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On Greedy Algorithms for Dictionary

with Bounded Cumulative Coherence∗

Eugene Livshitz

We discuss upper and lower estimates for the rate of convergence of
Pure and Orthogonal Greedy Algorithms for dictionary with bounded
cumulative coherence.

1. Introduction

Let H be a real, separable Hilbert space equipped with an inner product

〈·, ·〉 and the norm ‖ · ‖ = 〈·, ·〉
1/2

. We say that a set D, D ⊂ H is a dictionary
if

g ∈ D ⇒ ‖g‖ = 1, and spanD = H.

Recently the following problem has been intensively studied in Approximation
Theory and Numeral Analysis: for element f ∈ H and m ∈ N to construct an
m-term combination

f →
m∑

k=1

ck(f)gk(f), ck(f) ∈ R, gk(f) ∈ D

that provides a good approximation to f . Greedy Algorithms turn out to be
effective for obtaining such m-term approximations (see tutorial [7] for details).
Two most popular greedy algorithms are defined below.

Pure Greedy Algorithm (PGA). Set fPGA
0 := f ∈H, GPGA

0 (f,D) :=0.
For each m ≥ 0 we inductively find gPGA

m+1 ∈ D such that

|〈fPGA
m , gPGA

m+1 〉| = sup
g∈D

|〈fPGA
m , g〉|
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and define

GPGA
m+1 (f,D) := GPGA

m (f,D) + 〈fPGA
m , gPGA

m+1 〉g
PGA
m+1 ,

fPGA
m+1 := f − GPGA

m+1 (f,D) = fPGA
m − 〈fPGA

m , gPGA
m+1 〉g

PGA
m+1 .

Orthogonal Greedy Algorithm (OGA). Set fOGA
0 := f ∈ H,

GOGA
0 (f,D) := 0. For each m ≥ 0 we inductively find gOGA

m+1 ∈ D such that

|〈fOGA
m , gOGA

m+1 〉| = sup
g∈D

|〈fOGA
m , g〉|

and define

GOGA
m+1 (f,D) := ProjgOGA

1
,...,gOGA

m+1
(f),

fOGA
m+1 := f − GOGA

m+1 (f,D).

Thus for f ∈ H and each m ≥ 1 we construct m-term approximations
GPGA

m (f,D) and GOGA
m (f,D).

In this article we study the rate of convergence of Greedy Algorithms for
class A0(D) that is a set of finite linear combination of elements from D and
classes Ap(D), 1 ≤ p < 2, defined below. For M ≥ 0 we define

Ap(D,M) :=
{ ∑

λ∈Λ

cλgλ :
∑

λ∈Λ

|cλ|p ≤ Mp, cλ ∈ R, gλ ∈ D, ♯Λ < ∞
}
,

(where closure is taken in the norm of H). Set

Ap(D) :=
⋃

M≥0

Ap(D,M),

|f |p := |f |Ap(D) := inf{M ≥ 0 : f ∈ Ap(D,M)}, f ∈ Ap(D).

From results of DeVore, Temlyakov and Livshitz [1], [6], [5] it follows that
Orthogonal Greedy Algorithm does provide the optimal rate of convergence
C|f |1m

−1/2 in A1(D), but Pure Greedy Algorithm does not. For narrower
classes such as A0(D) the rate of convergence of OGA could not be better than
Cm−1/2 and would not be optimal. In the same time if dictionary D satisfies
some additional properties the rate of convergence of Greedy Algorithms (for
some classes) could be essentially better. This area is called Sparse Approxima-

tion and has been intensively studied recently ([3], [4], [8], [2]). In this article
results will be formulated using the notion of cumulative coherence of the
dictionary introduced by Tropp [8]

µ1(D) := sup
g∈D

∑eg∈D, eg 6=g

|〈g̃, g〉|. (1)

The above-mentioned articles contain the following basic results of Sparse
Approximation Theory.
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Theorem A. Let D be a dictionary with µ1(D) < 1/2 and f ∈ A0(D).
Then

GOGA
m (f,D) = f, m ≥ m0,

‖f − GPGA
m (f,D)‖ = ‖fm‖ ≤ C exp(−c(f)m), m ≥ 0.

For dictionaries with small µ1(D) PGA provides optimal rate of convergence
in Ap(D), 1 ≤ p < 2.

Theorem 1. Let D be a dictionary with µ1(D) < 1/3 and f ∈ A1(D).
Then

‖f − GPGA
m (f,D)‖ = ‖fm‖ ≤ |f |1m

−1/2, m ≥ 0.

