CONSTRUCTIVE THEORY OF FUNCTIONS, Sozopol 2010: In memory of Borislav Bojanov (G. Nikolov and R. Uluchev, Eds.), pp. 161-167
Prof. Marin Drinov Academic Publishing House, Sofia, 2012

Geometric Properties of Mappings Connected with the Schur-Szegő Composition of Polynomials

VLADIMIR PETROV KOSTOV

The Schur-Szegő composition (SSC) of two polynomials $P := \sum_{j=0}^{n} a_j x^j$ and $Q := \sum_{j=0}^{n} b_j x^j$ is defined by the formula $P * Q := \sum_{j=0}^{n} a_j b_j x^j / \binom{n}{j}$. The SSC is commutative and associative. It can be defined in a self-evident way for more than two polynomials. Properties of the SSC are exposed in the monographs [9] and [10]. In this paper we consider the presentation of polynomials as SSC of polynomials of a special form and an affine mapping in the space of polynomials which is defined by this presentation. The results are proved in the cited papers.

Definition 1. A polynomial of the form $K_a := (x+1)^{n-1}(x+a), a \in \mathbb{C}$, is called a *composition factor*. We set $K_{\infty} := (x+1)^{n-1}$.

Notation 1. For n fixed set $b_i := -j/(n-j)$, $j = 0, \ldots, n-1$; $b_n := -\infty$.

The following theorem is announced in Remark 7 of [3] and proved in [1]:

Theorem 1. Every monic polynomial having one of its roots at (-1) (i.e. of the form $P_n := (x+1)(x^{n-1}+c_1x^{n-2}+\cdots+c_{n-1})$) is representable as an SSC of n-1 composition factors K_{a_i} , where the numbers a_i are unique up to permutation.

Remark 1. If the polynomial is not necessarily monic, then it can be presented in the form

$$c_0 K_{a_1} * \cdots * K_{a_{n-1}}$$
 (1)

Remark 2. If a degree n-k polynomial P is considered as a degree n one with k leading coefficients equal to 0, then k of the numbers a_i equal b_{ν} , $\nu=n,\ldots,n-k+1$. If a polynomial P is divisible by x^s , then s of the numbers a_i equal b_{ν} , $\nu=0,\ldots,s-1$. Indeed, the coefficient of x^{ν} in K_a is equal to 0 exactly when $a=b_{\nu}$. On the other hand, if this coefficient equals 0 in P, then it must be 0 in at least one of the composition factors K_{a_i} .

Proposition 1. For $l \leq n-1$ the composition $K_{a_1} * \cdots * K_{a_l}$ is a polynomial having a root of multiplicity $\geq n-l$ at (-1). This multiplicity is exactly n-l if all numbers a_i are $\neq 1$.

The proposition implies the following result (see the proof in [4]):

Corollary 1. If the polynomial P has a root (-1) of multiplicity $\mu \geq 1$, then among the numbers a_i there are exactly $\mu - 1$ which equal 1.

Set $\sigma_j := \sum_{1 < i_1 < i_2 < \dots < i_i \le n-1} a_{i_1} \cdots a_{i_j}$ and consider the mapping

$$\Phi : (c_1, \ldots, c_{n-1}) \mapsto (\sigma_1, \ldots, \sigma_{n-1}) .$$

- **Remark 3.** (i) It is shown in [1] that the mapping Φ is affine and bijective. The proof of the rest of the facts about the mapping Φ exposed in this paper can be found in [4].
- (ii) It is natural to view the numbers $(-a_i)$ as roots of another polynomial. Thus the mapping Φ can be considered as a mapping $Pol_{n-1} \to Pol_{n-1}$, where Pol_{n-1} stands for the space of polynomials of degree n-1.

Definition 2. Denote by P^R the reverted of the degree n polynomial P; that is, $P^R = x^n P(1/x)$. The polynomial P is self-reciprocal if $P^R = \pm P$. For such a polynomial if x_0 is its root, then $1/x_0$ is also its root.

Theorem 2. (a) The mapping Φ has n-1 distinct rational positive eigenvalues

$$\lambda_1 = 1$$
, $\lambda_2 = \frac{n}{n-1}$, $\lambda_3 = \frac{n^2}{(n-1)(n-2)}$, ..., $\lambda_{n-1} = \frac{n^{n-2}}{(n-1)!}$.

(b) The corresponding eigenvectors are defined by monic polynomials of the form

$$(x+1)^{n-1}$$
, $x(x+1)^{n-2}$, $x(x+1)^{n-3}Q_1(x)$, ..., $x(x+1)Q_{n-3}(x)$,

where $\deg Q_j = j$, $Q_j(-1) \neq 0$. The coefficients of the polynomials Q_j are rational.

