Geometric Properties of Mappings Connected with the Schur-Szegő Composition of Polynomials

Vladimir Petrov Kostov

The Schur-Szegő composition (SSC) of two polynomials $P:=\sum_{j=0}^{n} a_{j} x^{j}$ and $Q:=\sum_{j=0}^{n} b_{j} x^{j}$ is defined by the formula $P * Q:=\sum_{j=0}^{n} a_{j} b_{j} x^{j} /\binom{n}{j}$. The SSC is commutative and associative. It can be defined in a self-evident way for more than two polynomials. Properties of the SSC are exposed in the monographs [9] and [10]. In this paper we consider the presentation of polynomials as SSC of polynomials of a special form and an affine mapping in the space of polynomials which is defined by this presentation. The results are proved in the cited papers.

Definition 1. A polynomial of the form $K_{a}:=(x+1)^{n-1}(x+a), a \in \mathbb{C}$, is called a composition factor. We set $K_{\infty}:=(x+1)^{n-1}$.

Notation 1. For n fixed set $b_{j}:=-j /(n-j), j=0, \ldots, n-1 ; b_{n}:=-\infty$.
The following theorem is announced in Remark 7 of [3] and proved in [1]:
Theorem 1. Every monic polynomial having one of its roots at (-1) (i.e. of the form $\left.P_{n}:=(x+1)\left(x^{n-1}+c_{1} x^{n-2}+\cdots+c_{n-1}\right)\right)$ is representable as an SSC of $n-1$ composition factors $K_{a_{i}}$, where the numbers a_{i} are unique up to permutation.

Remark 1. If the polynomial is not necessarily monic, then it can be presented in the form

$$
\begin{equation*}
c_{0} K_{a_{1}} * \cdots * K_{a_{n-1}} \tag{1}
\end{equation*}
$$

Remark 2. If a degree $n-k$ polynomial P is considered as a degree n one with k leading coefficients equal to 0 , then k of the numbers a_{i} equal b_{ν}, $\nu=n, \ldots, n-k+1$. If a polynomial P is divisible by x^{s}, then s of the numbers a_{i} equal $b_{\nu}, \nu=0, \ldots, s-1$. Indeed, the coefficient of x^{ν} in K_{a} is equal to 0 exactly when $a=b_{\nu}$. On the other hand, if this coefficient equals 0 in P, then it must be 0 in at least one of the composition factors $K_{a_{i}}$.

Proposition 1. For $l \leq n-1$ the composition $K_{a_{1}} * \cdots * K_{a_{l}}$ is a polynomial having a root of multiplicity $\geq n-l$ at (-1). This multiplicity is exactly $n-l$ if all numbers a_{i} are $\neq 1$.

The proposition implies the following result (see the proof in [4]):
Corollary 1. If the polynomial P has a root (-1) of multiplicity $\mu \geq 1$, then among the numbers a_{i} there are exactly $\mu-1$ which equal 1.

Set $\sigma_{j}:=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{j} \leq n-1} a_{i_{1}} \cdots a_{i_{j}}$ and consider the mapping

$$
\Phi:\left(c_{1}, \ldots, c_{n-1}\right) \mapsto\left(\sigma_{1}, \ldots, \sigma_{n-1}\right)
$$

Remark 3. (i) It is shown in [1] that the mapping Φ is affine and bijective. The proof of the rest of the facts about the mapping Φ exposed in this paper can be found in [4].
(ii) It is natural to view the numbers $\left(-a_{i}\right)$ as roots of another polynomial. Thus the mapping Φ can be considered as a mapping Pol $_{n-1} \rightarrow$ Pol $_{n-1}$, where Pol_{n-1} stands for the space of polynomials of degree $n-1$.

Definition 2. Denote by P^{R} the reverted of the degree n polynomial P; that is, $P^{R}=x^{n} P(1 / x)$. The polynomial P is self-reciprocal if $P^{R}= \pm P$. For such a polynomial if x_{0} is its root, then $1 / x_{0}$ is also its root.

