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Geometric Properties of Mappings
Connected with the Schur-Szegő Composition

of Polynomials

Vladimir Petrov Kostov

The Schur-Szegő composition (SSC) of two polynomials P :=
∑n

j=0 ajx
j

and Q :=
∑n

j=0 bjx
j is defined by the formula P ∗ Q :=

∑n

j=0 ajbjx
j/

(

n

j

)

.
The SSC is commutative and associative. It can be defined in a self-evident
way for more than two polynomials. Properties of the SSC are exposed in
the monographs [9] and [10]. In this paper we consider the presentation of
polynomials as SSC of polynomials of a special form and an affine mapping in
the space of polynomials which is defined by this presentation. The results are
proved in the cited papers.

Definition 1. A polynomial of the form Ka := (x + 1)n−1(x + a), a ∈ C,
is called a composition factor. We set K∞ := (x + 1)n−1.

Notation 1. For n fixed set bj := −j/(n− j), j = 0, . . . , n− 1; bn := −∞.

The following theorem is announced in Remark 7 of [3] and proved in [1]:

Theorem 1. Every monic polynomial having one of its roots at (−1) (i.e.
of the form Pn := (x + 1)(xn−1 + c1x

n−2 + · · · + cn−1)) is representable as an
SSC of n − 1 composition factors Kai

, where the numbers ai are unique up to
permutation.

Remark 1. If the polynomial is not necessarily monic, then it can be
presented in the form

c0Ka1
∗ · · · ∗ Kan−1

. (1)

Remark 2. If a degree n − k polynomial P is considered as a degree n
one with k leading coefficients equal to 0, then k of the numbers ai equal bν ,
ν = n, . . . , n−k+1. If a polynomial P is divisible by xs, then s of the numbers
ai equal bν , ν = 0, . . . , s − 1. Indeed, the coefficient of xν in Ka is equal to 0
exactly when a = bν . On the other hand, if this coefficient equals 0 in P , then
it must be 0 in at least one of the composition factors Kai

.
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Proposition 1. For l ≤ n−1 the composition Ka1
∗ · · · ∗ Kal

is a poly-
nomial having a root of multiplicity ≥ n− l at (−1). This multiplicity is exactly
n − l if all numbers ai are 6= 1.

The proposition implies the following result (see the proof in [4]):

Corollary 1. If the polynomial P has a root (−1) of multiplicity µ ≥ 1,
then among the numbers ai there are exactly µ − 1 which equal 1.

Set σj :=
∑

1≤i1<i2<···<ij≤n−1 ai1 · · · aij
and consider the mapping

Φ : (c1, . . . , cn−1) 7→ (σ1, . . . , σn−1) .

Remark 3. (i) It is shown in [1] that the mapping Φ is affine and bijective.
The proof of the rest of the facts about the mapping Φ exposed in this paper
can be found in [4].

(ii) It is natural to view the numbers (−ai) as roots of another polynomial.
Thus the mapping Φ can be considered as a mapping Poln−1 → Poln−1, where
Poln−1 stands for the space of polynomials of degree n − 1.

Definition 2. Denote by PR the reverted of the degree n polynomial P ;
that is, PR = xnP (1/x). The polynomial P is self-reciprocal if PR = ±P . For
such a polynomial if x0 is its root, then 1/x0 is also its root.

Theorem 2. (a) The mapping Φ has n−1 distinct rational positive eigen-
values

λ1 = 1 , λ2 =
n

n − 1
, λ3 =

n2

(n − 1)(n − 2)
, . . . , λn−1 =

nn−2

(n − 1)!
.

(b) The corresponding eigenvectors are defined by monic polynomials of the
form

(x + 1)n−1 , x(x + 1)n−2 , x(x + 1)n−3Q1(x) , . . . , x(x + 1)Qn−3(x) ,

where deg Qj = j, Qj(−1) 6= 0. The coefficients of the polynomials Qj are
rational.

(c) The polynomials Qj are self-reciprocal; that is, (Qj)
R = (−1)jQj. For

j odd (resp. for j even) one has Qj(1) = 0 (resp. Qj(1) 6= 0). The middle
coefficient of (x + 1)n−j−2Qj is 0 when n is even and j is odd.

(d) The roots of every polynomial Qj, j ≥ 1, are positive and distinct.

(e) For j fixed and as n → ∞ the polynomial Qj has a limit which is a
hyperbolic monic degree j polynomial Q∗

j with all roots positive, with rational

coefficients, satisfying the equality (Q∗
j )

R =(−1)jQ∗
j and the condition Q∗

j (1)=0
for j odd.
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Remark 4. The eigenpolynomials of the mapping Φ are of degree n − 1
because they span the tangent space to the space of monic polynomials Pn (see
Theorem 1). This is the space of polynomials (x + 1)(c1x

n−2 + · · · + cn−1).
One can consider Φ also as a linear mapping, for polynomials of the form
(x + 1)(c0x

n−1 + c1x
n−2 + · · · + cn−1). In this case one adds an eigenvalue

λ0 = 1 and an eigenpolynomial (x + 1)n and presents the polynomials Pn in
the form (1).