- (c) The polynomials Q_j are self-reciprocal; that is, $(Q_j)^R = (-1)^j Q_j$. For j odd (resp. for j even) one has $Q_j(1) = 0$ (resp. $Q_j(1) \neq 0$). The middle coefficient of $(x+1)^{n-j-2}Q_j$ is 0 when n is even and j is odd.
 - (d) The roots of every polynomial Q_j , $j \geq 1$, are positive and distinct.
- (e) For j fixed and as $n \to \infty$ the polynomial Q_j has a limit which is a hyperbolic monic degree j polynomial Q_j^* with all roots positive, with rational coefficients, satisfying the equality $(Q_j^*)^R = (-1)^j Q_j^*$ and the condition $Q_j^*(1) = 0$ for j odd.

V. Kostov 163

Remark 4. The eigenpolynomials of the mapping Φ are of degree n-1because they span the tangent space to the space of monic polynomials P_n (see Theorem 1). This is the space of polynomials $(x+1)(c_1x^{n-2}+\cdots+c_{n-1})$. One can consider Φ also as a linear mapping, for polynomials of the form $(x+1)(c_0x^{n-1}+c_1x^{n-2}+\cdots+c_{n-1})$. In this case one adds an eigenvalue $\lambda_0 = 1$ and an eigenpolynomial $(x+1)^n$ and presents the polynomials P_n in the form (1).

Remark 5. Interlacing properties of the zeros of the polynomials Q_i and Q_i^* are proved respectively in papers [7] and [8].

This paper is devoted to some geometric properties of the mapping Φ . In particular, Φ preserves the set of polynomials with positive real parts of the roots (see the proofs in [5]).

Notation 2. Denote by $\Pi_{n-1} \subset \mathbb{R}^{n-1} \cong Oc_1 \cdots c_{n-1} =: \mathcal{R}$ the closed subset for which P is hyperbolic. Set $\sigma_j = \sum_{1 \leq i_1 < \dots < i_j \leq n-1} a_{i_1} \cdots a_{i_j}$. Denote by U_{n-1} (resp. by V_{n-1}) the open subsets of $\overline{\mathcal{R}}$ for which $c_1 < 0, c_2 > 0, \ldots$ $(-1)^{n-1}c_{n-1}>0$ (resp. for which the real parts of all roots of P are >0). Set $\tilde{c} := (c_1, \dots, c_{n-1}), \ \tilde{\sigma} := (\sigma_1, \dots, \sigma_{n-1}).$ Writing $P \in U_{n-1}$ means $\tilde{c} \in U_{n-1}$ etc. Denote the closure (resp. the boundary) of a set Δ by $\overline{\Delta}$ (resp. by $\partial \Delta$).

Set
$$\Phi(P) = (x+1)(x^{n-1} + \sigma_1 x^{n-1} + \dots + \sigma_{n-1}) = (x+1)(x+a_1) \cdot \dots \cdot (x+a_{n-1}).$$

Lemma 1. If
$$P \in \overline{V_{n-1}}$$
, then $P^R \in \overline{V_{n-1}}$. One has $\Phi(P^R) = (\Phi(P))^R$.

Lemma 2. For $n \geq 2$ one has $V_{n-1} \subseteq U_{n-1}$ (hence $\overline{V_{n-1}} \subseteq \overline{U_{n-1}}$) with equality only for n = 2 and 3.

Theorem 3. (a) One has $\Phi(V_{n-1}) \subset V_{n-1}$ and $\Phi(\Pi_{n-1} \cap V_{n-1}) \subset (\Pi_{n-1} \cap V_{n-1})$ V_{n-1}).

- (b) One has $\Phi(U_{n-1}) \subset U_{n-1}$.
- (c) If $C=(c_1^0,\ldots,c_{n-1}^0)\in\partial U_{n-1}$, then $\Phi(C)\in\partial U_{n-1}$ if and only if $c_{n-1}^0=0$.
- (d) For each real polynomial $P \neq 0$ there exists $h(P) \in \mathbb{N}$ such that $\Phi^k(P) \in \mathbb{N}$ Π_{n-1} when $k \geq h(P)$.
- (e) There exists $\nu \in \mathbb{N}$ depending only on n such that for each $P \in \overline{U_{n-1}}$ one has $\Phi^{\nu}(P) \in \Pi_{n-1}$.
- **Remark 6.** (i) Part (a) of the theorem is interesting from the point of view of stability theory. Indeed, one can consider a polynomial as the characteristic polynomial of a linear ordinary differential equation. Its solutions are stable if the real parts of all exponents are negative.
- (ii) In part (e) of the theorem the set $\overline{U_{n-1}}$ cannot be replaced by \mathbb{R}^{n-1} for $n \geq 3$, Φ being nondegenerate, this would imply $\Pi_{n-1} = \mathbb{R}^{n-1}$.

