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1. Introduction

It is known [1] that the Walsh-Paley system is not a Schauder basis in L1(G)
(for the definition of G, see Section 2). Moreover, there exists a function in
the dyadic Hardy space H1(G), the partial sums of which are not bounded in
L1(G). Simon [4] proved strong convergence result for one-dimensional Walsh-
Fourier series. In particular, the following is true

Theorem S. Let f ∈ H1(G). Then

lim
n→∞

1

log n

n∑

k=1

‖Skf − f‖1

k
= 0.

For the two-dimensional Walsh-Fourier series Weisz [7] generalized the result
of Simon and proved that the following result is true.

Theorem W1. Let f ∈ H1(G × G). Then

∑

2−α≤k/l≤2α, (k,l)≤(n,m)

1

log n log m

n∑

k=1

‖Sk,lf‖1

k l
≤ c‖f‖H1

.
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We prove that certain means of the cubic partial sums of the two-dimensional
Walsh-Fourier series are uniformly bounded operators from dyadic Hardy space
H1 to the space L1. As a consequence we obtain strong convergence theorems
concerning cubic partial sums.

2. Definitions and Notation

Let P denote the set of positive integers, N := P ∪ {0}. Denote by Z2 the
discrete cyclic group of order 2, that is Z2 = {0, 1}, where the group operation
is the modulo 2 addition and every subset is open. The Haar measure on Z2 is
given such that the measure of a singleton is 1/2. Let G be the complete direct
product of the countable infinite copies of the compact groups Z2. The elements
of G are of the form x = (x0, x1, . . . , xk, . . .) with xk ∈ {0, 1} (k ∈ N). The
group operation on G is the coordinate-wise addition, the measure (denoted
by µ) and the topology are the product measure and topology. The compact
Abelian group G is called the Walsh group. A base for the neighborhoods of G

can be given in the following way:

I0(x) := G,

In(x) = In(x0, . . . , xn−1) := {y ∈ G : y = (x0, . . . , xn−1, yn, yn+1, . . .)}

(x ∈ G, n ∈ N).

These sets are called dyadic intervals. Let 0 = (0 : i ∈ N) ∈ G denotes the null
element of G and In := In(0), n ∈ N. Set en := (0, . . . , 0, 1, 0, . . .) ∈ G the n-th
coordinate of which is 1 and the rest are zeros (n ∈ N). Let In := G \ In.

For k ∈ N and x ∈ G denote by

rk(x) := (−1)xk (x ∈ G, k ∈ N)

the k-th Rademacher function. For n ∈ N, let n =
∞∑

i=0

ni2
i with ni ∈ {0, 1},

i.e., n is represented in the binary numeral system. Denote |n| := max{j ∈ N :
nj 6= 0}, that is, 2|n| ≤ n < 2|n|+1.

The Walsh-Paley system is defined as the sequence of Walsh-Paley functions:

wn(x) :=

∞∏

k=0

(
rk(x)

)nk = r|n|(x)(−1)
P|n|−1

k=0
nkxk (x ∈ G, n ∈ P).

The Walsh-Dirichlet kernel is defined by

Dn(x) =
n−1∑

k=0

wk(x).
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Recall that (see [5])

D2n(x) =

{
2n, if x ∈ In

0, if x ∈ In,
(1)

Dn(x) = wn(x)

∞∑

j=0

njw2j (x)D2j (x). (2)

The rectangular partial sums of the 2-dimensional Walsh-Fourier series are
defined as follows:

SM,Nf(x, y) :=

M−1∑

i=0

N−1∑

j=0

f̂(i, j)wi(x)wj(y),

where

f̂(i, j) =

∫∫

G×G

f(x, y)wi(x)wj(y) dµ(x, y)

is said to be the (i, j)-th Walsh-Fourier coefficient of the function f .
Denote

S
(1)
M f(x, y) :=

∫

G

f(s, y)DM (x + s) dµ(s)

and

S
(2)
N f(x, y) :=

∫

G

f(x, t)DN (y + t) dµ(t).

The norm in the space L1(G × G) is defined by

‖f‖1 :=

∫∫

G×G

|f(x, y)| dµ(x, y).

Let f ∈ L1(G × G). Then the dyadic maximal function is given by

f∗(x, y) = sup
n∈N

1

µ(In(x) × In(y))

∣∣∣
∫∫

In(x)×In(y)

f(s, t) dµ(s, t)
∣∣∣, (x, y) ∈ G×G.

The dyadic Hardy space H1(G × G) consists of all functions for which

‖f‖H1
:= ‖f∗‖1 < ∞.

