Strong Convergence of Cubic Partial Sums of Two-Dimensional Walsh-Fourier Series

Ushangi Goginava and Larry Gogoladze

We prove that certain means of the cubic partial sums of the twodimensional Walsh-Fourier series are uniformly bounded operators from dyadic Hardy space H_{1} to the space L_{1}. As a consequence we obtain strong convergence theorems concerning cubic partial sums.

Keywords and Phrases: Walsh function, Hardy space, strong means.
Mathematics Subject Classification (2010): 42C10.

1. Introduction

It is known [1] that the Walsh-Paley system is not a Schauder basis in $L_{1}(G)$ (for the definition of G, see Section 2). Moreover, there exists a function in the dyadic Hardy space $H_{1}(G)$, the partial sums of which are not bounded in $L_{1}(G)$. Simon [4] proved strong convergence result for one-dimensional WalshFourier series. In particular, the following is true

Theorem S. Let $f \in H_{1}(G)$. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{\left\|S_{k} f-f\right\|_{1}}{k}=0
$$

For the two-dimensional Walsh-Fourier series Weisz [7] generalized the result of Simon and proved that the following result is true.

Theorem W1. Let $f \in H_{1}(G \times G)$. Then

$$
\sum_{2^{-\alpha} \leq k / l \leq 2^{\alpha},(k, l) \leq(n, m)} \frac{1}{\log n \log m} \sum_{k=1}^{n} \frac{\left\|S_{k, l} f\right\|_{1}}{k l} \leq c\|f\|_{H_{1}} .
$$

We prove that certain means of the cubic partial sums of the two-dimensional Walsh-Fourier series are uniformly bounded operators from dyadic Hardy space H_{1} to the space L_{1}. As a consequence we obtain strong convergence theorems concerning cubic partial sums.

2. Definitions and Notation

Let \mathbb{P} denote the set of positive integers, $\mathbb{N}:=\mathbb{P} \cup\{0\}$. Denote by Z_{2} the discrete cyclic group of order 2 , that is $Z_{2}=\{0,1\}$, where the group operation is the modulo 2 addition and every subset is open. The Haar measure on Z_{2} is given such that the measure of a singleton is $1 / 2$. Let G be the complete direct product of the countable infinite copies of the compact groups Z_{2}. The elements of G are of the form $x=\left(x_{0}, x_{1}, \ldots, x_{k}, \ldots\right)$ with $x_{k} \in\{0,1\}(k \in \mathbb{N})$. The group operation on G is the coordinate-wise addition, the measure (denoted by μ) and the topology are the product measure and topology. The compact Abelian group G is called the Walsh group. A base for the neighborhoods of G can be given in the following way:

$$
\begin{aligned}
& I_{0}(x):=G \\
& I_{n}(x)=I_{n}\left(x_{0}, \ldots, x_{n-1}\right):=\left\{y \in G: y=\left(x_{0}, \ldots, x_{n-1}, y_{n}, y_{n+1}, \ldots\right)\right\} \\
& \qquad(x \in G, n \in \mathbb{N})
\end{aligned}
$$

These sets are called dyadic intervals. Let $0=(0: i \in \mathbb{N}) \in G$ denotes the null element of G and $I_{n}:=I_{n}(0), n \in \mathbb{N}$. Set $e_{n}:=(0, \ldots, 0,1,0, \ldots) \in G$ the n-th coordinate of which is 1 and the rest are zeros $(n \in \mathbb{N})$. Let $\bar{I}_{n}:=G \backslash I_{n}$.

For $k \in \mathbb{N}$ and $x \in G$ denote by

$$
r_{k}(x):=(-1)^{x_{k}} \quad(x \in G, k \in \mathbb{N})
$$

the k-th Rademacher function. For $n \in \mathbb{N}$, let $n=\sum_{i=0}^{\infty} n_{i} 2^{i}$ with $n_{i} \in\{0,1\}$, i.e., n is represented in the binary numeral system. Denote $|n|:=\max \{j \in \mathbb{N}$: $\left.n_{j} \neq 0\right\}$, that is, $2^{|n|} \leq n<2^{|n|+1}$.