Example 1. For n=2 one has $\Phi=\mathrm{id}$ and all statements of the theorem are evident (one has $P=(x+1)(x-a)=K_{-a}$, i.e. $a_1=-a$ and P is hyperbolic).

Figure 1. The mapping Φ for n=3.

Example 2. For n = 3 one has (see [4]) $\Phi: (c_1, c_2) \mapsto ((3c_1 - c_2 - 1)/2, c_2)$ or equivalently $\Phi: (c_1 - 1, c_2) \mapsto ((3(c_1 - 1) - c_2)/2, c_2)$. The sector XOR represents the sets $U_2 = V_2 = \{ c_1 \le 0 \le c_2 \}$. One has

$$\Pi_2 \cap U_2 = \{ c_1 \le 0, 0 \le c_2 \le c_1^2/4 \}, \qquad \Phi(U_2) = \{ 0 \le c_2 \le -2c_1 - 1 \}.$$

The last two sets are respectively the curvilinear sector XOKHLG and the sector XYKLZ. Thus parts (a), (b) and (c) of Theorem 3 are true. One can see all sets on Fig. 1.

The sector XJT is the set $\Phi^2(U_2) = \{ 0 \le c_2 \le -1 - 4c_1/5 \}$. It belongs to the curvilinear sector $XOKHLG = (\Pi_2 \cap U_2)$.

Hence there holds part (e) of Theorem 3 with $\nu=2$. The mapping Φ has fixed points along the line $c_2=c_1-1$ which define hyperbolic polynomials $(x+1)^2(x+c_1)$. For every other point (c_1^0,c_2^0) the point $\Phi^k(c_1^0,c_2^0)$ defines hyperbolic polynomials for k sufficiently large (the eigenvalue 3/2 makes the module of the first component of $\Phi^k(c_1^0,c_2^0)$ tend to ∞ , the second component remains fixed). For large values of k such a quadratic polynomial is hyperbolic.

Thus for n=3 one can set $\nu=2$ (but not $\nu=1$ because it is not true that $\Phi(U_2) \subset (\Pi_2 \cap U_2)$ – observe that the line $YZ: c_2=-2c_1-1$ intersects the parabola $c_2=c_1^2/4$, see Fig. 1).

V. Kostov 165

Remark 7. If the real polynomial P_n (see Theorem 1) has m real positive roots, then at least m of the numbers a_i defined by the mapping Φ are distinct, negative and belonging to different intervals of the form $[b_{j+1}, b_j]$, see Notation 1. In particular, if $P_n/(x+1)$ has all its roots positive, then all numbers a_i are negative and belonging to different intervals of the aforementioned form. Indeed, by the Descartes rule there must be at least m sign changes in the sequence of coefficients of the polynomial P_n . The sequence of coefficients of each composition factor K_{a_i} has at most one sign change. These sign changes must take place at the coefficients of different monomials x^k .

The following conjecture gives more precisions than the above remark:*

Conjecture. (a) If the polynomial P_n has m positive roots counted with multiplicity $(m \ge 0)$ and a k-fold root at 0 $(k \ge 0)$, then there are at least $m + \max(0, k - 1)$ negative and distinct among the numbers a_i out of which $\max(0, k - 1)$ equal b_1, \ldots, b_{k-1} , see Notation 1; if $k \ge 1$, then one of the numbers a_i equals 0.

(b) If there are q numbers a_i equal to 0 and q_1 ones positive, then the polynomial P_n has at least $q_1 + \max(0, q - 1)$ negative roots counted with multiplicity; for $q \ge 1$ it has a root at 0.

An analog of the mapping Φ can be defined for entire functions. The following proposition is used to define below the mappings $\Phi_{n,k}$, $k \geq 1$ (see details in [6]):

Proposition 2. Each polynomial $P := (x+1)^k (x^n + c_1 x^{n-1} + \cdots + c_n)$ is representable as SSC

$$P = K_{n,k;a_1} * \cdots * K_{n,k;a_n}$$
 with $K_{n,k;a_i} := (x+1)^{n+k-1}(x+a_i)$, (2)

where the complex numbers a_i are unique up to permutation.

