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Infinite-dimensional Generalization
of Kolmogorov Widths
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Recently the theory of widths of Kolmogorov-Gelfand has received a
great deal of interest due to its close relationship with the newly born
area of Compressive Sensing in Signal Processing, cf. [5] and references
therein. However fundamental problems of the theory of widths in multi-
dimensional Theory of Functions remain untouched, as well as analogous
problems in the theory of multidimensional Signal Analysis. In the
present paper we provide a multidimensional generalization of the original
result of Kolmogorov about the widths of “ellipsoidal sets” consisting of
functions defined on an interval.

1. Introduction

In his seminal paper [8] Kolmogorov has introduced the theory of widths
and applied it very successfully to the following set of functions defined in the
compact interval:

Kp :=
{
f ∈ ACp−1([0, 1]) :

∫ 1

0

|f (p)(t)|2 dt ≤ 1
}
. (1)

In the present paper we consider a natural multivariate generalization of the
set Kp given by

K∗
p :=

{
u ∈ H2p(B) :

∫

B

|∆pu(x)|2 dx ≤ 1
}
, (2)

where ∆p is the p-th iterate of the Laplace operator ∆ =
n∑

j=1

∂2/∂x2
j in R

n and

B is the unit ball in R
n. We generalize the notion of width in the framework of

the Polyharmonic Paradigm, and obtain analogs to the one-dimensional results
of Kolmogorov.
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The Polyharmonic Paradigm has been announced in [9] as a new approach
in Multidimensional Mathematical Analysis (in particular, in the Moment
Problem, Approximation and Spline Theory) which is based on solutions of
higher order elliptic equations as opposed to the usual concept which is based on
algebraic and trigonometric polynomials of several variables. The main result of
the present research is a new aspect of the Polyharmonic Paradigm. It provides
a new hierarchy of infinite-dimensional spaces of functions which are used for
a generalization of the Kolmogorov’s theory of widths. This new hierarchy
generalizes the hierarchy of finite-dimensional subspaces SN of the space C∞(I)
for an interval I ⊂ R. Let us give a rough idea of this hierarchy in the case
of a domain D ⊂ R

n, where D is a compact domain with sufficiently smooth
boundary ∂D. In the new hierarchy in R

n, the N -dimensional subspaces in
C∞(I) will be generalized by solution spaces

SN = {u : P2Nu(x) = 0 for x ∈ D} ⊂ C∞(D),

where P2N is an elliptic operator of order 2N in the domain D; the precise
definitions will be specified later on.

2. Kolmogorov’s Result – a Reminder

Let us recall the original result of Kolmogorov provided in his seminal
paper [8] where he introduced for the first time the theory of widths. Kolmogo-
rov has considered the set Kp defined in (1). He proved that this is an
ellipsoid by constructing explicitly its principal axes. Namely, he considered
the eigenvalue problem

(−1)pu(2p)(t) = λu(t) for t ∈ (0, 1), (3)

u(p+j)(0) = u(p+j)(1) = 0 for j = 0, 1, . . . , p− 1. (4)

By the results of M. Krein proved an year earlier [10, 13], Kolmogorov proved
that problem (3)–(4) has the following properties, cf. also [12, Chapter 9.6,
Theorem 9, p. 146], [15, Section 4.4.4, Theorem 6, p. 244], [14]:

Proposition 1. Problem (3)–(4) has a countable set of non-negative real
eigenvalues with finite multiplicity. If we denote them by λj in a monotone
order, they satisfy λj → ∞ for j → ∞. They satisfy the following asymptotic
λj = π2pj2p(1 + O(j−1)). The corresponding orthonormalized eigenfunctions
{ψj}∞j=1 form a complete orthonormal system in L2([0, 1]). The eigenvalue
λ = 0 has multiplicity p and the corresponding eigenfunctions {ψj}p

j=1 are a

basis for the solutions to equation u(p)(t) = 0 in the interval (0, 1).

Further, Kolmogorov provided a description of the axes of the “cylindrical
ellipsoid set”Kp, from which easily follows an approximation theorem of Jackson
type.
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Proposition 2. Let f ∈ L2([a, b]) has the L2-expansion

f(t) =
∞∑

j=1

fjψj(t).