The Walsh-Paley system is defined as the sequence of Walsh-Paley functions:

$$
w_{n}(x):=\prod_{k=0}^{\infty}\left(r_{k}(x)\right)^{n_{k}}=r_{|n|}(x)(-1)^{\sum_{k=0}^{|n|-1} n_{k} x_{k}} \quad(x \in G, n \in \mathbb{P})
$$

The Walsh-Dirichlet kernel is defined by

$$
D_{n}(x)=\sum_{k=0}^{n-1} w_{k}(x)
$$

Recall that (see [5])

$$
\begin{align*}
D_{2^{n}}(x) & =\left\{\begin{array}{lll}
2^{n}, & \text { if } & x \in I_{n} \\
0, & \text { if } & x \in \bar{I}_{n}
\end{array}\right. \tag{1}\\
D_{n}(x) & =w_{n}(x) \sum_{j=0}^{\infty} n_{j} w_{2^{j}}(x) D_{2^{j}}(x) \tag{2}
\end{align*}
$$

The rectangular partial sums of the 2-dimensional Walsh-Fourier series are defined as follows:

$$
S_{M, N} f(x, y):=\sum_{i=0}^{M-1} \sum_{j=0}^{N-1} \widehat{f}(i, j) w_{i}(x) w_{j}(y)
$$

where

$$
\widehat{f}(i, j)=\iint_{G \times G} f(x, y) w_{i}(x) w_{j}(y) d \mu(x, y)
$$

is said to be the (i, j)-th Walsh-Fourier coefficient of the function f.
Denote

$$
S_{M}^{(1)} f(x, y):=\int_{G} f(s, y) D_{M}(x+s) d \mu(s)
$$

and

$$
S_{N}^{(2)} f(x, y):=\int_{G} f(x, t) D_{N}(y+t) d \mu(t)
$$

The norm in the space $L_{1}(G \times G)$ is defined by

$$
\|f\|_{1}:=\iint_{G \times G}|f(x, y)| d \mu(x, y)
$$

Let $f \in L_{1}(G \times G)$. Then the dyadic maximal function is given by

$$
f^{*}(x, y)=\sup _{n \in \mathbb{N}} \frac{1}{\mu\left(I_{n}(x) \times I_{n}(y)\right)}\left|\iint_{I_{n}(x) \times I_{n}(y)} f(s, t) d \mu(s, t)\right|, \quad(x, y) \in G \times G
$$

The dyadic Hardy space $H_{1}(G \times G)$ consists of all functions for which

$$
\|f\|_{H_{1}}:=\left\|f^{*}\right\|_{1}<\infty
$$

A bounded measurable function a is said to be atom, if there exists a dyadic two-dimensional cube $I \times I$, such that
a) $\int_{I \times I} a d \mu=0$;
b) $\|a\|_{\infty} \leq \mu(I \times I)^{-1}$;
c) $\operatorname{supp} a \subset I \times I$.

We will use the following decomposition theorem (see Weisz [6]).
Theorem W2. A function $f \in L_{1}(G \times G)$ is in the dyadic Hardy space $H_{1}(G \times G)$ if and only if there exists a sequence $\left\{a_{k}: k \in \mathbb{N}\right\}$ of atoms and a sequence $\left\{\lambda_{k}: k \in \mathbb{N}\right\}$ of real numbers such that

$$
\begin{equation*}
f=\sum_{k=0}^{\infty} \lambda_{k} a_{k} \tag{3}
\end{equation*}
$$

and

$$
\sum_{k=0}^{\infty}\left|\lambda_{k}\right|<\infty
$$

Moreover, the following equivalence of norms holds

$$
\|f\|_{H_{1}} \sim \inf \sum_{k=0}^{\infty}\left|\lambda_{k}\right|
$$

where the infimum is taken over all decomposition of f of the form (3).
Denote by $E_{l r}(f)_{1}$ the best approximation of a function $f \in L_{1}(G \times G)$ by Walsh polynomials of degree $\leq l$ in the variable x and of degree $\leq r$ in the variable y, and let $E_{l}^{(1)}(f)_{1}$ be the partial best approximation of the function $f \in L_{1}(G \times G)$ by Walsh polynomials of degree $\leq l$ in the variable x, whose coefficients are integrable functions of the other variable y. Analogously, we define $E_{r}^{(2)}(f)_{1}$.