The second factor of P is of degree n and not n-1 just for convenience. With c_i and a_i as in Proposition 2, the mapping $\Phi_{n,k}$ is defined like this:

$$\Phi_{n,k} : (c_1,\ldots,c_n) \mapsto (\sigma_1,\ldots,\sigma_n) , \quad \text{where } \sigma_j := \sum_{1 \leq i_1 < \cdots < i_j \leq n} a_{i_1} \cdots a_{i_j} .$$

The SSC of the entire functions $f:=\sum_{j=0}^{\infty}\gamma_jx^j/j!$ and $g:=\sum_{j=0}^{\infty}\delta_jx^j/j!$ is defined by the formula $f*g=\sum_{j=0}^{\infty}\gamma_j\delta_jx^j/j!$. Set $P_m:=1+c_1x+\cdots+c_mx^m$, $\tilde{\sigma}_k:=\sum_{1\leq j_1<\cdots< j_k\leq m}1/(a_{i_1}\cdots a_{i_k})$. The following proposition allows to define an analog of the mappings $\Phi_{n,k}$ for entire functions:

^{*}A more general statement is proved in: V. P. Kostov, A refined realization theorem in the context of the Schur–Szegő composition, to appear in *Bulletin des Sciences Mathématiques*.

Proposition 3 (Theorem 3 in [2]). Each function $e^x P_m$, where P_m is a degree m polynomial such that $P_m(0) = 1$, is representable in the form

$$e^x P_m = \kappa_{a_1} * \cdots * \kappa_{a_m}$$
, where $\kappa_{a_j} = e^x (1 + x/a_j)$. (3)

The numbers a_i are unique up to permutation.

Define the mapping $\tilde{\Phi}$ as follows: $\tilde{\Phi}:(c_1,\ldots,c_m)\mapsto(\tilde{\sigma}_1,\ldots,\tilde{\sigma}_m)$. This mapping is in a sense a limit as $k\to\infty$ of the mappings $\Phi_{m,k}$ (use the fact that $\lim_{k\to\infty}(1+x/k)^k=e^x$).

Some properties of the mapping Φ carry on directly to $\Phi_{n,k}$ and $\tilde{\Phi}$:

Theorem 4. For each $n \geq 1$ and for each $k \geq 1$ one has $\Phi_{n,k}(U_n) \subset U_n$.

Corollary 2. For the mapping $\tilde{\Phi}$ one has $\tilde{\Phi}(U_n) \subset U_n$.

Remark 8. It is also true that if $A \in \partial U_n$, then $\Phi_{n,k}(A) \in \partial U_n$ if and only if $A \in \{c_n = 0\}$.

However, not all of the statements of Theorem 3 have analogs for the mapping $\tilde{\Phi}$:

Proposition 4. For m=3 the mapping Φ does not send the set V_m into itself.

See more about the mappings Φ , $\Phi_{n,k}$ and $\tilde{\Phi}$ in paper [6]. The following theorem (see [6]) is an interesting byproduct of their geometric properties. Denote by T[f] the Taylor series at 0 of the entire function f.

Theorem 5. If the real polynomial P of degree m has k positive roots, $1 \le k \le m$, then there are at least k sign changes in the sequence of the coefficients of $T[e^{\lambda x}P]$ for any $\lambda > 0$.

References

- [1] S. Alkhatib and V.P. Kostov, The Schur-Szegö composition of real polynomials of degree 2, *Rev. Mat. Complut.* **21** (2008), no. 1, 191–206.
- [2] D. K. Dimitrov and V. P. Kostov, Schur-Szegő composition of entire functions, *Rev. Mat. Complut.*, to appear.
- [3] V. P. Kostov, The Schur-Szego composition for hyperbolic polynomials, C. R. A. S. Sér. I 345 (2007), no. 9, 483-488. doi:10.1016/j.crma.2007.10.003
- [4] V.P. Kostov, Eigenvectors in the context of the Schur-Szegö composition of polynomials, *Math. Balkanica (N.S.)* **22** (2008), fasc. 1–2, 155–173.
- [5] V. P. Kostov, A mapping connected with the Schur-Szegö composition, C. R. Math. Acad. Sci. Paris Sér. I 347 (2009), 1355-1360.

V. Kostov 167

[6] V. P. Kostov, A mapping defined by the Schur-Szegő composition, C. R. Acad. Sci. Bulgare 63 (2010), no. 7, 943–952.

- [7] V. P. Kostov, Interlacing properties and the Schur-Szegő composition, Funct. Anal. Other Math. $\bf 3$ (2010), 65–74.
- [8] V. P. Kostov, A. Martínez-Finkelshtein, and B. Z. Shapiro, Narayana numbers and Schur-Szegö composition, J. Approx. Theory 161 (2009), no. 2, 464–476.
- [9] V. Prasolov, "Polynomials", Algorithms and Computation in Mathematics Vol. 11, Springer-Verlag, Berlin, 2004.
- [10] Q. I. RAHMAN AND G. SCHMEISSER, "Analytic Theory of Polynomials", London Math. Soc. Monogr. (N.S.) Vol. 26, Oxford Univ. Press, New York, NY, 2002.

V. Kostov

Université de Nice Laboratoire de Mathématiques Parc Valrose 06108 Nice Cedex 2 FRANCE

 $E ext{-}mail:$ kostov@unice.fr