Then f ∈ Kp if and only if
∞∑

j=1

f2
j λj ≤ 1.

For N ≥ p+ 1 and every f ∈ Kp it holds the following estimate (Jackson type
approximation):

∥∥∥f −
N∑

j=1

fjψj(t)
∥∥∥

L2

≤ 1√
λN+1

= O
( 1

(N + 1)p

)
.

However, Komogorov did not stop at this point but asked further, whether
the linear space X̃N := {ψj}N

j=1 provides the “best possible approximation
among the linear spaces of dimension N” in the following sense: if we put

dN (Kp) := inf
XN : dim(XN )≤N

dist(XN ,Kp) , (5)

then Kolmogorov has proved in [8] the equality

dN (Kp) = dist(X̃N ,Kp).

Hence, the above result reads as

dN (Kp) =





1√
λN+1

for N ≥ p,

∞ for N = 0, 1, . . . , p− 1.

Here we have used the notations

dist(X,Kp) := sup
y∈Kp

dist(X, y), dist(X, y) = inf
x∈X

‖x− y‖.

Definition 1. The left-hand side quantity in (5) is called Kolmogorov N -

width, while the best approximation space X̃N is called extremal (optimal)
subspace, cf. [12], [15], [14].

Thus the main concept of the theory of widths is closely related to a Jackson
type theorem by which a special space X̃N is identified. Then one has to find
in which sense is the space X̃N the extremal subspace. We may formulate it
in other words: one has to find as wide class of spaces XN as possible, among
which X̃N is the extremal subspace.

Now let us consider the setK∗
p defined as in (2), which is a natural multivari-

ate generalization of the set Kp. For simplicity sake we will restrict ourselves
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with the unit ball B in R
n. Let us remark that the Sobolev space H2p(B) is

the multivariate version of the space of absolutely continuous functions on the
interval with a highest derivative in L2 (as in (1)). An important feature of
the set K∗

p is that it contains an infinite-dimensional subspace

{
u ∈ H2p(B) : ∆pu(x) = 0 for x ∈ B

}
.

Hence, all Kolmogorov widths are equal to infinity,

dN (K∗
p ) = ∞ for N ≥ 0

and no way is seen to improve this if one remains within the finite-dimensional
setting.

The main purpose of the present paper is to find a proper setting in the
framework of the Polyharmonic Paradigm which generalizes the above results
of Kolmogorov.

3. Elliptic Differential Operators and Elliptic BVP

As we said we restrict ourselves to a simple domain as the unit ball B in R
n.

However the results below hold for a much bigger class of domains.
We will make extensive use of the following Green formula for the polyhar-

monic operator ∆p, cf. [3, p. 10]:

∫

B

(∆pu · v−u∆pv) dx=

p−1∑

j=0

∫

∂B

(∆ju · ∂n∆p−1−jv − ∂n∆ju · ∆p−1−jv) dx, (6)

(here ∂n denotes the normal derivative to ∂B) for functions u and v in the
Sobolev classes H2p(B).

For us the following eigenvalue problem will be important to consider for
U ∈ H2p(B):

∆2pU(x) = λU(x) for x ∈ B, (7)

∆p+jU(y) = ∂n∆p+jU(y) = 0 for all y ∈ ∂B, j = 0, 1, . . . , p− 1, (8)

where ∂n denotes the normal derivative at y ∈ ∂B. The operator ∆2p is
formally self-adjoint, cf. [11], however the Boundary Value Problem (BVP)
(7)–(8) is not a nice one from the point of view of Elliptic BVPs. Since a
direct reference seems not to be available, we need a special consideration of
this problem provided in the following theorem.

Theorem 1. Problem (7)–(8) has only real non-negative eigenvalues.

(a) The eigenvalue λ = 0 has infinite multiplicity with corresponding eigen-
functions {ψ′

j}∞j=1 which represent an orthonormal basis of the space of all
solutions to the equation ∆pU(x) = 0 for x ∈ B.
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(b) The positive eigenvalues are countably many and each has finite multi-
plicity, and if we denote them by λj ordered increasingly, they satisfy λj → ∞
for j → ∞.