Let $2^{L} \leq l<2^{L+1}$ and $E_{2^{L}, 2^{L}}(f)_{1}:=\left\|f-T_{2^{L}, 2^{L}}\right\|_{1}$. Since

$$
\left\|S_{2^{L}, 2^{L}}(f)\right\|_{1} \leq\|f\|_{1}
$$

we can write

$$
\begin{align*}
E_{2^{L}, 2^{L}}(f)_{1} & \leq\left\|f-S_{2^{L}, 2^{L}}(f)\right\|_{1}=\left\|f-S_{2^{L}}^{(1)}\left(S_{2^{L}}^{(2)}(f)\right)\right\|_{1} \\
& \leq\left\|f-S_{2 L}^{(1)}(f)\right\|_{1}+\left\|S_{2^{L}}^{(1)}\left(S_{2 L}^{(2)}(f)-f\right)\right\|_{1} \tag{4}\\
& \leq\left\|f-S_{2^{L}}^{(1)}(f)\right\|_{1}+\left\|S_{2^{L}}^{(2)}(f)-f\right\|_{1} .
\end{align*}
$$

Let $T_{2 L}^{(1)}(x, y)$ be a polynomial of the best approximation $E_{2^{L}}^{(1)}(f)_{1}$. Then

$$
\begin{align*}
\left\|S_{2 L}^{(1)}(f)-f\right\|_{1} & \leq\left\|f-T_{2^{L}}^{(1)}\right\|_{1}+\left\|S_{2 L}^{(1)}\left(f-T_{2^{L}}^{(1)}\right)\right\|_{1} \\
& \leq 2\left\|f-T_{2^{L}}^{(1)}\right\|_{1}=2 E_{2^{L}}^{(1)}(f)_{1} . \tag{5}
\end{align*}
$$

Analogously, we can prove that

$$
\begin{equation*}
\left\|S_{2^{L}}^{(2)}(f)-f\right\|_{1} \leq 2 E_{2^{L}}^{(2)}(f)_{1} \tag{6}
\end{equation*}
$$

Combining (4), (5) and (6), we conclude that

$$
\begin{equation*}
E_{2^{L}, 2^{L}}(f)_{1} \leq 2 E_{2^{L}}^{(1)}(f)_{1}+2 E_{2^{L}}^{(2)}(f)_{1} \tag{7}
\end{equation*}
$$

3. Formulation of Main Results

Theorem 1. Let $f \in H_{1}(G \times G)$. Then

$$
\sum_{n=1}^{\infty} \frac{\left\|S_{n, n} f\right\|_{1}}{n \log ^{2}(n+1)} \leq c\|f\|_{H_{1}}
$$

Corollary 1. Let $f \in H_{1}(G \times G)$. Then

$$
\frac{1}{\log (n+1)} \sum_{j=1}^{n} \frac{\left\|S_{j, j} f-f\right\|_{1}}{j \log (j+1)} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Corollary 2. Let $f \in H_{1}(G \times G)$. Then

$$
\sum_{n=1}^{\infty} \frac{\left|S_{n, n} f(x, y)\right|}{n \log ^{2}(n+1)}<\infty \quad \text { a.e. in } G \times G
$$

Theorem 2. Let $\left\{\alpha_{k}: k \in \mathbb{P}\right\}$ be a non-negative and non-increasing sequence. Then for any $f \in L_{1}(G \times G)$ the following estimation holds true:

$$
\sum_{n=0}^{\infty}\left\|\sum_{k=2^{n}}^{2^{n+1}-1} \alpha_{k}\left(S_{k, k} f-f\right)\right\|_{1} \leq c \sum_{k=1}^{\infty} \alpha_{k}\left(E_{k}^{(1)}(f)_{1}+E_{k}^{(2)}(f)_{1}\right)
$$

Corollary 3. Let $f \in L_{1}(G \times G)$ and

$$
\begin{equation*}
\sum_{k=1}^{\infty} \alpha_{k}\left(E_{k}^{(1)}(f)_{1}+E_{k}^{(2)}(f)_{1}\right)<\infty \tag{8}
\end{equation*}
$$

Then

$$
\sum_{n=0}^{\infty}\left|\sum_{k=2^{n}}^{2^{n+1}-1} \alpha_{k}\left(S_{k, k} f(x, y)-f(x, y)\right)\right|<\infty \quad \text { a.e. in } G \times G
$$

Theorem 2 in the one-dimensional case for trigonometric Fourier series was announced in [3].