Theorem 2. (a) The mapping Φ has $n-1$ distinct rational positive eigenvalues

$$
\lambda_{1}=1, \quad \lambda_{2}=\frac{n}{n-1}, \quad \lambda_{3}=\frac{n^{2}}{(n-1)(n-2)}, \quad \ldots, \quad \lambda_{n-1}=\frac{n^{n-2}}{(n-1)!} .
$$

(b) The corresponding eigenvectors are defined by monic polynomials of the form

$$
(x+1)^{n-1}, \quad x(x+1)^{n-2}, x(x+1)^{n-3} Q_{1}(x), \quad \ldots, x(x+1) Q_{n-3}(x)
$$

where $\operatorname{deg} Q_{j}=j, Q_{j}(-1) \neq 0$. The coefficients of the polynomials Q_{j} are rational.
(c) The polynomials Q_{j} are self-reciprocal; that is, $\left(Q_{j}\right)^{R}=(-1)^{j} Q_{j}$. For j odd (resp. for j even) one has $Q_{j}(1)=0$ (resp. $\left.Q_{j}(1) \neq 0\right)$. The middle coefficient of $(x+1)^{n-j-2} Q_{j}$ is 0 when n is even and j is odd.
(d) The roots of every polynomial $Q_{j}, j \geq 1$, are positive and distinct.
(e) For j fixed and as $n \rightarrow \infty$ the polynomial Q_{j} has a limit which is a hyperbolic monic degree j polynomial Q_{j}^{*} with all roots positive, with rational coefficients, satisfying the equality $\left(Q_{j}^{*}\right)^{R}=(-1)^{j} Q_{j}^{*}$ and the condition $Q_{j}^{*}(1)=0$ for j odd.

Remark 4. The eigenpolynomials of the mapping Φ are of degree $n-1$ because they span the tangent space to the space of monic polynomials P_{n} (see Theorem 1). This is the space of polynomials $(x+1)\left(c_{1} x^{n-2}+\cdots+c_{n-1}\right)$. One can consider Φ also as a linear mapping, for polynomials of the form $(x+1)\left(c_{0} x^{n-1}+c_{1} x^{n-2}+\cdots+c_{n-1}\right)$. In this case one adds an eigenvalue $\lambda_{0}=1$ and an eigenpolynomial $(x+1)^{n}$ and presents the polynomials P_{n} in the form (1).

Remark 5. Interlacing properties of the zeros of the polynomials Q_{j} and Q_{j}^{*} are proved respectively in papers [7] and [8].

This paper is devoted to some geometric properties of the mapping Φ. In particular, Φ preserves the set of polynomials with positive real parts of the roots (see the proofs in [5]).

Notation 2. Denote by $\Pi_{n-1} \subset \mathbb{R}^{n-1} \cong O c_{1} \cdots c_{n-1}=: \mathcal{R}$ the closed subset for which P is hyperbolic. Set $\sigma_{j}=\sum_{1 \leq i_{1}<\cdots<i_{j} \leq n-1} a_{i_{1}} \cdots a_{i_{j}}$. Denote by U_{n-1} (resp. by V_{n-1}) the open subsets of \mathcal{R} for which $c_{1}<0, c_{2}>0, \ldots$, $(-1)^{n-1} c_{n-1}>0$ (resp. for which the real parts of all roots of P are >0). Set $\tilde{c}:=\left(c_{1}, \ldots, c_{n-1}\right), \tilde{\sigma}:=\left(\sigma_{1}, \ldots, \sigma_{n-1}\right)$. Writing $P \in U_{n-1}$ means $\tilde{c} \in U_{n-1}$ etc. Denote the closure (resp. the boundary) of a set Δ by $\bar{\Delta}$ (resp. by $\partial \Delta$).

Set $\Phi(P)=(x+1)\left(x^{n-1}+\sigma_{1} x^{n-1}+\cdots+\sigma_{n-1}\right)=(x+1)\left(x+a_{1}\right) \cdots\left(x+a_{n-1}\right)$.
Lemma 1. If $P \in \overline{V_{n-1}}$, then $P^{R} \in \overline{V_{n-1}}$. One has $\Phi\left(P^{R}\right)=(\Phi(P))^{R}$.
Lemma 2. For $n \geq 2$ one has $V_{n-1} \subseteq U_{n-1}$ (hence $\overline{V_{n-1}} \subseteq \overline{U_{n-1}}$) with equality only for $n=2$ and 3 .