(c) Let {ψj}∞j=1 be the orthonormalized eigenfunctions, corresponding to
eigenvalues λj > 0. Then the set of functions {ψj}∞j=1 ∪ {ψ′

j}∞j=1 form a
complete orthonormal system in L2(B).

Remark 1. Problem (7)–(8) is widely known to be non-regular elliptic
BVP, as well as non-coercive variational, c.f. [1], p. 150 at the end of Section 10,
and [11], Remark 9.8 (Chapter 12, Section 9.6, p. 240 in the Russian edition)
and Section 9.8 there, p. 242. This problem will give us the eigenfunctions ψk

in the notations in [12].

The proof is provided in Section 5.

4. The Principal Axes of the Ellipsoid K
∗

p
and Jackson

Type Theorem

Here we will find the principal axes of the ellipsoid K∗
p defined in (2).

We prove the following theorem which generalizes Kolmogorov’s one-dimen-
sional [8], about the representation of the ellipsoid Kp in principal axes.

Theorem 2. Let f ∈ K∗
p . Then f is represented in a L2-series as

f(x) =
∞∑

j=1

f ′jψ
′
j(x) +

∞∑

j=1

fjψj(x)

where, by Theorem 1, the eigenfunctions ψ′
j satisfy ∆pψ′

j(x) = 0 while the
eigenfunctions ψj correspond to the eigenvalues λj > 0, and the coefficients
{fj}∞j=1 satisfy the inequality

∞∑

j=1

λjf
2
j ≤ 1. (9)

Vice versa, every sequence {f ′j}∞j=1 ∪ {fj}∞j=1 with
∞∑

j=1

|f ′j |2 +
∞∑

j=1

|fj |2 <∞

and
∞∑

j=1

λjf
2
j ≤ 1 defines a function f ∈ L2(B) which is in K∗

p .

Proof. According to Theorem 1, we know that an arbitrary f ∈ L2(B) is
represented as

f(x) =

∞∑

j=1

f ′jψ
′
j(x) +

∞∑

j=1

fjψj(x), ‖f‖2
L2

=

∞∑

j=1

|f ′j |2 +

∞∑

j=1

|fj |2 <∞
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with convergence in the space L2(B).

From the proof of Theorem 1, we know that if we put

φj(x) = ∆pψj(x) for j ≥ 1,

then the system of functions

φj(x)√
λj

for j ≥ 1

is orthonormal sequence which is complete in L2(B).

We will prove now that if f ∈ L2(B) then f ∈ K∗
p iff

∞∑
j=1

f2
j λj ≤ 1.

Indeed, we have the expansion f(x) =
∞∑

j=1

f ′jψ
′
j(x) +

∞∑
j=1

fjψj(x) for every

f ∈ H2p(B). We want to see that it is possible to differentiate termwise this
expansion, i.e.

∆pf(x) =

∞∑

j=1

fj∆
pψj(x) =

∞∑

j=1

fjφj(x).

Since
{

φj√
λj

}

j≥1
is a complete orthogonal basis of L2(B) it is sufficient to see

that ∫

B

∆pf(x)φj dx =

∫

B

( ∞∑

j=1

fj∆
pψj(x)

)
φj dx.

Due to the boundary properties of φj and since φj = ∆pψj , we obtain
∫

B

∆pf(x)φj dx =

∫

B

f(x)∆pφj dx = λj

∫

B

fψj dx = λjfj .

On the other hand ∫

B

( ∞∑

k=1

fkφk(x)
)
φj dx = λjfj .

Hence

∆pf(x) =

∞∑

j=1

fj∆
pψj(x) =

∞∑

j=1

fjφj(x) =

∞∑

j=1

√
λj fj

φj(x)√
λj

and since
{

φj√
λj

}

j≥1
is an orthonormal system, it follows

‖∆pf‖2
L2

=

∞∑

j=1

λjf
2
j .