It is not known whether condition (8) yields a.e. convergence of the series

$$
\sum_{k=0}^{\infty} \alpha_{k}\left|S_{k, k} f(x, y)-f(x, y)\right|
$$

4. Proofs

Proof of Theorem 1. From Theorem W2 we can write

$$
\iint_{G \times G}\left|S_{n, n} f(x, y)\right| d \mu(x, y) \leq \sum_{j=0}^{\infty}\left|\lambda_{j}\right| \iint_{G \times G}\left|S_{n, n} a_{j}(x, y)\right| d \mu(x, y) .
$$

Because of this and Theorem W1 we only have to prove that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left\|S_{n, n} a\right\|_{1}}{n \log ^{2}(n+1)} \leq c \tag{9}
\end{equation*}
$$

for every atom a.
Let a be any atom with support $I_{N}\left(z^{\prime}\right) \times J_{N}\left(z^{\prime \prime}\right)$ and $\mu\left(I_{N}\right)=\mu\left(J_{N}\right)=2^{-N}$. We may assume that $z^{\prime}=z^{\prime \prime}=0$.

Let $(x, y) \in \bar{I}_{N} \times \bar{I}_{N}$, then $D_{2^{i}}(x+s) 1_{I_{N}}(s)=0$ and $D_{2^{i}}(y+t) 1_{I_{N}}(t)=0$ for $j \geq N$. Recall that $w_{2^{j}}(x+t)=w_{2^{j}}(x)$ for $t \in I_{N}$ and $j<N$. Consequently, from (2) we obtain

$$
\begin{aligned}
& S_{n, n} a(x, y)= \iint_{G \times G} a(s, t) D_{n}(x+s) D_{n}(y+t) d \mu(s, t) \\
&= \iint_{I_{N} \times I_{N}} a(s, t) D_{n}(x+s) D_{n}(y+t) d \mu(s, t) \\
&= \iint_{I_{N} \times I_{N}} a(s, t) w_{n}(x+s+y+t) \sum_{i=0}^{N-1} n_{i} w_{2^{i}}(x+s) D_{2^{i}}(x+s) \\
& \times \sum_{j=0}^{N-1} n_{j} w_{2^{j}}(y+t) D_{2^{j}}(y+t) d \mu(s, t) \\
&=w_{n}(x) \sum_{i=0}^{N-1} n_{i} w_{2^{i}}(x) D_{2^{i}}(x) w_{n}(y) \sum_{j=0}^{N-1} n_{j} w_{2^{j}}(y) D_{2^{j}}(y) \\
& \quad \times \iint_{I_{N} \times I_{N}}^{N-1} a(s, t) w_{n}(s+t) d \mu(s, t) \\
&= w_{n}(x+y) \sum_{i=0}^{N-1} n_{i} w_{2^{i}}(x) D_{2^{i}}(x) \sum_{j=0}^{N-1} n_{j} w_{2^{j}}(y) D_{2^{j}}(y) \\
& \quad \int_{I_{N}}\left(\int_{I_{N}}^{N-1} a(t+\tau, t) d \mu(t)\right) w_{n}(\tau) d \mu(\tau) \\
&= w_{n}(x+y) \sum_{i=0}^{N-1} n_{i} w_{2^{i}}(x) D_{2^{i}}(x) \sum_{j=0}^{N} n_{j} w_{2^{j}}(y) D_{2^{j}}(y) \\
& \quad \times \int_{I_{N}} \Phi(\tau) w_{n}(\tau) d \mu(\tau) \\
&= w_{n}(x+y) \sum_{i=0}^{N-1} n_{i} w_{2^{i}}(x) D_{2^{i}}(x) \sum_{j=0}^{N-1} n_{j} w_{2^{j}}(y) D_{2^{j}}(y) \widehat{\Phi}(n),
\end{aligned}
$$

where

$$
\Phi(\tau)=\int_{I_{N}} a(t+\tau, t) d \mu(t)
$$

Hence,

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n \log ^{2}(n+1)} \iint_{\bar{I}_{N} \times \bar{I}_{N}}\left|S_{n, n} a(x, y)\right| d \mu(x, y) \\
& \quad \leq \sum_{n=1}^{\infty} \frac{|\widehat{\Phi}(n)|}{n \log ^{2}(n+1)}\left(\int_{\bar{I}_{N}} \sum_{i=0}^{N-1} D_{2^{i}}(x) d \mu(x)\right)^{2} \leq N^{2} \sum_{n=1}^{\infty} \frac{|\widehat{\Phi}(n)|}{n \log ^{2}(n+1)}
\end{aligned}
$$