Theorem 3. (a) One has $\Phi\left(V_{n-1}\right) \subset V_{n-1}$ and $\Phi\left(\Pi_{n-1} \cap V_{n-1}\right) \subset\left(\Pi_{n-1} \cap\right.$ $\left.V_{n-1}\right)$.
(b) One has $\Phi\left(U_{n-1}\right) \subset U_{n-1}$.
(c) If $C=\left(c_{1}^{0}, \ldots, c_{n-1}^{0}\right) \in \partial U_{n-1}$, then $\Phi(C) \in \partial U_{n-1}$ if and only if $c_{n-1}^{0}=0$.
(d) For each real polynomial $P \neq 0$ there exists $h(P) \in \mathbb{N}$ such that $\Phi^{k}(P) \in$ Π_{n-1} when $k \geq h(P)$.
(e) There exists $\nu \in \mathbb{N}$ depending only on n such that for each $P \in \overline{U_{n-1}}$ one has $\Phi^{\nu}(P) \in \Pi_{n-1}$.

Remark 6. (i) Part (a) of the theorem is interesting from the point of view of stability theory. Indeed, one can consider a polynomial as the characteristic polynomial of a linear ordinary differential equation. Its solutions are stable if the real parts of all exponents are negative.
(ii) In part (e) of the theorem the set $\overline{U_{n-1}}$ cannot be replaced by \mathbb{R}^{n-1} for $n \geq 3$, Φ being nondegenerate, this would imply $\Pi_{n-1}=\mathbb{R}^{n-1}$.

Example 1. For $n=2$ one has $\Phi=\mathrm{id}$ and all statements of the theorem are evident (one has $P=(x+1)(x-a)=K_{-a}$, i.e. $a_{1}=-a$ and P is hyperbolic).

Figure 1. The mapping Φ for $n=3$.

Example 2. For $n=3$ one has (see [4]) $\Phi:\left(c_{1}, c_{2}\right) \mapsto\left(\left(3 c_{1}-c_{2}-1\right) / 2, c_{2}\right)$ or equivalently $\Phi:\left(c_{1}-1, c_{2}\right) \mapsto\left(\left(3\left(c_{1}-1\right)-c_{2}\right) / 2, c_{2}\right)$. The sector $X O R$ represents the sets $U_{2}=V_{2}=\left\{c_{1} \leq 0 \leq c_{2}\right\}$. One has

$$
\Pi_{2} \cap U_{2}=\left\{c_{1} \leq 0,0 \leq c_{2} \leq c_{1}^{2} / 4\right\}, \quad \Phi\left(U_{2}\right)=\left\{0 \leq c_{2} \leq-2 c_{1}-1\right\}
$$

The last two sets are respectively the curvilinear sector $X O K H L G$ and the sector $X Y K L Z$. Thus parts (a), (b) and (c) of Theorem 3 are true. One can see all sets on Fig. 1.

The sector $X J T$ is the set $\Phi^{2}\left(U_{2}\right)=\left\{0 \leq c_{2} \leq-1-4 c_{1} / 5\right\}$. It belongs to the curvilinear sector $X O K H L G=\left(\Pi_{2} \cap \bar{U}_{2}\right)$.

Hence there holds part (e) of Theorem 3 with $\nu=2$. The mapping Φ has fixed points along the line $c_{2}=c_{1}-1$ which define hyperbolic polynomials $(x+1)^{2}\left(x+c_{1}\right)$. For every other point $\left(c_{1}^{0}, c_{2}^{0}\right)$ the point $\Phi^{k}\left(c_{1}^{0}, c_{2}^{0}\right)$ defines hyperbolic polynomials for k sufficiently large (the eigenvalue $3 / 2$ makes the module of the first component of $\Phi^{k}\left(c_{1}^{0}, c_{2}^{0}\right)$ tend to ∞, the second component remains fixed). For large values of k such a quadratic polynomial is hyperbolic.