A bounded measurable function a is said to be atom, if there exists a dyadic
two-dimensional cube I × I, such that

a)
∫

I×I
a dµ = 0;

b) ‖a‖∞ ≤ µ(I × I)−1;

c) supp a ⊂ I × I.
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We will use the following decomposition theorem (see Weisz [6]).

Theorem W2. A function f ∈ L1(G × G) is in the dyadic Hardy space

H1(G × G) if and only if there exists a sequence {ak : k ∈ N} of atoms and a

sequence {λk : k ∈ N} of real numbers such that

f =

∞∑

k=0

λkak (3)

and
∞∑

k=0

|λk| < ∞.

Moreover, the following equivalence of norms holds

‖f‖H1
∼ inf

∞∑

k=0

|λk|

where the infimum is taken over all decomposition of f of the form (3).

Denote by Elr(f)1 the best approximation of a function f ∈ L1(G×G) by
Walsh polynomials of degree ≤ l in the variable x and of degree ≤ r in the

variable y, and let E
(1)
l (f)1 be the partial best approximation of the function

f ∈ L1(G × G) by Walsh polynomials of degree ≤ l in the variable x, whose
coefficients are integrable functions of the other variable y. Analogously, we

define E
(2)
r (f)1.

Let 2L ≤ l < 2L+1 and E2L,2L(f)1 := ‖f − T2L,2L‖1. Since

‖S2L,2L(f)‖1 ≤ ‖f‖1

we can write

E2L,2L(f)1 ≤ ‖f − S2L,2L(f)‖1 =
∥∥f − S

(1)

2L

(
S

(2)

2L (f)
)∥∥

1

≤ ‖f − S
(1)

2L (f)‖1 +
∥∥S(1)

2L

(
S

(2)

2L (f) − f
)∥∥

1

≤
∥∥f − S

(1)

2L (f)
∥∥

1
+
∥∥S(2)

2L (f) − f
∥∥

1
.

(4)

Let T
(1)

2L (x, y) be a polynomial of the best approximation E
(1)

2L (f)1. Then

∥∥S(1)

2L (f) − f
∥∥

1
≤
∥∥f − T

(1)

2L

∥∥
1

+
∥∥S(1)

2L (f − T
(1)

2L )
∥∥

1

≤ 2
∥∥f − T

(1)

2L

∥∥
1

= 2E
(1)

2L (f)1.
(5)

Analogously, we can prove that
∥∥S(2)

2L (f) − f
∥∥

1
≤ 2E

(2)

2L (f)1. (6)

Combining (4), (5) and (6), we conclude that

E2L,2L(f)1 ≤ 2E
(1)

2L (f)1 + 2E
(2)

2L (f)1. (7)
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3. Formulation of Main Results

Theorem 1. Let f ∈ H1(G × G). Then

∞∑

n=1

‖Sn,nf‖1

n log2(n + 1)
≤ c‖f‖H1

.

Corollary 1. Let f ∈ H1(G × G). Then

1

log(n + 1)

n∑

j=1

‖Sj,jf − f‖1

j log(j + 1)
→ 0 as n → ∞.

Corollary 2. Let f ∈ H1(G × G). Then

∞∑

n=1

|Sn,nf(x, y)|

n log2(n + 1)
< ∞ a. e. in G × G.

Theorem 2. Let {αk : k ∈ P} be a non-negative and non-increasing sequence.

Then for any f ∈ L1(G × G) the following estimation holds true:

∞∑

n=0

∥∥∥
2n+1−1∑

k=2n

αk(Sk,kf − f)
∥∥∥

1
≤ c

∞∑

k=1

αk

(
E

(1)
k (f)1 + E

(2)
k (f)1

)
.

Corollary 3. Let f ∈ L1(G × G) and

∞∑

k=1

αk

(
E

(1)
k (f)1 + E

(2)
k (f)1

)
< ∞. (8)

Then

∞∑

n=0

∣∣∣
2n+1−1∑

k=2n

αk(Sk,kf(x, y) − f(x, y))
∣∣∣ < ∞ a. e. in G × G.

Theorem 2 in the one-dimensional case for trigonometric Fourier series was
announced in [3].

It is not known whether condition (8) yields a. e. convergence of the series

∞∑

k=0

αk|Sk,kf(x, y) − f(x, y)|.

4. Proofs

Proof of Theorem 1. From Theorem W2 we can write
∫∫

G×G

|Sn,nf(x, y)| dµ(x, y) ≤

∞∑

j=0

|λj |

∫∫

G×G

|Sn,naj(x, y)| dµ(x, y).
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Because of this and Theorem W1 we only have to prove that

∞∑

n=1

‖Sn,na‖1

n log2(n + 1)
≤ c (9)

for every atom a.

