme using the
monomial basis {xiyj}. For integrating a basis function along the chord I(θ, t),
we use the binomial theorem to obtain the formula
∫

I(θ,t)

xiyj dx =

∫

√
1−t2

−
√

1−t2
(t cos θ − s sin θ)i(t sin θ + s cos θ)j ds

=
i

∑

p=0

j
∑

q=0

(

i

p

)(

j

q

)

tp+q(cos θ)j+p−q(sin θ)i−(p−q) ×

× (−1)i−p

i + j − p − q + 1
(1 − t2)

1
2
(i+j−p−q+1)

(

1 − (−1)i+j−p−q+1
)

.
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In the following, we present interpolation results for two different functions
on the unit disk.

Example 1. We approximate the mexican hat function

f(x, y) =
sin(2π((x − 0.2)2 + y2 + 10−18))

2π((x − 0.2)2 + y2 + 10−18)

using the mixed interpolatory scheme (Θ, T,X) from Theorem 4 with the choice
of directions

Θ =
{

θk =
kπ

n + 1

}n

k=0
.

In Figure 1, we show the original function f(x, y) as well as the errors obtained
from this scheme with n = 10 and n = 15.

The relative L2-errors on the unit disk are ‖f − P10‖2/‖f‖2 = 0.00217349
and ‖f − P15‖2/‖f‖2 = 1.08932 × 10−6.

f(x, y) f(x, y) − P10(x, y) f(x, y) − P15(x, y)

Figure 1. The mexican hat function and errors resulting from the mixed scheme

with n = 10 and n = 15.

For comparison, we perform interpolation using the scheme (Θ, T ) from
Theorem 2 using only Radon projections. The angles Θ are as above. Figure 2
displays the function and the errors for n = 10 and n = 15 using this scheme.
The relative L2-errors in this case are ‖f − P10‖2/‖f‖2 = 0.000980462 and
‖f − P15‖2/‖f‖2 = 5.14322 × 10−7.

Example 2. We interpolate the function f(x, y) = sin(2x) cos(5y) using
the mixed type scheme as in Example 1. The graph of the function f(x, y) and
the error functions for n = 10 and n = 15 are presented in Figure 3. Here,
the relative L2-errors on the unit disk are ‖f − P10‖2/‖f‖2 = 0.00482072 and
‖f − P15‖2/‖f‖2 = 5.85709 × 10−7.

In Section 4, we have presented a regular interpolation scheme based on
mixed input data, namely, Radon projections and point-wise function values
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f(x, y) f(x, y) − P10(x, y) f(x, y) − P15(x, y)

Figure 2. The mexican hat function and errors resulting from the scheme using

only Radon projections with n = 10 and n = 15.

f(x, y) f(x, y) − P10(x, y) f(x, y) − P15(x, y)

Figure 3. The function f(x, y) = sin(2x) cos(5y) and errors resulting from the

mixed scheme with n = 10 and n = 15.

on the boundary of the unit disk. The scheme’s property of reproducing
certain function values on the boundary of the computational domain exactly
may be advantageous in applications. In Figure 4, we show the condition
numbers of the matrices obtained from the mixed scheme and the scheme
using only Radon projections. The x-axis corresponds to the degree n of the
interpolation polynomial. Our numerical experiments indicate that, for a given
polynomial degree, the new scheme from Theorem 4 results in roughly twice the
interpolation error of the scheme from Theorem 2, while the condition number
is slightly lower.

6. A Scheme for Bivariate Quadratic Spline Interpolation

Suppose that X = {xk = (− cos θk,− sin θk)}n
k=0 are points on the unit

circle, θ0 < θ1 < · · · < θn. Denote by Iij the chords xixj and by Gi the sectors
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Figure 4. Comparison of condition numbers. x: polynomial degree n, y: condition

number

of the unit disk bounded by the chords I0i, I0,i+1 and the arc with end points
xi and xi+1.