Thus if f ∈ Kp it follows that
∞∑

j=1

λjf
2
j ≤ 1.
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Now, assume vice versa, that
∞∑

j=1

f2
j λj ≤ 1 holds together with the inequality

∞∑
j=1

|f ′j |2 +
∞∑

j=1

|fj |2 <∞. We have to prove that the function

f(x) =

∞∑

j=1

f ′jψ
′
j(x) +

∞∑

j=1

fjψj(x)

belongs to the space H2p(B). Based on the completeness and orthonormality

of the system
{

φj(x)√
λj

}∞

j=1
we may define the function g ∈ L2 by putting

g(x) =

∞∑

j=1

√
λj fj

φj(x)√
λj

=

∞∑

j=1

fjφj(x);

it obviously satisfies ‖g‖L2
≤ 1.

As is well-known from the theory of Elliptic BVPs we may find a function
F ∈ H2p(B) which is a solution to equation ∆pF = g (see [11, Chapter 2,
Section 5.3, Theorem 5.3]). Let its representation be

F (x) =

∞∑

j=1

f ′jψ
′
j(x) +

∞∑

j=1

Fjψj(x)

with some Fj satisfying
∑
j

|Fj |2 <∞. As above we obtain

λj

∫

B

Fψj dx =

∫

B

F∆2pψj dx =

∫

B

∆pF · ∆pψj dx =

∫

B

g · φj dx,

which implies Fj = fj . Hence, F = f and f ∈H2p(B). This ends the proof. �

We are able to prove finally a Jackson type result analogous to Proposition 2.

Theorem 3. Let N ≥ 1. Then for every N ≥ 1 and every f ∈ K∗
p it holds

the following estimate:

∥∥∥f −
∞∑

j=1

f ′jψ
′
j(x) −

N∑

j=1

fjψj(x)
∥∥∥

L2

≤ 1√
λN+1

.

Proof. Due to the monotonicity of λj , and inequality (9), we obtain

∥∥∥f −
∞∑

j=1

f ′jψ
′
j(x) −

N∑

j=1

fjψj(x)
∥∥∥

2

L2

=

∞∑

j=N+1

f2
j ≤ 1

λN+1

∞∑

j=N+1

f2
j λj ≤ 1

λN+1
.

This ends the proof. �
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Now we are able to prove a generalization of Kolmogorov’s result about
widths [8]. It is important which classes of spaces we are going to choose for
generalizing the widths. We introduce the following subspaces in L2(B): For
integers M ≥ 1 we define

SM := {u ∈ H2M (B) : Q2Mu(x) = 0 for x ∈ B} (10)

where Q2M is a uniformly strongly elliptic operator of order 2M , cf. [2], [11],
or [9, p. 473]. We denote by FN a finite-dimensional subspace of L2(B) of

dimension N . The special subspaces for P2M = ∆M are denoted by S̃M ,

S̃M := {u ∈ H2M (B) : ∆Mu(x) = 0 for x ∈ B},

and F̃N are the special finite-dimensional subspaces

F̃N := span {ψj : j ≤ N},

with ψj being the eigenfunctions from Theorem 1.
The following results are analogs to the original Kolmogorov’s results about

widths, cf. [8], or the more detailed exposition in [12, Theorem 9, p. 146], [15]
and [14].

Theorem 4. Let Q2M be a strongly elliptic differential operator of order
2M in B, and let N ≥ 0 be arbitrary integer.

(a) If M < p then dist
(
SM

⊕
FN ,K

∗
p

)
= ∞. Hence,

inf
Q2M

dist
(
SM

⊕
FN ,K

∗
p

)
= ∞.

(b) If M = p then

inf
Sp,FN

dist
(
Sp

⊕
FN ,K

∗
p

)
= dist

(
S̃p

⊕
F̃N ,K

∗
p

)
.

Proof. (a) If we assume that SM and S̃p are transversal, the proof is clear

since S̃p ⊂ K∗
p and there will be an infinite-dimensional space in S̃p ⊂ K∗

p

containing infinite axes with direction y ∈ S̃p, such that dist
(
SM

⊕
FN , y

)
> 0

which implies
dist

(
SM

⊕
FN ,K

∗
p

)
= ∞.

If they are not transversal, we apply Lemma 1 below; it is clear that the finite-
dimensional subspaces do not disturb the result, and the proof is finished.

