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In this paper we present an overview of some of recent main results in the
area of Gasca-Maeztu conjecture. We mainly consider the multivariate
(dimension ≥ 3) case where the generalized conjecture is due to Carl
de Boor. Many results we present in more general setting. Namely,
instead of standard assumption of geometric characterization property
we assume just independence. We provide proofs of some recent basic
results. Usually they are modified and shorter versions of the original
ones. Some new results also are presented. In particular, the classification
of GC2 sets having 3 maximal planes in R

3 is obtained, which is the last
step in classification of all GC2 sets in R

3.
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1. Introduction

Denote by Πd
n = Πn(Rd) the space of algebraic polynomials in d variables

of total degree not exceeding n:

Πd
n = {p(x) =

∑

|α|≤n

aαxα : aα ∈ R,x ∈ R
d},

where
x = (x1, x2, . . . , xd) ∈ R

d, α = (α1, α2, . . . , αd) ∈ Z
d
+,

and
xα = xα1

1 xα2

2 · · ·xαd

d , |α| = α1 + α2 + · · · + αd.

Let

N := Nn := Nd
n := dim Πd

n =

(

n + d

d

)

.
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Let us fix a set of points called knots:

Xs := {x(1),x(2), . . . ,x(s)} ⊂ R
d.

Denote
X := XN .

The problem of finding p ∈ Πd
n satisfying the conditions

p(x(k)) = ck, k = 1, 2, . . . , s (1)

is called interpolation problem and denoted briefly (Πd
n,Xs); p is called an

interpolating polynomial.

Definition 1. The interpolation problem (Πd
n,Xs) is called solvable, if for

any set of values {c1, c2, . . . , cs} there exists a polynomial p ∈ Πd
n satisfying the

conditions (1).

An interpolating polynomial p satisfying the conditions

p ∈ Πd
n and p(x(j)) = δjk, 1 ≤ j ≤ N,

where δjk is the Kronecker symbol, is called an n-fundamental polynomial for
A = x(k) ∈ Xs. In the sequel we will denote this fundamental polynomial by

p⋆
A := p⋆

A,Xs
:= p⋆

k,Xs
:= p⋆

k.

Definition 2. The set Xs is called Πd
n-independent (or briefly n-indepen-

dent), if for any its knot there exists an n-fundamental polynomial.

The following characterization is easily seen by using elementary linear
algebra.

Proposition 1. The interpolation problem (Πd
n,Xs) is solvable if and only

if Xs is n-independent.

Obviously fundamental polynomials are linearly independent. Thus if the
set Xs is n-independent then

s ≤ N. (2)

Furthermore, an interpolation polynomial can be expressed by the Lagrange
formula

p =

N
∑

j=1

p(x(j))p⋆
j . (3)

Next we consider the poisedness of a knot set.

Definition 3. The interpolation problem (Πd
n,Xs) is called poised, if for

any set of values {c1, c2, . . . , cs} there exists a unique polynomial p ∈ Πd
n

satisfying the conditions (1).
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The following two propositions are elementary linear algebra facts:

Proposition 2. The interpolation problem (Πd
n,Xs) is poised if and only if

Xs is n-independent and
s = N,

i.e., Xs = X .

Proposition 3. The interpolation problem (Πd
n,X ) is poised if and only if

p ∈ Πd
n and p(x(j)) = 0, j = 1, 2, . . . , N ⇒ p = 0.

Thus maximal possible number of n-independent points in R
d is N .

Next we are going to find a similar number for any k-dimensional flat in R
d,

where k ≤ d. By k-dimensional flat we mean a shift of k-dimensional linear
subspace of R

d. We call (d − 1)-dimensional flats hyperplanes.
Denote the restriction (i.e., trace) of a polynomial p ∈ Πd

n on F by p|F .

Definition 4. We call knot set Y ⊂ F n-complete in F if

p ∈ Πn, p|Y = 0 ⇒ p|F = 0.

We call Y ⊂ F n-basic in F if it is both n-complete in F and n-independent.

The following is a well-known fact in linear algebra: If the set Xs is n-com-
plete in R

d then
s ≥ N. (4)

Proposition 4. Suppose that F is a k-dimensional flat and Y ⊂ F .