Let $n<2^{N}$. Since $w_{n}(\tau)=1$ for $\tau \in I_{N}$ and $n<2^{N}$, we have

$$
\begin{aligned}
\widehat{\Phi}(n) & =\int_{G} \Phi(\tau) w_{n}(\tau) d \mu(\tau)=\int_{G}\left(\int_{I_{N}} a(t+\tau, t) d \mu(t)\right) w_{n}(\tau) d \mu(\tau) \\
& =\iint_{I_{N} \times I_{N}} a(s, t) d \mu(s, t)=0 .
\end{aligned}
$$

Hence, we can suppose that $n \geq 2^{N}$.
By Hölder and Parseval's inequality we obtain

$$
\begin{align*}
N^{2} \sum_{n=1}^{\infty} \frac{|\widehat{\Phi}(n)|}{n \log ^{2}(n+1)} & \leq N^{2}\left(\sum_{n=2^{N}}^{\infty} \frac{1}{n^{2} \log ^{4}(n+1)}\right)^{1 / 2}\left(\sum_{n=2^{N}}^{\infty}|\widehat{\Phi}(n)|^{2}\right)^{1 / 2} \\
& \leq \frac{c}{2^{N / 2}}\left(\int_{G}|\Phi(\tau)|^{2} d \mu(\tau)\right)^{1 / 2} \\
& =\frac{c}{2^{N / 2}}\left(\int_{I_{N}}\left|\int_{I_{N}} a(t+\tau, t) d \mu(t)\right|^{2} d \mu(\tau)\right)^{1 / 2} \\
& \leq \frac{c}{2^{N / 2}}\|a\|_{\infty} \frac{1}{2^{N}} \frac{1}{2^{N / 2}} \leq c<\infty \tag{10}
\end{align*}
$$

Let $x, y \in \bar{I}_{N} \times I_{N}$. Then we have

$$
\begin{aligned}
S_{n, n} a(x, y) & =w_{n}(x) \sum_{j=0}^{N-1} n_{j} w_{2^{j}}(x) D_{2^{j}}(x) \iint_{G \times G} a(s, t) w_{n}(s) D_{n}(y+t) d \mu(s, t) \\
& =w_{n}(x) \sum_{j=0}^{N-1} n_{j} w_{2^{j}}(x) D_{2^{j}}(x) \int_{G} S_{n}^{(2)} a(s, y) w_{n}(s) d \mu(s) \\
& =w_{n}(x) \sum_{j=0}^{N-1} n_{j} w_{2^{j}}(x) D_{2^{j}}(x) \widehat{S}_{n}^{(2)} a(n, y) .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{n \log ^{2}(n+1)} \iint_{\bar{I}_{N} \times I_{N}}\left|S_{n, n} a(x, y)\right| d \mu(x, y) \\
& \quad \leq \sum_{n=1}^{\infty} \frac{1}{n \log ^{2}(n+1)} \iint_{\bar{I}_{N} \times I_{N}} \sum_{j=0}^{N-1} D_{2^{j}}(x)\left|\widehat{S}_{n}^{(2)} a(n, y)\right| d \mu(x, y)
\end{aligned}
$$

Let $n<2^{N}$. Then by the definition of atom we have

$$
\begin{aligned}
\widehat{S}_{n}^{(2)} a(n, y) & =\int_{G}\left(\int_{G} a(s, t) D_{n}(y+t) d \mu(t)\right) w_{n}(s) d \mu(s) \\
& =D_{n}(y) \iint_{I_{N} \times I_{N}} a(s, t) d \mu(s, t)=0 .
\end{aligned}
$$