Theorem 2. Suppose D is a dictionary with µ1(D) < 1/3, and f ∈ Ap(D),
1 ≤ p < 2. Then there exist C1 = C1(p) > 0 and C2 = C2(µ1(D)) > 0 such

that for any m ≥ 1

‖f − GPGA
m (f,D)‖ = ‖fm‖ ≤ C1C2|f |pm

−1/p+1/2.

In the same time for big (but finite) values of µ1(D) Pure Greedy Algorithms
can not always provide exponential rate of convergence, in fact, the rate of
convergence could be worse than Cm−1/2. We announce the following result.

Theorem 3. There exists a dictionary D with µ1(D) < ∞, f0 ∈ A0(D),
β > 0 and C > 0 such that for any m ≥ 1 we have

‖f0 − GPGA
m (f0,D)‖ = ‖fm‖ ≥ Cm−1/2+β .

Let us remind the following definition.

Definition. A dictionary D ∈ H is called minimal if for every g ∈ D we
have

g 6∈ span
(
D \ {g}

)
.

We would like to stress that in all known nontrivial lower estimates for the
rate of convergence of PGA (including Theorem 3) dictionary D is not minimal.
We conjecture that minimality of the dictionary may significantly affect on the
rate of convergence of PGA in A1(D).

Open problem. Is Pure Greedy Algorithm order-optimal for minimal

dictionaries in A1(D), that is, for any minimal dictionary D and f ∈ A1(D),
does the inequality

‖f0 − GPGA
m (f,D)‖ ≤ Cm−1/2

hold for all m ≥ 1 ?
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2. Properties of Dictionaries with Bounded Cumulative

Coherence

It is easy to see that any dictionary with bounded cumulative coherence in
separable Hilbert space is countable. We therefore may suppose that elements
of a dictionary D are enumerated: D = {gλ}λ∈N.

Lemma 1. Let D be a dictionary with µ1(D) < 1/2, N ∈ N, and cν ∈ R,

gν ∈ D, 1 ≤ ν ≤ N . Then the following inequalities hold true:

(1 − 2µ1(D))
N∑

ν=1

c2
ν ≤

∥∥∥
N∑

ν=1

cνgν
∥∥∥

2

≤ (1 + 2µ1(D))
N∑

ν=1

c2
ν .

Proof. Without loss of generality we may assume that

|c1| ≥ |c2| ≥ · · · ≥ |cN |.

We have

∥∥∥
N∑

ν=1

cνgν
∥∥∥

2

= 〈

N∑

ν=1

cνgν ,

N∑

ν=1

cνgν〉 =

N∑

ν=1

(
c2
ν〈g

ν , gν〉 + 2cν

N∑

η=ν+1

cη〈g
ν , gη〉

)
.

Using (1) and monotony of |cν | we estimate

∣∣∣c2
ν〈g

ν , gν〉 + 2cν

N∑

η=ν+1

cη〈g
ν , gη〉 − c2

ν

∣∣∣ ≤ 2cν

∣∣∣
N∑

η=ν+1

cη〈g
ν , gη〉

∣∣∣

≤ 2c2
ν

N∑

η=ν+1

|〈gν , gη〉| ≤ 2c2
νµ1(D).

Hence
∣∣∣
∥∥∥

N∑

ν=1

cνgν
∥∥∥

2

−

N∑

ν=1

c2
ν

∣∣∣ ≤ 2µ1(D)

N∑

ν=1

c2
ν ,

which is exactly the claim of Lemma 1. �

Lemma 2. Suppose Λ ⊂ N is a finite set of indices and ǫ > 0. If for f the

representation

f = fǫ +
∑

λ∈Λ

cλgλ, cλ ∈ R, gλ ∈ D (2)

holds, and, in addition,

‖fǫ‖ < ǫ. (3)

Then for λ0 ∈ Λ we have

∣∣〈f, gλ0〉 − cλ0

∣∣ < µ1(D)max
λ∈Λ

|cλ| + ǫ,
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while for λ0 6∈ Λ there holds

∣∣〈f, gλ0〉
∣∣ < µ1(D)max

λ∈Λ
|cλ| + ǫ.

Proof. Using representation (2) we write for λ0 ∈ Λ

〈f, gλ0〉 − cλ0
= 〈fǫ +

∑

λ∈Λ

cλgλ, gλ0〉 − cλ0
〈gλ0 , gλ0〉

=
∑

λ∈Λ, λ6=λ0

〈cλgλ, gλ0〉 + 〈fǫ, g
λ0〉

and for λ0 6∈ Λ

〈f, gλ0〉 = 〈fǫ +
∑

λ∈Λ

cλgλ, gλ0〉 =
∑

λ∈Λ, λ6=λ0

〈cλgλ, gλ0〉 + 〈fǫ, g
λ0〉.