Thus for $n=3$ one can set $\nu=2$ (but not $\nu=1$ because it is not true that $\Phi\left(U_{2}\right) \subset\left(\Pi_{2} \cap U_{2}\right)$ - observe that the line $Y Z: c_{2}=-2 c_{1}-1$ intersects the parabola $c_{2}=c_{1}^{2} / 4$, see Fig. 1).

Remark 7. If the real polynomial P_{n} (see Theorem 1) has m real positive roots, then at least m of the numbers a_{i} defined by the mapping Φ are distinct, negative and belonging to different intervals of the form $\left[b_{j+1}, b_{j}\right]$, see Notation 1. In particular, if $P_{n} /(x+1)$ has all its roots positive, then all numbers a_{i} are negative and belonging to different intervals of the aforementioned form. Indeed, by the Descartes rule there must be at least m sign changes in the sequence of coefficients of the polynomial P_{n}. The sequence of coefficients of each composition factor $K_{a_{i}}$ has at most one sign change. These sign changes must take place at the coefficients of different monomials x^{k}.

The following conjecture gives more precisions than the above remark:*
Conjecture. (a) If the polynomial P_{n} has m positive roots counted with multiplicity $(m \geq 0)$ and a k-fold root at $0(k \geq 0)$, then there are at least $m+\max (0, k-1)$ negative and distinct among the numbers a_{i} out of which $\max (0, k-1)$ equal b_{1}, \ldots, b_{k-1}, see Notation 1 ; if $k \geq 1$, then one of the numbers a_{i} equals 0 .
(b) If there are q numbers a_{i} equal to 0 and q_{1} ones positive, then the polynomial P_{n} has at least $q_{1}+\max (0, q-1)$ negative roots counted with multiplicity; for $q \geq 1$ it has a root at 0 .

An analog of the mapping Φ can be defined for entire functions. The following proposition is used to define below the mappings $\Phi_{n, k}, k \geq 1$ (see details in [6]):

Proposition 2. Each polynomial $P:=(x+1)^{k}\left(x^{n}+c_{1} x^{n-1}+\cdots+c_{n}\right)$ is representable as $S S C$

$$
\begin{equation*}
P=K_{n, k ; a_{1}} * \cdots * K_{n, k ; a_{n}} \quad \text { with } \quad K_{n, k ; a_{i}}:=(x+1)^{n+k-1}\left(x+a_{i}\right), \tag{2}
\end{equation*}
$$

where the complex numbers a_{i} are unique up to permutation.
The second factor of P is of degree n and not $n-1$ just for convenience. With c_{i} and a_{i} as in Proposition 2, the mapping $\Phi_{n, k}$ is defined like this:

$$
\Phi_{n, k}:\left(c_{1}, \ldots, c_{n}\right) \mapsto\left(\sigma_{1}, \ldots, \sigma_{n}\right), \quad \text { where } \quad \sigma_{j}:=\sum_{1 \leq i_{1}<\cdots<i_{j} \leq n} a_{i_{1}} \cdots a_{i_{j}}
$$

The SSC of the entire functions $f:=\sum_{j=0}^{\infty} \gamma_{j} x^{j} / j!$ and $g:=\sum_{j=0}^{\infty} \delta_{j} x^{j} / j$! is defined by the formula $f * g=\sum_{j=0}^{\infty} \gamma_{j} \delta_{j} x^{j} / j$!. Set $P_{m}:=1+c_{1} x+\cdots+c_{m} x^{m}$, $\tilde{\sigma}_{k}:=\sum_{1 \leq j_{1}<\cdots<j_{k} \leq m} 1 /\left(a_{i_{1}} \cdots a_{i_{k}}\right)$. The following proposition allows to define an analog of the mappings $\Phi_{n, k}$ for entire functions:

[^0]Proposition 3 (Theorem 3 in [2]). Each function $e^{x} P_{m}$, where P_{m} is a degree m polynomial such that $P_{m}(0)=1$, is representable in the form

$$
\begin{equation*}
e^{x} P_{m}=\kappa_{a_{1}} * \cdots * \kappa_{a_{m}}, \quad \text { where } \kappa_{a_{j}}=e^{x}\left(1+x / a_{j}\right) \tag{3}
\end{equation*}
$$