Hence, we can suppose that $n>2^{N}$. Then we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n \log ^{2}(n+1)} \iint_{\bar{I}_{N} \times I_{N}} & \left|S_{n, n} a(x, y)\right| d \mu(x, y) \\
& \leq N \sum_{n=2^{N}}^{\infty} \frac{1}{n \log ^{2}(n+1)} \int_{I_{N}}\left|\widehat{S}_{n}^{(2)} a(n, y)\right| d \mu(y)
\end{aligned}
$$

Since

$$
\left\|\widehat{S}_{n}^{(2)} a(n, y)\right\|_{2} \leq c\|a\|_{2}
$$

from Hölder inequality we can write

$$
\begin{aligned}
& \int_{I_{N}}\left|\widehat{S}_{n}^{(2)} a(n, y)\right| d \mu(y) \leq \int_{I_{N}}\left|\int_{G} S_{n}^{(2)} a(s, y) w_{n}(s) d \mu(s)\right| d \mu(y) \\
& \quad=\int_{I_{N}}\left|\int_{I_{N}}\left(\int_{I_{N}} a(s, t) D_{n}(y+t) d \mu(t)\right) w_{n}(s) d \mu(s)\right| d \mu(y) \\
& \leq \int_{I_{N}}\left(\int_{I_{N}}\left|\int_{I_{N}} a(s, t) D_{n}(y+t) d \mu(t)\right| d \mu(y)\right) d \mu(s) \\
& \leq \frac{c}{2^{N / 2}} \int_{I_{N}}\left(\int_{I_{N}}\left|\int_{I_{N}} a(s, t) D_{n}(y+t) d \mu(t)\right|^{2} d \mu(y)\right)^{1 / 2} d \mu(s) \\
& \leq \frac{c}{2^{N / 2}} \int_{I_{N}}\left(\int_{I_{N}}|a(s, t)|^{2} d \mu(t)\right)^{1 / 2} d \mu(s) \leq \frac{c\|a\|_{\infty}}{2^{N / 2}} \cdot \frac{1}{2^{N}} \cdot \frac{1}{2^{N / 2}} \leq c<\infty
\end{aligned}
$$

Consequently,

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{1}{n \log ^{2}(n+1)} \iint_{\bar{I}_{N} \times I_{N}}\left|S_{n, n} a(x, y)\right| d \mu(x, y) \tag{11}\\
& \leq c N \sum_{n=2^{N}}^{\infty} \frac{1}{n \log ^{2}(n+1)} \leq c<\infty
\end{align*}
$$

Analogously, we can prove that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n \log ^{2}(n+1)} \int_{I_{N} \times \bar{I}_{N}}\left|S_{n, n} a(x, y)\right| d \mu(x, y) \leq c<\infty . \tag{12}
\end{equation*}
$$

Let $(x, y) \in I_{N} \times I_{N}$. Then by the definition of atom we can write

$$
\begin{align*}
\int_{I_{N} \times I_{N}}\left|S_{n, n} a(x, y)\right| d \mu(x, y) & \leq \frac{1}{2^{N}}\left(\int_{I_{N} \times I_{N}}\left|S_{n, n} a(x, y)\right|^{2} d \mu(x, y)\right)^{1 / 2} \\
& \leq \frac{1}{2^{N}}\left(\int_{I_{N} \times I_{N}}|a(x, y)|^{2} d \mu(x, y)\right)^{1 / 2} \tag{13}\\
& \leq \frac{\|a\|_{\infty}}{2^{2 N}} \leq c<\infty
\end{align*}
$$

Combining (10)-(13) we obtain (9). Theorem 1 is proved.
Proof of Theorem 2. We have

$$
\begin{align*}
\left\|\sum_{k=2^{n}}^{2^{n+1}-1} \alpha_{k}\left(S_{k, k} f-f\right)\right\|_{1} \leq & \left\|\sum_{k=2^{n}}^{2^{n+1}-1} \alpha_{k} S_{k, k}\left(f-T_{2^{n}, 2^{n}}\right)\right\|_{1} \\
& +\left\|\sum_{k=2^{n}}^{2^{n+1}-1} \alpha_{k}\left(f-T_{2^{n}, 2^{n}}\right)\right\|_{1} \tag{14}\\
\leq & \left\|\sum_{k=2^{n}}^{2^{n+1}-1} \alpha_{k} S_{k, k}\left(f-T_{2^{n}, 2^{n}}\right)\right\|_{1} \\
& +2^{n} \alpha_{2^{n}} E_{2^{n}, 2^{n}}(f)_{1}
\end{align*}
$$