Theorem 5. The interpolation problem
∫

I0i

Pi(x) dx = γ0i,

∫

I0,i+1

Pi(x) dx = γ0,i+1,

∫

Ii,i+1

Pi(x) dx = γi,i+1,

Pi(x0) = f0, Pi(xi) = fi, Pi(xi+1) = fi+1

(9)

has a unique solution Pi(x) ∈ Π2
2. Moreover, the function S(x), such that

S(x)
∣

∣

∣

Gi

= Pi(x), i = 1, . . . , n − 1,

is a continuous quadratic bivariate spline interpolant of the data X, {fi}n
i=0,

{γ0i}n
i=0, and {γi,i+1}n−1

i=1 .

Proof. Let us fix i, i ∈ {1, . . . , n − 1}. We try to find a polynomial

Pi(x) = Pi(x, y) = ax2 + bxy + cx2 + px + qy + r

satisfying conditions (9). The problem (9) is a linear system with respect to the
coefficients a, b, c, p, q, r of the polynomial P (x, y) and (9) has a unique solution
if and only if the corresponding homogeneous linear system has the trivial zero
solution only. It is sufficient to prove that there is no other quadratic bivariate
polynomial rather than zero polynomial satisfying (9) with zero data in the
right hand sides therein. Suppose there exists a polynomial Q(x) = Q(x, y) 6=0,
satisfying the homogeneous linear system (9). It is well-known (see [5]) that
since Q(x) vanishes at the points x0 and xi, Q(x) must vanish along the line
passing through this two point. For example, if Ajx + Bjy + Cj = 0 is an
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equation of the line through x0 and xj , for j = i, i + 1 both, it follows that
Q(x, y) has two linear multipliers Ajx + Bjy + Cj , j = i, i + 1, and therefore
Q has the form

Q(x, y) = µ(Aix + Biy + Ci)(Ai+1x + Bi+1y + Ci+1) (10)

for some constant µ. Analogously Q(x) vanishes along the line through xi and
xi+1. E.g., Q vanishes at the midpoint of the segment xixj and none of the
two linear multipliers in (10) vanishes. Therefore µ = 0 must hold in (10) and
Q(x, y) = 0 identically. So we proved that the interpolation problem (9) is
poised.

Patching the polynomials Pi(x) defined on curved triangles Gi we obtain a
bivariate piece-wise polynomial quadratic function S(x) with S(x)

∣

∣

Gi
= Pi(x),

i = 1, . . . , n − 1. It remains to prove that the pieces fit continuously on the
borders I0i, i = 2, . . . , n−1 of the domains {Gi}. Let us consider the difference

R(x, y) := Pi+1(x, y) − Pi(x, y)

on the segment I0,i+1 for a fixed i. Clearly R(x, y) is a quadratic bivariate
polynomial. By a linear parameterization of the segment I0,i+1 by a parameter
t ∈ [0, 1] it follows that R(x, y) coincides with a quadratic univariate polynomial
ρ(t) along I0,i+1. Note that ρ(0) = ρ(1) = 0 because of the interpolation
conditions (9), hence ρ(t) = λt(t − 1) for a constant λ. But the Radon
projections on I0,i+1 of both Pi(x, y) and Pi+1(x, y) are equal by (9). Therefore
∫ 1

0
λt(t − 1) dt = 0 provided λ = 0 and hence ρ(t) = 0 identically in [0, 1].

Therefore R(x, y) = 0 identically on the border I0,i+1 of the domain Gi and
Gi+1. This completes the proof. �

It is clear that applying bivariate quadratic spline interpolation of this type
will not give high accuracy approximation in general. However in some cases,
e.g. for convex functions, we can expect better results.

f(x, y) S(x, y) f(x, y) − S(x, y)

Figure 5. f(x, y) = sin
p

x2 + y4

Example 3. We interpolate the function f(x, y) = sin
√

x2 + y4 by
bivariate quadratic polynomial spline S(x, y) based on interpolataion conditions
in 20 equidistant points X = {xk}19

k=0 on the unit circle and the corresponding



106 Interpolation by Bivariate Polynomials

chords {I0i}19
i=1, {Ii,i+1}18

i=1. The graphs of the function f(x, y), of the spline
function S(x, y) and of the error function f(x, y)−S(x, y) are shown in Figure 5.
Here, the relative L2-error on the unit disk is ‖f − S‖2/‖f‖2 = 0.126859.
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