(i) If Y is n-independent, then

#Y ≤ Nk
n . (5)

(ii) If Y is n-complete in F , then

#Y ≥ Nk
n . (6)

In particular, if Y is n-basic in F , then

#Y = Nk
n . (7)

(iii) If (7) holds then Y is n-complete in F if and only if Y is n-independent.

Proof. Suppose that F is given by the linearly independent system

Hi(x) = 0, i = 1, . . . , d − k,

where Hi ∈ Π1.
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Without loss of generality assume that the above system is solved with
respect to the last d − k variables:

xi = hi(x1, . . . , xk), i = k + 1, . . . , d.

For A = (x1, . . . , xd) denote by Ă its projection on R
k:

Ă = (x1, . . . , xk).

Denote
Y̆ := {Ă : A ∈ Y} ⊂ R

k.

We are going to verify that Y is n-independent in R
d if and only if Y̆ is

n-independent in R
k.

For a polynomial p ∈ Πd
n denote by p̆ the polynomial from Πk

n which
represents the trace of p on the k-dimensional flat F :

p̆(x1, . . . , xk) = p(x1, . . . , xk, hk+1(x1, . . . , xk), . . . , hd(x1, . . . , xk)).

Now suppose that Y is n-independent and p⋆
A(x1, . . . , xd) is a fundamental

polynomial of A ∈ Y. Then it is easily seen that p̆⋆
A = p⋆

Ă
(x1, . . . , xk), i.e., p̆⋆

A

is a fundamental polynomial of Ă ∈ Y̆. Therefore Y̆ is n-independent. Now in
view of (2) we get that (5) holds.

Next suppose that Y̆ is n-independent and fix A ∈ Y, then Ă ∈ Y̆. Let
p⋆

Ă
(x1, . . . , xk) be its n-fundamental polynomial. Then considering this as

polynomial of d-variables, i.e., by setting

q(x1, . . . , xd) := p⋆

Ă
(x1, . . . , xk),

we readily observe that it is n-fundamental for A with respect to the set Y,
i.e., the set Y is n-independent.

Next, let us verify similarly that Y is n-complete in F if and only if Y̆ is
n-complete in R

k.
Suppose that Y is n-complete in F and p(x1, . . . , xk) vanishes at Y̆. Then

considering this as polynomial of d-variables, i.e., by setting

q(x1, . . . , xd) := p(x1, . . . , xk),

we readily observe that it vanishes at the set Y. Since the latter is n-complete
in F , we conclude that q = 0, thus p = 0 or, in other words, Y̆ is n-complete
in R

k. In view of (4) we get that (6) holds.
Thus, we have in particular that Y is n-basic in F if and only if Y̆ is n-basic

in R
k.

Now let us turn to (iii). Suppose that Y is n-independent and #Y = Nk
n .

Then Y̆ is n-independent and has the same cardinality. Therefore Y̆ is n-basic
in R

k, which means that Y is n-complete in F . Similarly, we verify the reverse
implication. �
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Remark 1. As it follows from the above proof, a set of points on a k-
dimensional flat F in R

d is n-independent (or n-complete in F ) if and only if the
set of their projections on some k-dimensional coordinate flat is n-independent
(or n-complete in R

k, respectively).

2. Maximal Hyperplanes and Flats

Definition 5. A k-dimensional flat F in R
d is called n-maximal (or just

maximal) for the set X if X ∩ F is n-basic in F . In particular,

#{X ∩ F} = Nk
n . (8)

Notice that, in view of Proposition 4 (iii), F is maximal for n-independent
set X if (8) holds.

Proposition 5 (Apozyan [2]). Suppose X is an n-poised set. Then a
k-dimensional flat F is maximal for it if and only if for each knot A ∈ X \ F
the fundamental polynomial p⋆

A vanishes on F .

Proof. Indeed, the direct implication is a corollary of above Definition 5,
since the fundamental polynomials mentioned here vanish at X ∩ F . The
converse implication follows from the Lagrange formula (3), where the fundamental
polynomials with nonzero coefficients also vanish at X ∩ F . �

Proposition 6. Suppose X is an n-independent (poised) set. Suppose also
that a k-dimensional flat F is n-maximal for it. Next the set X ′ is obtained
from X by changing the positions of knots from X ∩ F inside F such that they
remain n-independent. Then the set X ′ is an n-independent (poised) set.