By Abel's transformation we can write

$$
\begin{align*}
\sum_{k=2^{n}}^{2^{n+1}-1} \alpha_{k} S_{k, k} g= & \sum_{k=2^{n}}^{2^{n+1}-1}\left(\alpha_{k}-\alpha_{k+1}\right) \sum_{j=1}^{k} S_{j, j} g \tag{15}\\
& +\alpha_{2^{n+1}-1} \sum_{j=1}^{2^{n+1}-1} S_{j, j} g-\alpha_{2^{n}} \sum_{j=1}^{2^{n}-1} S_{j, j} g .
\end{align*}
$$

Since

$$
\left\|\sum_{j=1}^{k} S_{j, j} g\right\|_{1} \leq c k\|g\|_{1}
$$

we obtain from (15) that

$$
\left\|\sum_{k=2^{n}}^{2^{n+1}-1} \alpha_{k} S_{k, k} g\right\|_{1} \leq c 2^{n} \alpha_{2^{n}}\|g\|_{1} .
$$

Consequently,

$$
\begin{equation*}
\left\|\sum_{k=2^{n}}^{2^{n+1}-1} \alpha_{k} S_{k, k}\left(f-T_{2^{n}, 2^{n}}\right)\right\|_{1} \leq c 2^{n} \alpha_{2^{n}} E_{2^{n}, 2^{n}}(f)_{1} \tag{16}
\end{equation*}
$$

Combining (7), (14) and (16) we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left\|\sum_{k=2^{n}}^{2^{n+1}-1} \alpha_{k}\left(S_{k, k} f-f\right)\right\|_{1} \leq c \sum_{n=1}^{\infty} 2^{n} \alpha_{2^{n}} E_{2^{n}, 2^{n}}(f)_{1} \\
& \quad \leq c \sum_{n=1}^{\infty} 2^{n} \alpha_{2^{n}}\left(E_{2^{n}}^{(1)}(f)_{1}+E_{2^{n}}^{(2)}(f)_{1}\right) \leq c \sum_{k=1}^{\infty} \alpha_{k}\left(E_{k}^{(1)}(f)_{1}+E_{k}^{(2)}(f)_{1}\right)
\end{aligned}
$$

Theorem 2 is proved.

References

[1] L. A. Balashov and A. I. Rubinstein, Series with respect to the Walsh system and their generalizations, Itogi Nauki, Mat. Anal. 8 (1970), 147-202 [in Russian].
[2] B. I. Golubov, A. V. Efimov, and V. A. Skvortsov, "Series and Transformations of Walsh", Nauka, Moscow, 1987 [in Russian]; English transl.: Kluwer Acad. Publ., 1991.
[3] L. D. Gogoladze, On the strong summability of Fourier series, Bull Acad. Sci. Georgian SSR 52 (1968), no. 2, 287-292.
[4] P. Simon, Strong convergence of certain means with respect to the Walsh-Fourier series, Acta Math. Hung. 49 (1987), 425-431.
[5] F. Schipp, W. R. Wade, P. Simon, and J. Pál, "Walsh Series, an Introduction to Dyadic Harmonic Analysis", Adam Hilger, Bristol, New York, 1990.
[6] F. Weisz, "Martingale Hardy spaces and Their Applications in Fourier Analysis", Springer, Berlin - Heidelberg - New York, 1994.
[7] F. Weisz, Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series, Stud. Math. 117 (1996), no. 2, 173-194.

Ushangi Goginava

Institute of Mathematics
Faculty of Exact and Natural Sciences
Tbilisi State University
Chavchavadze str. 1, Tbilisi 0128
GEORGIA
E-mail: zazagoginava@gmail.com
Larry Gogoladze
Institute of Mathematics
Faculty of Exact and Natural Sciences
Tbilisi State University
Chavchavadze str. 1, Tbilisi 0128
GEORGIA
E-mail: lgogoladze@hotmail.com