To complete the proof we make use of (3) and Cauchy - Bunyakovsky - Schwarz
inequality:

∣∣∣
∑

λ∈Λ, λ6=λ0

〈cλgλ, gλ0〉 + 〈fǫ, g
λ0〉

∣∣∣ ≤ max
λ∈Λ

|cλ|
∑

λ∈Λ, λ6=λ0

|〈gλ, gλ0〉| + ‖fǫ‖‖g
λ0‖

< max
λ∈Λ

|cλ|
∑eg∈D, eg 6=gλ0

|〈g̃, gλ0〉| + ǫ

≤ µ1(D)max
λ∈Λ

|cλ| + ǫ.

�

Lemma 3. Let D be a dictionary with µ1(D) < 1/3, f ∈ Ap(D) and m ≥ 1.
Assume that for n = m−1, finite Λ ⊂ N and ǫ > 0 the following representation

fn = f − GPGA
n (f,D) = fǫ +

∑

λ∈Λ

cλ,ngλ, cλ,n ∈ R, gλ ∈ D, ‖fǫ‖ < ǫ (4)

holds. If

ǫ <
1

6
(1 − 3µ1(D))max

λ∈Λ
|cλ,m−1|, (5)

then (4) holds for n = m with the same Λ, fǫ, and

∑

λ∈Λ

|cλ,m|p ≤
∑

λ∈Λ

|cλ,m−1|
p − 2−p(1 − 3µ1(D))p max

λ∈Λ
|cλ,m−1|

p,

max
λ∈Λ

|cλ,m| ≤ max
λ∈Λ

|cλ,m−1|. (6)
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Proof. From the definition of PGA it follows that for m ≥ 1

f − GPGA
m (f,D) = fm = fm−1 − GPGA

1 (fm−1).

Therefore it suffices to prove the lemma for arbitrary f ∈ Ap(D) and m = 1.
For the sake of brevity we write cλ instead of cλ,0, λ ∈ Λ. From (5) we have

(1 − 2µ1(D))max
λ∈Λ

|cλ| − 2ǫ > (1 − 3µ1(D))max
λ∈Λ

|cλ| − 3ǫ

≥
1

2
(1 − 3µ1(D))max

λ∈Λ
|cλ| > 0 .

(7)

By Lemma 2 we get

max
λ∈Λ

|〈f, gλ〉| > max
λ∈Λ

|cλ| − µ1(D)max
λ∈Λ

|cλ| − ǫ = (1 − µ1(D))max
λ∈Λ

|cλ| − ǫ,

while for λ 6∈ Λ, using also (7) we obtain

|〈f, gλ〉| < µ1(D)max
λ∈Λ

|cλ| + ǫ < (1 − µ1(D))max
λ∈Λ

|cλ| − ǫ.

Therefore there exists λ0 ∈ Λ such that

|〈f, gλ0〉| = sup
g∈D

|〈f, g〉| > (1 − µ1(D))max
λ∈Λ

|cλ| − ǫ. (8)

Using Lemma 2, we have

|〈f, gλ0〉| < |cλ0
| + µ1(D)max

λ∈Λ
|cλ| + ǫ.

Combining last two inequalities, we obtain

(1 − µ1(D))max
λ∈Λ

|cλ| − ǫ < |cλ0
| + µ1(D)max

λ∈Λ
|cλ| + ǫ ,

hence
|cλ0

| > (1 − 2µ1(D))max
λ∈Λ

|cλ| − 2ǫ.

Without loss of generality we may assume that cλ0
≥ 0, that is

cλ0
> (1 − 2µ1(D))max

λ∈Λ
|cλ| − 2ǫ. (9)

Applying Lemma 2, (9) and (7), we obtain

〈f, gλ0〉 > cλ0
− µ1(D)max

λ∈Λ
|cλ| − ǫ > (1 − 3µ1(D))max

λ∈Λ
|cλ| − 3ǫ

≥
1

2
(1 − 3µ1(D))max

λ∈Λ
|cλ|,

(10)

〈f, gλ0〉 < cλ0
+ µ1(D)max

λ∈Λ
|cλ| + ǫ.
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Hence by (9) and (7)

cλ0
− 〈f, gλ0〉 ≥ cλ0

−
(
cλ0

+ µ1(D)max
λ∈Λ

|cλ| + ǫ
)

≥ −
(
µ1(D)max

λ∈Λ
|cλ| + ǫ

)

≥ −cλ0
+ (1 − 3µ1(D))max

λ∈Λ
|cλ| − 3ǫ

≥ −cλ0
+

1

2
(1 − 3µ1(D))max

λ∈Λ
|cλ| .