Proof. Without loss of generality suppose that X is an n-poised set, since
otherwise we could enlarge it to such a set. Now in view of Proposition 3 it
suffices to verify that

p ∈ Πn, p|X ′ = 0 ⇒ p|X = 0.

The latter follows readily from Proposition 4 (iii). �

Next we consider the case of maximal hyperplanes. We use same letter,
say H to denote both the hyperplane and the linear polynomial H ∈ Πd

1 which
takes part in the equation of the hyperplane: H(x) = 0.

Definition 6. Suppose X is an n-independent set. We say that a point
A ∈ X uses a hyperplane H if the n-fundamental polynomial p⋆

A contains the
linear factor H, or equivalently, p⋆

A|H = 0.

Now we get readily from Proposition 5 the following corollaries:
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Corollary 1 (C. de Boor [3]). Suppose X is an n-poised set. Then the
hyperplane H is maximal for X if and only if each knot A ∈ X \ H uses the
hyperplane H.

Corollary 2. Suppose that the hyperplane H is maximal for n-independent
set X . Then the set X ′ = X \H is (n−1)-independent set. Also, each maximal
hyperplane of X distinct from H is maximal for X ′. Moreover, if the set X is
n-poised, then X ′ is (n − 1)-poised, too.

Proof. Indeed, the fundamental polynomials of A ∈ X ′ with respect to X
have the form Hp, where p ∈ Πn−1. It is readily noticed that p is a fundamental
polynomial of A with respect to X ′. Also according to Proposition 5, p contains
factor H ′, where H ′ is a maximal, distinct from H and A ∈ X \ H ′. The
moreover part follows from the equality

#X ′ = #X − Nd−1
n = N − Nd−1

n = Nn−1. �

For an n-poised set X and given hyperplane H denote by NH the set of all
knots of X that do not lie on H and do not use it.

Corollary 1 means that

H is maximal if and only if NH = ∅. (9)

Proposition 7 (Carnicer and Gasca [5]). Suppose X is n-poised and
H is a non-maximal hyperplane. Then NH is a nonempty (n − 1)-dependent
set. Moreover, no knot of NH has an (n − 1)-fundamental polynomial.

Proof (see [9]). In view of (9) we have that N := NH 6= ∅. Suppose
conversely that A ∈ N has an (n− 1)-fundamental polynomial p⋆

A,N . Consider
the polynomial

p = p⋆
A,X − γHp⋆

A,N ∈ Πn, (10)

where γ is chosen so that p(A) = 0. Thus p vanishes on the whole N and due
to its form, also on X ∩H. According to the Lagrange formula (3) it is a linear
combination of fundamental polynomials of knots, where p does not vanish.
Thus we get

p =
∑

B∈Z

cip
⋆
B,X , (11)

where Z = X \ {N ∪ H}. It is easily seen that the fundamental polynomials
in the right-hand side are exactly those which use H. Thus p and therefore,
in view of (10), also p⋆

A,X uses H, which contradicts the definition of the set
N . �

The Vandermonde determinant Vn(X ) for the point set X = {xi}N
i=1 and

Πd
n is the following determinant:

Vn(X ) =

∣

∣

∣

∣

∣

∣

∣

∣

1 x1
1 · · · x1

d · · · (x1
1)

n (x1
1)

n−1x1
2 · · · (x1

d)
n

1 x2
1 · · · x2

d · · · (x2
1)

n (x2
1)

n−1x2
2 · · · (x2

d)
n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 xN

1 · · · xN
d · · · (xN

1 )n (xN
1 )n−1xN

2 · · · (xN
d )n

∣

∣

∣

∣

∣

∣

∣

∣

. (12)
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Thus Vn(X ) is an N × N -determinant.

Obviously we have that the interpolation problem (X ,Πn) is n-poised if
and only if Vn(X ) 6= 0.

Below we consider hyperplanes that contain just one knot less than maximals.

Theorem 1. Suppose that the hyperplane H contains N − 1 knots of
n-poised set X . Then for each knot A ∈ NH the set X ′ = X \ {H ∪ {A}}
is an (n−1)-poised set. In particular, the set NH \A is an (n−1)-independent
set. Also, each maximal hyperplane of X not containing the knot A is maximal
also for X ′.