Remark 5. Interlacing properties of the zeros of the polynomials Qj and
Q∗

j are proved respectively in papers [7] and [8].

This paper is devoted to some geometric properties of the mapping Φ. In
particular, Φ preserves the set of polynomials with positive real parts of the
roots (see the proofs in [5]).

Notation 2. Denote by Πn−1 ⊂ R
n−1 ∼= Oc1 · · · cn−1 =: R the closed

subset for which P is hyperbolic. Set σj =
∑

1≤i1<···<ij≤n−1 ai1 · · · aij
. Denote

by Un−1 (resp. by Vn−1) the open subsets of R for which c1 < 0, c2 > 0, . . .,
(−1)n−1cn−1 > 0 (resp. for which the real parts of all roots of P are > 0). Set
c̃ := (c1, . . . , cn−1), σ̃ := (σ1, . . . , σn−1). Writing P ∈ Un−1 means c̃ ∈ Un−1

etc. Denote the closure (resp. the boundary) of a set ∆ by ∆ (resp. by ∂∆).

Set Φ(P ) = (x+1)(xn−1+σ1x
n−1+· · ·+σn−1) = (x+1)(x+a1) · · · (x+an−1).

Lemma 1. If P ∈ Vn−1, then PR ∈ Vn−1. One has Φ(PR) = (Φ(P ))R.

Lemma 2. For n ≥ 2 one has Vn−1 ⊆ Un−1 (hence Vn−1 ⊆ Un−1) with
equality only for n = 2 and 3.

Theorem 3. (a) One has Φ(Vn−1) ⊂ Vn−1 and Φ(Πn−1∩Vn−1) ⊂ (Πn−1∩
Vn−1).

(b) One has Φ(Un−1) ⊂ Un−1.

(c) If C = (c0
1, . . . , c

0
n−1) ∈ ∂Un−1, then Φ(C) ∈ ∂Un−1 if and only if

c0
n−1 = 0.

(d) For each real polynomial P 6= 0 there exists h(P ) ∈ N such that Φk(P ) ∈
Πn−1 when k ≥ h(P ).

(e) There exists ν ∈ N depending only on n such that for each P ∈ Un−1

one has Φν(P ) ∈ Πn−1.

Remark 6. (i) Part (a) of the theorem is interesting from the point of view
of stability theory. Indeed, one can consider a polynomial as the characteristic
polynomial of a linear ordinary differential equation. Its solutions are stable if
the real parts of all exponents are negative.

(ii) In part (e) of the theorem the set Un−1 cannot be replaced by R
n−1 for

n ≥ 3, Φ being nondegenerate, this would imply Πn−1 = R
n−1.
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Example 1. For n = 2 one has Φ =id and all statements of the theorem
are evident (one has P = (x + 1)(x − a) = K−a, i.e. a1 = −a and P is
hyperbolic).

2
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c2 = c1
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Figure 1. The mapping Φ for n = 3.

Example 2. For n = 3 one has (see [4]) Φ : (c1, c2) 7→ ((3c1−c2−1)/2, c2)
or equivalently Φ : (c1 − 1, c2) 7→ ((3(c1 − 1) − c2)/2, c2). The sector XOR
represents the sets U2 = V2 = { c1 ≤ 0 ≤ c2 } . One has

Π2 ∩ U2 = { c1 ≤ 0 , 0 ≤ c2 ≤ c2
1/4 } , Φ(U2) = { 0 ≤ c2 ≤ −2c1 − 1 } .

The last two sets are respectively the curvilinear sector XOKHLG and the
sector XY KLZ. Thus parts (a), (b) and (c) of Theorem 3 are true. One can
see all sets on Fig. 1.

The sector XJT is the set Φ2(U2) = { 0 ≤ c2 ≤ −1 − 4c1/5 }. It belongs
to the curvilinear sector XOKHLG = (Π2 ∩ U2) .