The numbers a_{j} are unique up to permutation.
Define the mapping $\tilde{\Phi}$ as follows: $\tilde{\Phi}:\left(c_{1}, \ldots, c_{m}\right) \mapsto\left(\tilde{\sigma}_{1}, \ldots, \tilde{\sigma}_{m}\right)$. This mapping is in a sense a limit as $k \rightarrow \infty$ of the mappings $\Phi_{m, k}$ (use the fact that $\left.\lim _{k \rightarrow \infty}(1+x / k)^{k}=e^{x}\right)$.

Some properties of the mapping Φ carry on directly to $\Phi_{n, k}$ and $\tilde{\Phi}$:
Theorem 4. For each $n \geq 1$ and for each $k \geq 1$ one has $\Phi_{n, k}\left(U_{n}\right) \subset U_{n}$.
Corollary 2. For the mapping $\tilde{\Phi}$ one has $\tilde{\Phi}\left(U_{n}\right) \subset U_{n}$.
Remark 8. It is also true that if $A \in \partial U_{n}$, then $\Phi_{n, k}(A) \in \partial U_{n}$ if and only if $A \in\left\{c_{n}=0\right\}$.

However, not all of the statements of Theorem 3 have analogs for the mapping $\tilde{\Phi}$:

Proposition 4. For $m=3$ the mapping Φ does not send the set V_{m} into itself.

See more about the mappings $\Phi, \Phi_{n, k}$ and $\tilde{\Phi}$ in paper [6]. The following theorem (see [6]) is an interesting byproduct of their geometric properties. Denote by $T[f]$ the Taylor series at 0 of the entire function f.

Theorem 5. If the real polynomial P of degree m has k positive roots, $1 \leq k \leq m$, then there are at least k sign changes in the sequence of the coefficients of $T\left[e^{\lambda x} P\right]$ for any $\lambda>0$.

References

[1] S. Alkhatib and V. P. Kostov, The Schur-Szegö composition of real polynomials of degree 2, Rev. Mat. Complut. 21 (2008), no. 1, 191-206.
[2] D. K. Dimitrov and V.P. Kostov, Schur-Szegő composition of entire functions, Rev. Mat. Complut., to appear.
[3] V. P. Kostov, The Schur-Szego composition for hyperbolic polynomials, C. R. A. S. Sér. I 345 (2007), no. 9, 483-488. doi:10.1016/j.crma.2007.10.003
[4] V.P. Kostov, Eigenvectors in the context of the Schur-Szegö composition of polynomials, Math. Balkanica (N.S.) 22 (2008), fasc. 1-2, 155-173.
[5] V. P. Kostov, A mapping connected with the Schur-Szegö composition, C. R. Math. Acad. Sci. Paris Sér. I 347 (2009), 1355-1360.
[6] V. P. Kostov, A mapping defined by the Schur-Szegő composition, C. R. Acad. Sci. Bulgare 63 (2010), no. 7, 943-952.
[7] V.P. Kostov, Interlacing properties and the Schur-Szegő composition, Funct. Anal. Other Math. 3 (2010), 65-74.
[8] V.P. Kostov, A. Martínez-Finkelshtein, and B. Z. Shapiro, Narayana numbers and Schur-Szegö composition, J. Approx. Theory 161 (2009), no. 2, 464-476.
[9] V. Prasolov, "Polynomials", Algorithms and Computation in Mathematics Vol. 11, Springer-Verlag, Berlin, 2004.
[10] Q. I. Rahman and G. Schmeisser, "Analytic Theory of Polynomials", London Math. Soc. Monogr. (N.S.) Vol. 26, Oxford Univ. Press, New York, NY, 2002.

V. Kostov

Université de Nice
Laboratoire de Mathématiques
Parc Valrose
06108 Nice Cedex 2
FRANCE
E-mail: kostov@unice.fr

[^0]: *A more general statement is proved in: V. P. Kostov, A refined realization theorem in the context of the Schur-Szegő composition, to appear in Bulletin des Sciences Mathématiques.