Proof. Consider the Vandermonde determinant of the interpolation problem
(X ,Πn) with the knot A replaced by variable x and denote it by V (x). We
have that V (A) 6= 0, since the set X is poised. Therefore V (x) is a constant
times the fundamental polynomial of A which does not vanish identically on F .
Therefore there exists A′ ∈ F such that V (A′) 6= 0. This means that the above
interpolation problem, where A is replaced by A′, is poised. But H becomes
maximal for the changed set of knots and it remains to apply Corollary 2. �

It is worth mentioning that if A /∈ NH , then the set X ′ in Theorem 1 is not
(n − 1)-poised since it contains (n − 1)-dependent set NH .

Next we are going to investigate the set of maximal hyperplanes of indepen-
dent point sets.

Proposition 8 (Apozyan [2]). Suppose X is an n-independent set. Sup-
pose H is a maximal hyperplane and F is a maximal k-dimensional flat, k ≥ 1.
Then either H contains F or E := H ∩ F is a (k − 1)-dimensional maximal
flat.

Proof. First let us verify that E 6= ∅. Indeed, assume conversely that E = ∅.
Then X ′ := X \ H is an (n − 1)-independent set while the k-flat F contains
Nk

n > Nk−1
n its knots which contradicts (5). Now from linear algebra we have

that F is a (k − 1)-dimensional flat. Then let us extend X to X̄ which is an
n-poised set (see [9]). Finally, in view of Proposition 5, it is enough to verify
that the fundamental polynomial of each knot

A ∈ X̄ \ E (13)

vanishes on E. Indeed, suppose that (13) holds. Then either A /∈ H or A /∈ F .
Thus, in view of Proposition 5, the fundamental polynomial vanishes at H or
F , respectively. Therefore it vanishes at E. �

Next it is established that the maximal hyperplanes of any independent set
are in general position.
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Proposition 9 (C. de Boor [3]). Suppose X is an n-independent set and
H := {Hi, i = 1, . . . , s}, s ≤ d + 1, is a set of distinct maximal hyperplanes.
Then

F :=

s
⋂

i=1

Hi

is a maximal (d − s)-dimensional flat. In the case s = d and s = d + 1, F is
a knot of X or ∅, respectively. Moreover, the set H is determined uniquely by
F , if s ≤ d, i.e., there is no other hyperplane H containing F .

Conversely, suppose, taking into account Proposition 8, that F is maximal
k-dimensional flat, where k > d − s. Then without loss of generality we may
assume that

F =
s−1
⋂

i=1

Hi and F ⊂ Hs.

According to Proposition 2, we have that X ′ := X \Hs is (n− 1)-independent
set and Hi, i = 1, . . . , s − 1, are still maximal hyperplanes with

F ∩ X ′ = ∅. (14)

But in view of Proposition 8 we have that F is maximal flat for X ′ of dimension

dim F ≥ d − (s − 1) ≥ 0,

which contradicts to (14). �

3. Knot Sets with GC Property

We now present the construction of poised sets introduced by Chung and
Yao [7].

Definition 7. A set of knots X ⊂ R
d, #X = N , is said to satisfy the

geometric characterization GCn, or is a GCn set for short, if the fundamental
polynomial of each A ∈ X is product of linear factors:

p⋆
A = γ · hA

1 · hA
2 · · ·hA

n ,

or geometrically, there exist n hyperplanes hA
1 , hA

2 , . . . , hA
n , such that

X \ {A} ⊂ hA
1 ∪ hA

2 ∪ · · · ∪ hA
n but A 6∈ hA

1 ∪ hA
2 ∪ · · · ∪ hA

n .

In this case we say that the knot A uses the hyperplanes hA
1 , hA

2 , . . . , hA
n .

Remark 2. Note that a hyperplane that is used by a knot is determined
uniquely by the knots from X through which it passes.



134 On Recent Progress in Gasca-Maeztu Conjecture

Indeed, otherwise one could replace the hyperplane by another one, passing
through same knots, in the knot’s fundamental polynomial, thus contradicting
its uniqueness.

Note that each set X ⊂ R
d satisfying GCn is Πd

n-poised by Proposition 2.
The Gasca-Maeztu conjecture, also known as the GM -conjecture, is the

following [8]:

GM-conjecture. If a set X of knots in R
2 satisfies GCn, then there is a

maximal line, i.e., line passing through n + 1 knots of X .