Hence there holds part (e) of Theorem 3 with ν = 2. The mapping Φ has
fixed points along the line c2 = c1 − 1 which define hyperbolic polynomials
(x + 1)2(x + c1). For every other point (c0

1, c
0
2) the point Φk(c0

1, c
0
2) defines

hyperbolic polynomials for k sufficiently large (the eigenvalue 3/2 makes the
module of the first component of Φk(c0

1, c
0
2) tend to ∞, the second component

remains fixed). For large values of k such a quadratic polynomial is hyperbolic.
Thus for n = 3 one can set ν = 2 (but not ν = 1 because it is not true that

Φ(U2) ⊂ (Π2 ∩ U2) – observe that the line Y Z : c2 = −2c1 − 1 intersects the
parabola c2 = c2

1/4, see Fig. 1).
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Remark 7. If the real polynomial Pn (see Theorem 1) has m real positive
roots, then at least m of the numbers ai defined by the mapping Φ are distinct,
negative and belonging to different intervals of the form [bj+1, bj ], see Notation 1.
In particular, if Pn/(x + 1) has all its roots positive, then all numbers ai

are negative and belonging to different intervals of the aforementioned form.
Indeed, by the Descartes rule there must be at least m sign changes in the
sequence of coefficients of the polynomial Pn. The sequence of coefficients of
each composition factor Kai

has at most one sign change. These sign changes
must take place at the coefficients of different monomials xk.

The following conjecture gives more precisions than the above remark:∗

Conjecture. (a) If the polynomial Pn has m positive roots counted with
multiplicity (m ≥ 0) and a k-fold root at 0 (k ≥ 0), then there are at least
m + max(0, k − 1) negative and distinct among the numbers ai out of which
max(0, k − 1) equal b1, . . ., bk−1, see Notation 1; if k ≥ 1, then one of the
numbers ai equals 0.

(b) If there are q numbers ai equal to 0 and q1 ones positive, then the
polynomial Pn has at least q1 + max(0, q − 1) negative roots counted with
multiplicity; for q ≥ 1 it has a root at 0.

An analog of the mapping Φ can be defined for entire functions. The
following proposition is used to define below the mappings Φn,k, k ≥ 1 (see
details in [6]):

Proposition 2. Each polynomial P := (x + 1)k(xn + c1x
n−1 + · · ·+ cn) is

representable as SSC

P = Kn,k;a1
∗ · · · ∗ Kn,k;an

with Kn,k;ai
:= (x + 1)n+k−1(x + ai) , (2)

where the complex numbers ai are unique up to permutation.

The second factor of P is of degree n and not n − 1 just for convenience.
With ci and ai as in Proposition 2, the mapping Φn,k is defined like this:

Φn,k : (c1, . . . , cn) 7→ (σ1, . . . , σn) , where σj :=
∑

1≤i1<···<ij≤n

ai1 · · · aij
.

The SSC of the entire functions f :=
∑∞

j=0 γjx
j/j! and g :=

∑∞

j=0 δjx
j/j! is

defined by the formula f ∗g =
∑∞

j=0 γjδjx
j/j!. Set Pm := 1+c1x+ · · ·+cmxm,

σ̃k :=
∑

1≤j1<···<jk≤m 1/(ai1 · · · aik
). The following proposition allows to define

an analog of the mappings Φn,k for entire functions:

∗A more general statement is proved in: V. P. Kostov, A refined realization theorem in the
context of the Schur–Szegő composition, to appear in Bulletin des Sciences Mathématiques.
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Proposition 3 (Theorem 3 in [2]). Each function exPm, where Pm is a
degree m polynomial such that Pm(0) = 1, is representable in the form

exPm = κa1
∗ · · · ∗ κam

, where κaj
= ex(1 + x/aj) . (3)

The numbers aj are unique up to permutation.

Define the mapping Φ̃ as follows: Φ̃ : (c1, . . . , cm) 7→ (σ̃1, . . . , σ̃m). This
mapping is in a sense a limit as k → ∞ of the mappings Φm,k (use the fact
that limk→∞(1 + x/k)k = ex).

Some properties of the mapping Φ carry on directly to Φn,k and Φ̃:

Theorem 4. For each n ≥ 1 and for each k ≥ 1 one has Φn,k(Un) ⊂ Un.

Corollary 2. For the mapping Φ̃ one has Φ̃(Un) ⊂ Un.

Remark 8. It is also true that if A ∈ ∂Un, then Φn,k(A) ∈ ∂Un if and only
if A ∈ {cn = 0}.

However, not all of the statements of Theorem 3 have analogs for the
mapping Φ̃:

Proposition 4. For m = 3 the mapping Φ does not send the set Vm into
itself.

See more about the mappings Φ, Φn,k and Φ̃ in paper [6]. The following
theorem (see [6]) is an interesting byproduct of their geometric properties.
Denote by T [f ] the Taylor series at 0 of the entire function f .

Theorem 5. If the real polynomial P of degree m has k positive roots,
1 ≤ k ≤ m, then there are at least k sign changes in the sequence of the
coefficients of T [eλxP ] for any λ > 0.
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polynomials of degree 2, Rev. Mat. Complut. 21 (2008), no. 1, 191–206.

[2] D.K. Dimitrov and V.P. Kostov, Schur-Szegő composition of entire
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