(b) For proving the second item, let us first note that S̃p ⊂ Sp

⊕
FN . Indeed,

since S̃p ⊂ K∗
p , the violation of S̃p ⊂ Sp

⊕
FN would imply that there exists an

infinite axis y in K∗
p not contained in Sp

⊕
FN which would immediately give

dist
(
Sp

⊕
FN ,K

∗
p

)
= ∞.
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But by Lemma 2 it follows that P2p = C(x)∆p for some function C(x). Hence

Sp = S̃p.

Further we follow the usual way as in [12] to see that F̃N is extremal among
all spaces FN , i.e.

inf
FN

dist
(
S̃p

⊕
FN ,K

∗
p

)
= dist

(
S̃p

⊕
F̃N ,K

∗
p

)
.

This ends the proof. �

The following result shows the mutual position of two subspaces:

Lemma 1. Let M , N and M1 be integers satisfying M < N and M1 ≥ 0.
Then for the corresponding SM and SN defined in (10) by the operators P2M

and Q2N = ∆N respectively,

dist(SM

⊕
FM1

, SN ) = ∞

holds. There is a linear subspace YN−M ⊂ SN with YN−M ⊥ SM and it is an
infinite-dimensional space of solutions to an Elliptic BVP.

Proof. Let us consider the case M1 = 0. For the uniformly strongly
elliptic operator P2M we choose the Dirichlet system of boundary operators
Bj = ∂j−1/∂nj−1. It is a classical fact (cf. [11, Chapter 2, Section 1.4,
Remark 1.3]) that this system satisfies conditions (iii) in [11, Chapter 2,
Section 5.1], or, in other words, the system of operators {P2M ; ∂j/∂nj : j =
0, 1, ...,M−1} forms a regular Elliptic Boundary Value Problem (this is the so-
called Dirichlet BVP associated with the operator P2M ). Hence, we may apply
the existence Theorems 5.2 and 5.3 in [11]. As in Theorem 2.1 ([11, Chapter 2,
Section 2.2]) we complete the system {Bj}M

j=1 by the system of boundary

operators Sj = ∂M−1+j/∂nM−1+j . Hence, the composed system {Bj}M
j=1 ∪

{Sj}M
j=1 is a Dirichlet system of order 2M (cf. e.g., [9, Definition 23.12,

p. 474]). Further, by Theorem 2.1 in [11] quoted above, there exists a unique
Dirichlet system of order 2M of boundary operators {Cj , Tj}M

j=1 which is

uniquely determined as the adjoint to the system {Bj , Sj}M
j=1, and the following

Green formula holds:

∫

B

(P2Mu · v − u · P ∗
2Mv)dx =

M∑

j=1

∫

∂B

(Sju · Cjv −Bju · Tjv) dσy, (11)

for all u, v ∈ H2M (B); here dσy denotes the surface element on the sphere ∂B.
We consider the elliptic operator ∆NP2M . As a product of two uniformly

strongly elliptic operators it is such again. By using a standard construction
from Theorem 2.1 in [11], we complete the Dirichlet system of operators
{Bj , Sj}M

j=1 with N − M boundary operators Rj = ∂2M−1+j/∂n2M−1+j ,
j = 1, 2, . . . , N −M . Again by the above cited theorem, the Dirichlet system
of boundary operators {Bj , Sj}M

j=1 ∪ {Rj}N−M
j=1 covers the operator ∆NP2M .
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Finally, we consider the solutions g ∈ H2N+2M (B) to the following Elliptic
BVP:

∆NP ∗
2Mg(x) = 0 for x ∈ B, (12)

Bjg(y) = Sjg(y) = 0 for j = 0, 1, . . . , N − 1, for y ∈ ∂B, (13)

Rjg(y) = hj(y) for j = 1, 2, . . . , N −M, for y ∈ ∂B. (14)

We may apply the existence Theorems 5.2 and 5.3 in [11, Chapter 2] to justify
solvability of problem (12)–(14) in the space H2M+2N (B).

First of all, it is clear from (12) that P ∗
2Mg ∈ SN .

Let us check the properties of the function P ∗
2Mg. By the Green formula

(11), the function P ∗
2Mg satisfies P ∗

2Mg ⊥ SM , or equivalently,

∫

B

P ∗
2Mg · v dx = 0 for all v with P2Mv = 0.