Let a be any atom with support IN (z′)×JN (z′′) and µ(IN ) = µ(JN ) = 2−N .
We may assume that z′ = z′′ = 0.

Let (x, y) ∈ IN ×IN , then D2i(x+s)1IN
(s) = 0 and D2i(y+t)1IN

(t) = 0 for
j ≥ N . Recall that w2j (x + t) = w2j (x) for t ∈ IN and j < N . Consequently,
from (2) we obtain

Sn,na(x, y) =

∫∫

G×G

a(s, t)Dn(x + s)Dn(y + t) dµ(s, t)

=

∫∫

IN×IN

a(s, t)Dn(x + s)Dn(y + t) dµ(s, t)

=

∫∫

IN×IN

a(s, t)wn(x + s + y + t)
N−1∑

i=0

niw2i(x + s)D2i(x + s)

×

N−1∑

j=0

njw2j (y + t)D2j (y + t) dµ(s, t)

= wn(x)

N−1∑

i=0

niw2i(x)D2i(x)wn(y)

N−1∑

j=0

njw2j (y)D2j (y)

×

∫∫

IN×IN

a(s, t)wn(s + t) dµ(s, t)

= wn(x + y)
N−1∑

i=0

niw2i(x)D2i(x)
N−1∑

j=0

njw2j (y)D2j (y)

×

∫

IN

(∫

IN

a(t + τ, t) dµ(t)
)
wn(τ) dµ(τ)

= wn(x + y)

N−1∑

i=0

niw2i(x)D2i(x)

N−1∑

j=0

njw2j (y)D2j (y)

×

∫

IN

Φ(τ)wn(τ) dµ(τ)

= wn(x + y)
N−1∑

i=0

niw2i(x)D2i(x)
N−1∑

j=0

njw2j (y)D2j (y)Φ̂(n),

where

Φ(τ) =

∫

IN

a(t + τ, t) dµ(t).
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Hence,

∞∑

n=1

1

n log2(n + 1)

∫∫

IN×IN

|Sn,na(x, y)| dµ(x, y)

≤
∞∑

n=1

|Φ̂(n)|

n log2(n + 1)

(∫

IN

N−1∑

i=0

D2i(x) dµ(x)
)2

≤ N2
∞∑

n=1

|Φ̂(n)|

n log2(n + 1)
.

Let n < 2N . Since wn(τ) = 1 for τ ∈ IN and n < 2N , we have

Φ̂(n) =

∫

G

Φ(τ)wn(τ) dµ(τ) =

∫

G

(∫

IN

a(t + τ, t) dµ(t)
)
wn(τ) dµ(τ)

=

∫∫

IN×IN

a(s, t) dµ(s, t) = 0.

Hence, we can suppose that n ≥ 2N .
By Hölder and Parseval’s inequality we obtain

N2
∞∑

n=1

|Φ̂(n)|

n log2(n + 1)
≤ N2

( ∞∑

n=2N

1

n2 log4(n + 1)

)1/2( ∞∑

n=2N

|Φ̂(n)|2
)1/2

≤
c

2N/2

(∫

G

|Φ(τ)|2 dµ(τ)
)1/2

=
c

2N/2

(∫

IN

∣∣∣
∫

IN

a(t + τ, t) dµ(t)
∣∣∣
2

dµ(τ)
)1/2

≤
c

2N/2
‖a‖∞

1

2N

1

2N/2
≤ c < ∞. (10)

Let x, y ∈ IN × IN . Then we have

Sn,na(x, y) = wn(x)

N−1∑

j=0

njw2j (x)D2j (x)

∫∫

G×G

a(s, t)wn(s)Dn(y + t) dµ(s, t)

= wn(x)

N−1∑

j=0

njw2j (x)D2j (x)

∫

G

S(2)
n a(s, y)wn(s) dµ(s)

= wn(x)

N−1∑

j=0

njw2j (x)D2j (x)Ŝ(2)
n a(n, y) .

Consequently,

∞∑

n=1

1

n log2(n + 1)

∫∫

IN×IN

|Sn,na(x, y)| dµ(x, y)

≤

∞∑

n=1

1

n log2(n + 1)

∫∫

IN×IN

N−1∑

j=0

D2j (x)|Ŝ(2)
n a(n, y)| dµ(x, y).
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Let n < 2N . Then by the definition of atom we have

Ŝ(2)
n a(n, y) =

∫

G

(∫

G

a(s, t)Dn(y + t) dµ(t)
)
wn(s) dµ(s)

= Dn(y)

∫∫

IN×IN

a(s, t) dµ(s, t) = 0.