So far the GM -conjecture has been verified only for n ≤ 4 in [4] (see also [5]
and [9]). Actually, the GM -conjecture states that every Chung-Yao set (GC
set) is a particular case of another well-known construction, called Berzolari-
Radon set: there exist lines l0, l1, . . . , ln, such that li \ (l0 ∪ · · · ∪ li−1) contains
exactly n + 1 − i knots, i = 0, 1, . . . , n (see e.g. [9]).

C. de Boor [3] generalized the GM -conjecture for R
d:

GMd-conjecture. If a set X of knots in R
d satisfies GCn, then there is a

hyperplane passing through dim Πd−1
n knots of X .

For R
2 we have the following:

Theorem 2 (Carnicer and Gasca [6]). If GM -conjecture is true, then
there exist at least three maximal lines.

Note that the mentioned minimal number of maximal lines is attained for
the well-known Newton lattice N , which is a GCn set:

N = {(i, j) : i + j ≤ n, i, j ∈ Z+}.

On the basis of above result and the fact that the Newton lattice in d-dimension
has d + 1 maximal hyperplanes C. de Boor made the following:

Conjecture (de Boor [3]). Every GC set in R
d has at least d+1 maximal

hyperplanes.

In the same paper C. de Boor also presented a counterexample, which shows
that this at first sight natural conjecture is not true.

In view of this one could doubt whether in higher dimensions, or even in
the bivariate case the Gasca-Maeztu conjecture is true.

In [1] the following important result was proved.

Theorem 3 (Apozyan, Avagyan, and Ktryan [1]). GMd-conjecture
is true for Π3

2.

Below we are going to present a modified and shorter proof of Theorem 3
(cf. [1]). First we bring a list of results for Π3

2 some of which were used in
the original proof (see [1]) and some are special cases of results presented in
previous sections.
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Proposition 10. If the set of 10 knots X = {A1, . . . , A10} ⊂ R
3, satisfies

the GC2 property, then:

(a) There is no line passing through 4 knots.

(b) If 3 knots are on a line, then one of the planes for each of remaining 7
knots should necessarily pass through that line.

(c) There can not be three distinct triples of collinear knots.

(d) A plane with exactly 4 knots cannot be used by two knots.

(e) A plane with exactly 5 knots cannot be used by three knots.

(e) If a plane with exactly 5 knots is used by 2 knots then the remaining 3
knots (3 = 10 − (5 + 2)) are collinear.

Proof. Indeed, (a) and (b) follow from Proposition 4 and Proposition 5
(d = n = 2), respectively.

For (c), suppose conversely that there are three distinct collinear triples.
These nine knots are on two planes used by the tenth knot. Therefore two
triples must be coplanar. But then 6 knots of these triples in view of Remark 1
are 2-dependent, which is a contradiction.

For (d), without loss of generality assume that a plane H is used by A1 and
A2 and passes through just 4 knots A3, . . . , A6. Then the remaining 4 knots
A7, . . . , A10 are contained in other two distinct planes – H1 and H2 used by A1

and A2, respectively. (We have also that H1 contains A2 and H2 contains A1.)
Thus knots A7, . . . , A10 are on the line of intersection of H1 and H2, which
contradicts (a).

Now consider the case of twice used plane H with 5 knots. Suppose that
H is used by A1 and A2 and passes through A3, . . . , A7. Then, in view of
Proposition 7 we have that

NH ⊂ {A8, A9, A10} (15)

must be 1-dependent. Thus necessarily equality takes place in (15) and the
three knots there are on one line. In the same way we get that triple usage
of H is impossible. Indeed, otherwise #NH ≤ 2 and therefore it cannot be
1-dependent set. Hence NH = ∅ implying in view of Corollary 1, that H is
maximal, which is a contradiction. �

Proof of Theorem 3. Assume conversely that GMd conjecture is not true
for Π3

2. Let X = {A1, . . . , A10} ⊂ R
3, be a set of 10 knots satisfying the GC2

property for which there is no plane passing through 6 knots. Then each knot
of X uses 2 planes and at least one of them contains 5 of other 9 knots. Thus
we have

∗ There is a plane, denoted by P ′, passing through 5 knots.
We also verify readily that
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∗ 3 knots out of 5 on P ′ are collinear.
Indeed, P ′ is not maximal. Hence, in view of Corollary 1, there is a knot,

not contained in P ′, say A, which does not use it. One of the two planes used
by A, say P ′′, contains k ≥ 3 of 5 knots of P ′. These k knots are on the line
P ′ ∩ P ′′. Now by Proposition 10 (a), we get k = 3.