By the general existence Theorem 5.3 (the Fredholmness property) in [11]
mentioned above, we know that a solution g to problem (12)–(14) exists for
those boundary data {hj}N−M

j=1 which satisfy only a finite number of linear
restrictions, provided by conditions (5.18) there; these are determined by the
solutions to the homogeneous adjoint Elliptic BVP. Hence, it follows that the
set YN−M of the functions P ∗

2Mg where g is a solution to (12)–(14) is infinite-
dimensional. It follows that the space SN \ SM is infinite-dimensional as well,
hence

dist
(
SM

⊕
FM1

, SN

)
= ∞.

Since obviously a finite-dimensional subspace FM1
would not disturb the

above argumentation, this ends the proof. �

Remark 2. Lemma 1 may be considered as a generalization in our setting
of a theorem of Gohberg-Krein of 1957 (cf. [12, Theorem 2, p. 137]) in a Hilbert
space.

We need the following intuitive result which is however not trivial.

Lemma 2. Let for some elliptic differential operator P2N of order 2N the
following inclusion hold SN ⊂ S̃N \ F , i.e.

{
u ∈ H2N (B) : P2Nu(x) = 0, x ∈ B

}
⊂

{
u ∈ H2N (B) : ∆Nu(x) = 0, x ∈ B}\F,

where F ⊂ L2(B) is a finite-dimensional space. Then

P2N (x,Dx) = c(x)∆N (15)

for some function c(x).
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Proof. Since the general case is rather technical we will consider only N = 1
in B ⊂ R

2. It is clear that the arguments are purely local so we will prove that
equality (15) holds at (x1, x2) = x = 0 ∈ B. Assume that

P2N (x,Dx)u(x)=a(x)ux1,x1
+2b(x)ux1,x2

+c(x)ux2,x2
+d(x)ux1

+e(x)ux2
+f(x)u;

here wxj
denotes the partial derivative ∂w/∂xj . By assumption, for the function

u ∈ S̃1 \ F holds also

(
a(x) − c(x)

)
ux1,x1

+ 2b(x)ux1,x2
+ d(x)ux1

+ e(x)ux2
+ f(x)u = 0.

Let us denote the harmonic functions 1, x1, x2, x
2
1 − x2

2, x1x2 by uj for
j = 1, 2, . . . , 5. Let us assume that they do not belong to F . We see that
the Jacobi matrix of these functions at x1 = x2 = 0, is

(
uj

x1,x1
uj

x1,x2
uj

x1
uj

x2
uj

)5

j=1
=




0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
2 0 0 0 0
0 1 0 0 0




which is obviously non-degenerate. Hence, a(0) − c(0) = b(0) = d(0) = e(0) =
f(0) = 0.

In the case if some of the above functions uj belongs to the space F , it
is possible to approximate it by other harmonic functions also including up
to their second derivatives at 0 (one may apply approximation arguments as
in [6]). The respective Jacobian will be non-zero and the conclusion of the
theorem will follow. This ends the proof. �

The proof of Theorem 4 above permits a much bigger generalization which
will be provided in a forthcoming paper.

5. Appendix on Elliptic Boundary Value Problems

Proof of Theorem 1.
(a) We consider the following auxiliary elliptic eigenvalue problem

∆2pφ(x) = λφ(x) on B, (16)

∂∆jφ(y) = ∆jφ(y) = 0 for j = 0, 1, . . . , p− 1, for y ∈ ∂B. (17)

It is straigthforward to check that this is a regular Elliptic BVP considered
in the Sobolev space H2p(B) since it satisfies all conditions (i)–(iii) in [11,
Chapter 2, Section 5.1], cf. also [7]. Hence, we are able to apply the existence
theorems in Section 5.3 there. Further, it is straightforward to check that it is
a self-adjoint problem (cf. [11, Chapter 2, Section 2.5]): in the polyharmonic
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Green formula (6) we put {Bj}2p
j=1 = {∂∆j ,∆j}p−1

j=0 and we see that in the
context of the general Green formula (11) the adjoint system of operators
{Cj}2p

j=1 = {∂∆j ,∆j}p−1
j=0 which proves the self-adjointness of problem (16)–

(17). Hence, we may apply the main results about the Spectral theory of regular
self-adjoint Elliptic BVP. We refer to [7, Chapter 2, Section 3, Theorem 2.52,
p. 122], and to references therein (cf. in particular the monograph of Berezanskii
devoted to expansions in eigenfunctions [4, Chapter 6, Section 2]).