(11)

Combining (10) and (11), we estimate

|cλ0
− 〈f, gλ0〉| +

1

2
(1 − 3µ1(D))max

λ∈Λ
|cλ| ≤ cλ0

,

and hence

|cλ0
− 〈f, gλ0〉|p ≤ cp

λ0
−

(1

2
(1 − 3µ1(D))max

λ∈Λ
|cλ|

)1/p

. (12)

If we set
cλ,1 = cλ = cλ,0, λ ∈ Λ \ {λ0},

cλ0,1 = cλ0,0 − 〈f, gλ0〉,

then the claim of Lemma 3 will follow from (12). �

3. Proof of Theorem 1

Lemma 3 implies that for any m ≥ 0

|fm|1 ≤ |f |1.

Using Lemma 3.5 from [1] and Lemma 3 we have for m ≥ 0

|〈fm, gm+1〉| = sup
g∈D

|〈fm, g〉| ≥
‖fm‖2

|fm|1
≥

‖fm‖2

|f |1
.

By definition of PGA

‖fm+1‖
2 = ‖fm‖2−〈fm, gm+1〉

2
≤ ‖fm‖2−

(
‖fm‖2

|f |1

)2

= ‖fm‖2

(
1 −

‖fm‖2

|f |21

)
.

Applying Lemma 3.4 from [1] with am = ‖fm−1‖
2 and A = |f |21 and taking

into account the inequality

a1 = ‖f0‖
2 ≤ |f |21,
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we obtain that for {am}∞m=1 such that

am+1 ≤ am

(
1 −

am

|f |21

)
, a1 ≤ A,

the following inequality
am ≤ Am−1

holds. Thus for m ≥ 1 we have

‖fm‖ = a
1/2
m+1 ≤ |f |1(m + 1)−1/2 ≤ |f |1m

−1/2.

This completes the proof of the theorem. �

4. Proof of Theorem 2

Let k ≥ 1 and f ∈ Ap. For an arbitrary ǫ satisfying

0 < ǫ <
1

6
(1 − 3µ1(D))k−1/p|f |p , (13)

there exists representation (2) such that inequality (3) holds and
∑

λ∈Λ

|cλ|
p = |f |pp . (14)

We claim that there exists n, 0 ≤ n ≤ k such that

max
λ∈Λ

|cλ,n| ≤ c1(p)c2(µ1(D))k−1/p|f |p , (15)

∑

λ∈Λ

|cλ,n|
p ≤

∑

λ∈Λ

|cλ,0|
p = |f |pp . (16)

For every m = 1, . . . , k, for n = m − 1 the representation (4) holds (beginning
with cλ,0 := cλ) and either

max
λ∈Λ

|cλ,m−1| ≤ k−1/p|f |p ,

in which case we can set n = m − 1, or

max
λ∈Λ

|cλ,m−1| ≤ k−1/p|f |p .

Then taking into account (13) we have (5). Therefore, by Lemma 3 the
representation (4) holds for n = m and using (14) and (6) we have

0 ≤
∑

λ∈Λ

|cλ,m|p ≤
∑

λ∈Λ

|cλ,m−1|
p − 2−p(1 − 3µ1(D))p max

λ∈Λ
|cλ,m−1|

p = · · ·

=
∑

λ∈Λ

|cλ,0|
p −

m∑

n=1

2−p(1 − 3µ1(D))p max
λ∈Λ

|cλ,m−1|
p

≤ |f |pp − m2−p(1 − 3µ1(D))p max
λ∈Λ

|cλ,m|p ,
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whence

max
λ∈Λ

|cλ,m| ≤ 2(1 − 3µ1(D))−1m−1/p|f |p and
∑

λ∈Λ

|cλ,m|p ≤ |f |pp .

This provides (15) and (16) for n = k.

Using (15) and (16), we estimate

∑

λ∈Λ

|cλ,n|
2 =

∑

λ∈Λ

|cλ,n|
p |cλ,n|

2−p ≤
(

max
λ∈Λ

|cλ,n|
)2−p ∑

λ∈Λ

|cλ,n|
p

≤
(
c3(p)c4(µ1(D))k− 2−p

p |f |2−p
p

)
|f |pp = c3(p)c4(µ1(D)k−2/p+1|f |2p .

Applying Lemma 1 and (4), we obtain

‖fk‖ ≤ ‖fn‖ ≤ ‖
∑

λ∈Λ

cλ,ngλ‖ + ‖fǫ‖ ≤
(
(1 + 2µ1(D))

∑

λ∈Λ

c2
λ,n

)1/2

+ ǫ

≤ C1(p)C2(µ1(D))k−1/p+1/2|f |p + ǫ.

Since ǫ > 0 can be arbitrarily small, the last inequality completes the proof of
Theorem 2. �
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