Denote the above line with 3 knots by l. Note that l is a maximal 1-flat.
In the next statement we follow [1], where a bivariate fact from [9] (see

Lemma 3.5 therein) is extended to R
3.

∗ There is a plane, denoted by P , with 5 knots which is used by two knots.
Consider the 7 knots outside the line l which, according to Proposition 5,

should use a plane passing through l. First note that, in view of Remark 2,
any plane which is used by a knot and is passing through the line l should
pass through at least one another knot, too. Next, there are at most 6 such
planes – the P ′ itself and the other 5 passing through l and 5 points outside of
P ′, respectively. Thus for 7 knots there are 6 planes and therefore there should
be a plane which passes through l and is used by two knots.

Now in view of Proposition 10 (f) we arrive to the following final configura-
tion:

∗ 5 knots, say A1, . . . , A5, contained in a plane P used by two knots say
A6 and A7. Moreover, three knots, say A1, A2, A3, are collinear in P and three
knots, say A8, A9, A10, are collinear outside of P .

Note that in view of Proposition 10 (c) no triple inside A4, . . . , A7 is collinear,
or in other words, any triple there determines a plane.

Denote the line through A1, A2, A3, by l1−3. Let also

X8−10 = {A8, A9, A10}.

Now notice that one of the two planes (let us name it as first) used by a knot
from X8−10 passes necessarily through the line l1−3 and another knot from
A8, A9, A10.

We start by considering the case when such a plane passes just through the
above mentioned 4 knots (three in l1−3). Without loss of generality assume
that it is the first plane of A8 and passes through l1−3 and A9 only. Then
the second plane of A8, denoted by L, passes through the remaining knots:
A4, A5, A6, A7, A10. Let us check that also A9 and A10 are using L. Indeed,
the second planes of these knots pass necessarily through A4, A5 and at least
one from A6 and A7. Indeed, if these latter two knots belong to the first plane,
then it contains 6 knots. It remains to note that both the planes through
A4, A5, A6 or A4, A5, A7 coincide with L.

Therefore each of first planes of knots of X8−10 contains 5 knots – the 4
necessary ones mentioned above plus one additional. It is easily seen that the
additional knot must be A6 or A7. Thus there are two possible planes through
l1−3 and A6 or A7. Therefore for two knots of X8−10, say for A8 and A9, the
first planes coincide. Denote it by L′. As was mentioned, it passes through one
knot of X8−10, which in this case must be A10, and one of A6 or A7, say A6.
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Now in view of Proposition 7

NH ⊂ {A4, A5, A7}

must be 1-dependent, therefore three knots in the right-hand side must be
collinear which, as was mentioned, is a contradiction. �

Next we formulate another basic result concerning GC conjecture in R
3.

Theorem 4 (Ktryan [10]). Any GC2 set X in R
3 has at least three maxi-

mal planes.

For the proof we refer the reader to [10].
At the end of this section let us formulate the most important recent result

in the considered area which was proved in 2011 by A. Apozyan in his Ph. D.
Thesis:

Theorem 5 (Apozyan). The GMd-conjecture is not true in general.

To prove Theorem 5, Apozyan constructed a GC2 set of 28 points in R
6

which has no maximal plane!

4. The Classification of GC2 Sets: the Uniqueness of

the Counterexample of Carl de Boor

Thus all GC2 sets in R
3 can be divided into 3 classes: those having 3, 4

or 5 maximal planes. The case of 5 maximal planes were considered in [3].
To present it let us recall the Chung and Yao natural lattice. Here we start
with n + 3 planes: Li, i = 1, . . . , n + 3, which satisfy the following conditions:
each three planes have a unique point of intersection and intersection of each
4 planes is empty. The set X consists of all intersection points of these planes.
Then it is easily seen that #X = N3

n and X satisfies the condition GC3
n.

They are characterized as follows.