Hence, we can suppose that n > 2N . Then we have

∞∑

n=1

1

n log2(n + 1)

∫∫

IN×IN

|Sn,na(x, y)| dµ(x, y)

≤ N

∞∑

n=2N

1

n log2(n + 1)

∫

IN

∣∣Ŝ(2)
n a(n, y)

∣∣ dµ(y).

Since ∥∥Ŝ(2)
n a(n, y)

∥∥
2
≤ c ‖a‖2

from Hölder inequality we can write

∫

IN

∣∣Ŝ(2)
n a(n, y)

∣∣ dµ(y) ≤

∫

IN

∣∣∣
∫

G

S(2)
n a(s, y)wn(s)dµ(s)

∣∣∣ dµ(y)

=

∫

IN

∣∣∣
∫

IN

(∫

IN

a(s, t)Dn(y + t) dµ(t)
)
wn(s) dµ(s)

∣∣∣dµ(y)

≤

∫

IN

(∫

IN

∣∣∣
∫

IN

a(s, t)Dn(y + t) dµ(t)
∣∣∣dµ(y)

)
dµ(s)

≤
c

2N/2

∫

IN

(∫

IN

∣∣∣
∫

IN

a(s, t)Dn(y + t) dµ(t)
∣∣∣
2

dµ(y)
)1/2

dµ(s)

≤
c

2N/2

∫

IN

(∫

IN

|a(s, t)|2 dµ(t)
)1/2

dµ(s) ≤
c‖a‖∞
2N/2

·
1

2N
·

1

2N/2
≤ c < ∞.

Consequently,

∞∑

n=1

1

n log2(n + 1)

∫∫

IN×IN

|Sn,na(x, y)| dµ(x, y)

≤ cN

∞∑

n=2N

1

n log2(n + 1)
≤ c < ∞.

(11)

Analogously, we can prove that

∞∑

n=1

1

n log2(n + 1)

∫

IN×IN

|Sn,na(x, y)| dµ(x, y) ≤ c < ∞. (12)
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Let (x, y) ∈ IN × IN . Then by the definition of atom we can write

∫

IN×IN

|Sn,na(x, y)| dµ(x, y) ≤
1

2N

(∫

IN×IN

|Sn,na(x, y)|2 dµ(x, y)
)1/2

≤
1

2N

(∫

IN×IN

|a(x, y)|2 dµ(x, y)
)1/2

≤
‖a‖∞
22N

≤ c < ∞.

(13)

Combining (10)–(13) we obtain (9). Theorem 1 is proved. �

Proof of Theorem 2. We have

∥∥∥
2n+1−1∑

k=2n

αk(Sk,kf − f)
∥∥∥

1
≤
∥∥∥

2n+1−1∑

k=2n

αkSk,k(f − T2n,2n)
∥∥∥

1

+
∥∥∥

2n+1−1∑

k=2n

αk(f − T2n,2n)
∥∥∥

1

≤
∥∥∥

2n+1−1∑

k=2n

αkSk,k(f − T2n,2n)
∥∥∥

1

+ 2nα2nE2n,2n(f)1.

(14)

By Abel’s transformation we can write

2n+1−1∑

k=2n

αkSk,kg =
2n+1−1∑

k=2n

(αk − αk+1)
k∑

j=1

Sj,jg

+ α2n+1−1

2n+1−1∑

j=1

Sj,jg − α2n

2n−1∑

j=1

Sj,jg.

(15)

Since
∥∥∥

k∑

j=1

Sj,jg
∥∥∥

1
≤ c k‖g‖1,

we obtain from (15) that

∥∥∥
2n+1−1∑

k=2n

αkSk,kg
∥∥∥

1
≤ c 2nα2n‖g‖1.

Consequently,

∥∥∥
2n+1−1∑

k=2n

αkSk,k(f − T2n,2n)
∥∥∥

1
≤ c 2nα2nE2n,2n(f)1. (16)
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Combining (7), (14) and (16) we have

∞∑

n=1

∥∥∥
2n+1−1∑

k=2n

αk(Sk,kf − f)
∥∥∥

1
≤ c

∞∑

n=1

2nα2nE2n,2n(f)1

≤ c

∞∑

n=1

2nα2n

(
E

(1)
2n (f)1 + E

(2)
2n (f)1

)
≤ c

∞∑

k=1

αk

(
E

(1)
k (f)1 + E

(2)
k (f)1

)
.

Theorem 2 is proved. �
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