By the uniqueness Lemma 3 the eigenvalue problem (16)–(17) has only zero
solution for λ = 0. It has eigenfunctions φk ∈ H2p(B) with eigenvalues λk > 0
for k = 1, 2, 3, . . ., for which λk → ∞ as k → ∞.

(b) Next we consider the problem

∆2pϕ = φk (18)

∂∆jϕ(y) = ∆jϕ(y) = 0 for j = 0, 1, . . . , p− 1, for y ∈ ∂B, (19)

in the Sobolev space H2p(B). Obviously, the Elliptic BVP defined by (18)–
(19) coincides with the Elliptic BVP defined by (16)–(17) and all remarks there
apply here, too. Hence, problem (18)–(19) has unique solution ϕk ∈ H2p(B).
We put

ψk = ∆pϕk.

Hence, ∆pψk = φk. We infer that on the boundary ∂B hold the equalities
∆p+jψk = ∆jφk and ∂∆p+jψk = ∂∆jφk; since φk are solutions to (16)–(17) it
follows

∆p+jψk(y) = ∂∆p+jψk(y) = 0 for j = 0, 1, . . . , p− 1, for y ∈ ∂B. (20)

We will prove that ψk are solutions to problem (7)–(8), they are mutulally
orthogonal, and they are also orthogonal to the space {v ∈ H2p : ∆pv = 0}.

Let us see that ∆2pψk = λkψk. By the definition of ψk this is equivalent to
∆3pϕk = λk∆pϕk; from ∆2pϕk = φk this is equivalent to ∆pφk = λk∆pϕk. On
the other hand, we have obviously ∆2pφk = λk∆2pϕk by the basic properties
of φk and ϕk, hence

∆2p(φk − λkϕk) = 0.

Note that both φk and ϕk sastisfy the same zero boundary conditions, namely
(17) and (19). Hence, by the uniqueness Lemma 3 it follows that φk−λkϕk = 0
which implies ∆2pψk = λkψk. Thus we see that ψk is a solution to problem
(7)–(8) and does not satisfy ∆pψ = 0.

The orthogonality to the subspace {v ∈ H2p : ∆pv = 0} follows easily from
the Green formula (6) and the zero boundary conditions (20) of ψk, by the
following:

∫

D

(∆2pψk ·v−ψk ·∆2pv) dx=

2p−1∑

j=0

∫

∂D

(∆jψk ·∂n∆2p−1−jv−∂n∆jψk ·∆2p−1−jv)

and since
∫

D
∆2pψk · v dx = λk

∫
D
ψk · v dx.
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The orthonormality of the system {ψk}∞k=1 follows now easily by the equality

λk

∫
ψkψj dx =

∫
∆2pψkψj dx =

∫
∆pψk∆pψj dx =

∫
φkφj dx

and the orthogonality of the system {φk}∞k=1. For the completeness of the
system {ψk}∞k=1, let us assume that for some f ∈ L2(B) it holds

∫

B

f · ψk dx =

∫

B

f · ψ′
k dx = 0 for all k ≥ 1. (21)

Then the Green formula (6) implies

0 = λk

∫

B

f · ψk dx =

∫

B

f · ∆2pψk dx =

∫

B

∆pf · ∆pψk dx

=

∫

B

∆pf · φk dx for all k ≥ 1.

By the completeness of the system {φk}k≥1 this implies that ∆pf = 0. From
the second orthogonality in (21) it follows that f ≡ 0, and this ends the proof
of the completeness of the system {ψ′

j}∞j=1 ∪ {ψj}∞j=1. �

We have used above the following simple result.

Lemma 3. The solution to problem (16)–(17) for λ = 0 is unique.

Proof. From Green formula (6) we obtain
∫

B
[∆pφ]2 dx =

∫
φ ·∆2pφdx = 0,

hence ∆pφ = 0. Now we apply the second Green formula (2.11) in [3] which
infers immediately φ ≡ 0. �
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