Proposition 11 (C. de Boor [3]). Any GC2 set in R
3 with 5 maximal

planes corresponds to Chung and Yao natural lattice of degree 2.

The case of 4 maximal planes was considered in [2]. To present it in the
considered special case let us introduce the concept of so called space ∆-
structure (see [10], [2]): 4 knots, called black, are the vertices of a pyramid
and other 6 knots, called white, lie one by one on 6 edges of the pyramid so
that they are not coplanar.

Proposition 12 (Apozyan [2]). Any GC2 set in R
3 with exactly 4 maxi-

mal planes corresponds to a space ∆-structure.
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Notice that any side of the pyramid with ∆-structure is a maximal plane
and contains three white and three black knots.

Now let us discuss the counterexample of de Boor [3]. This configuration is
obtained from a space ∆-structure by moving in a fixed side of the pyramid a
white knot to the line passing through two other white knots of that side. Let
us name the resulting configuration as ∆̂-structure. It is easily seen that there
are 3 maximal planes here. The intersection of these latter planes is a black
knot which we denote by M .

Next we verify that a ∆̂-structure satisfies the GC2 property.
Indeed, in view of Proposition 6 it is poised. Therefore for knots which use

a maximal plane (with 6 knots) the GC condition holds since the second plane
has to pass through just 3 knots. Notice that then, in view of Proposition 3,
none of the two planes vanishes at M .

It is easily seen that in ∆̂-structure only M does not use a maximal plane.
But one can readily find the two planes it uses. They are the same which M
was using in the original ∆-structure, i.e., in the structure before the movement
of the white knot. In fact the white knot we move from one plane M is using
to another.

Next we show that actually the counterexample of C. de Boor gives the
only configuration of GC2 set with 3 maximal planes. This completes the
classification of all GC2 sets in R

3.

Proposition 13. Any GC2 set in R
3 with exactly 3 maximal planes corre-

sponds to a space ∆̂-structure.

Proof. Assume that X = {A1, . . . , A10} ⊂ R
3 satisfies the GC2 property

and has exactly 3 maximal planes. According to Proposition 9 these three
planes intersect at a knot which corresponds to the one denoted above by M .
This is the first black knot. Next, by the same Proposition 9 each two of these
three planes intersect with a maximal line. These lines contain the edges of
the pyramid of the ∆̂-structure. Denote these lines by li, i = 1, 2, 3. Each line
passes through three knots, one of which is M . Denote the other knots on li,
by Mi and M ′

i , i = 1, 2, 3. Denote also by Pij the plane through li and lj ,
1 ≤ i, j ≤ 3. These are the 3 maximal planes.

As it was mentioned above, M does not use a maximal plane, since it is
the only knot belonging to all three maximal planes. Therefore it uses a plane
with 5 knots. Denote that plane by P . This plane passes through exactly one
knot from each line li, i = 1, 2, 3, distinct of M , i.e., exactly one of Mi and M ′

i ,
i = 1, 2, 3.

Indeed, if it passes through two knots of one of the lines, then it passes
through M , while if it does not pass through any knot of one of the lines, then
the second plane used by M passes through two knots of that line and therefore
it passes through M itself, which is a contradiction.

These three knots on lines li, i = 1, 2, 3, P passes through will be the 3
other black knots, which together with M form the vertices of the pyramid of
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the ∆̂- structure. Other three Mi or M ′
i , i = 1, 2, 3, will be white knots. Thus

we identified situation of 7 knots: 4 black and 3 white. It remains to identify
the 3 remaining white knots.

Note that P is fixed by the condition that it passes through three black
knots of the lines li, i = 1, 2, 3. Next we are to add two of the 3 white knots to
P to make it pass through 5 knots.

Notice that from the other hand we are to add the 3 white knots one by one
to the maximal planes P12, P13, and P23, which so far contain 5 knots each.

Thus we conclude that the two of three white knots are on the intersection
of P with two maximal planes.

Finally, it remains to identify the place of the last white knot on the third
maximal plane. It must lie on the second plane used by the knot M , which as
it is seen easily, is the plane P ′ passing through 3 white knots of maximal lines
li, i = 1, 2, 3.

Therefore we conclude finally that the last white knot lies on the intersection
of P ′ and the third maximal plane, which completes the proof. �
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