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Interlacing Properties

of Certain Tchebycheff Systems∗

Lozko Milev and Nikola Naidenov

We present the main results of [8], where a general condition, denoted
by (P), for the validity of the Markov interlacing property for extended
Tchebycheff systems on the real line was formulated. It was also proved
in [8] that (P) is satisfied for some known systems, including exponential
and Müntz polynomials.

Here we give various examples, showing that condition (P) is essential
for the correctness of the results.

Keywords and Phrases: Exponential polynomials, Müntz polynomials,
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1. Main Results

Denote by πn the set of all real algebraic polynomials of degree at most n.
A classical result for polynomials, which have only real zeros, is the following

Lemma (V. A. Markov). Suppose that the polynomials p and q from πn

have zeros x1 < · · · < xn and y1 < · · · < yn, respectively, which satisfy the
interlacing conditions

x1 ≤ y1 ≤ · · · ≤ xn ≤ yn.

Then the zeros t1 < · · · < tn−1 of p′(x) and the zeros τ1 < · · · < τn−1 of q′(x)
interlace too, that is

t1 ≤ τ1 ≤ · · · ≤ tn−1 ≤ τn−1.

Moreover, the above inequalities are strict, unless xi = yi, i = 1, . . . , n.

Markov’s lemma is often used in the study of extremal problems for algebraic
polynomials and also in questions related to the distribution of the zeros of
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derivatives, see [7, 14, 9, 4, 13, 5, 15, 10, 3, 2, 11]. Another problem concerning
interlacing properties of Tchebycheff systems was studied in [12].

A natural goal is to extend Markov’s interlacing property to more general
classes of functions. Results of this type are obtained by Videnskii [16] and
Bojanov [1]. However, some important Tchebycheff systems on the real line do
not fulfil the requirements from [16] and [1].

In the recent paper [8] we formulated a condition (denoted by (P)), such
that if an ET-system (see the definition below) satisfies (P), then it possesses
Markov’s interlacing property. We gave various examples of ET-systems of
exponential polynomials, which have the property (P) and obtained the corre-
sponding results for interlacing. We also showed that for some systems Markov’s
interlacing property holds even for derivatives of arbitrary order. Next we
summarize the main results of [8].

A set of functions {u0, . . . , un} is called an Extended Tchebycheff system
(ET-system) on R, if ui ∈ Cn(R) for i = 0, . . . , n, and every non-zero polynomial
in this system u =

∑n
i=0 aiui, where (a0, . . . , an) ∈ R

n+1, has at most n real
zeros, counting multiplicities. Then the linear space

Un := span {u0, . . . , un}

is said to be an Extended Tchebycheff space (ET-space). We set

X = {(x1, . . . , xn) ∈ R
n : x1 < · · · < xn}.

Given a point x̄ ∈ X, we define

f(x̄; t) :=

∣
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∣
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Clearly, f(x̄; t) is a polynomial from Un, which has zeros x1, . . . , xn. Note that
if g ∈ Un is any other polynomial having the same zeros, then there exists a
constant C such that g(t) = Cf(x̄; t). In general, we shall say that f ∈ Un is
an oscillating polynomial if it has n distinct real zeros.

Applying Rolle’s Theorem to a polynomial f(x̄; t) ∈ Un we see that f ′(x̄; t)
has at least one zero in each of the intervals (xi, xi+1), i = 1, . . . , n − 1. We
shall suppose that Un has the following

Property (P): There exist numbers δ0 and δn in {0, 1} such that for every
oscillating polynomial f(x̄; t) ∈ Un with zeros x̄ = (x1, . . . , xn) ∈ X, f ′(x̄; t)
has exactly:

• δ0 zeros in (−∞, x1);
• one zero in each interval (xi, xi+1), i = 1, . . . , n − 1;
• δn zeros in (xn,∞).

Next we introduce an index set J(Un) ⊂ {0, . . . , n}, which corresponds to
the zeros of f ′(x̄; t). The definition of J(Un) is as follows: the set {1, . . . , n−1}
is contained in J(Un) and if δi = 1 for some i ∈ {0, n} then i ∈ J(Un).
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Our first result concerns general ET-systems with the property (P).

Theorem 1. Suppose that {u0, . . . , un} is an ET-system on the real line
and Un := span{u0, . . . , un} satisfies property (P). Let x̄ = (x1, . . . , xn) and
ȳ = (y1, . . . , yn) be two vectors from X, whose components interlace, that is,

x1 ≤ y1 ≤ x2 ≤ y2 ≤ · · · ≤ xn ≤ yn. (1)

Then the zeros {ti}i∈J(Un) of f ′(x̄; t) and the zeros {τi}i∈J(Un) of f ′(ȳ; t) interlace
in the same order:

tm ≤ τm ≤ tm+1 ≤ τm+1 ≤ · · · ≤ tM ≤ τM , (2)

where m := min{i : i ∈ J(Un)}, M := max{i : i ∈ J(Un)}. Moreover, if
x̄ 6= ȳ, then all the inequalities in (2) are strict.

Given real numbers ᾱ = (α0, α1, . . . , αn) with α0 < α1 < · · · < αn, we set

Vn(ᾱ) := span
{

eα0x, eα1x, . . . , eαnx
}

and

J(ᾱ) :=











{0, . . . , n − 1}, if α0 > 0,

{1, . . . , n}, if αn < 0,

{1, . . . , n − 1}, if α0 ≤ 0 ≤ αn.

It is well-known that the functions {eα0x, eα1x, . . . , eαnx} form an ET-system
on (−∞,∞). The zeros of the derivative of any oscillating polynomial from
Vn(ᾱ) can be indexed by the set J(ᾱ). In the following theorem we establish
Markov’s interlacing property for the ET-space Vn(ᾱ).

Theorem 2. Assume that the oscillating polynomials f and g from Vn(ᾱ)
have zeros x̄ ∈ X and ȳ ∈ X, respectively, which satisfy the inequalities (1).
Then the zeros {ti}i∈J(ᾱ) of f ′ and the zeros {τi}i∈J(ᾱ) of g′ interlace in the
same order:

ti ≤ τi ≤ ti+1 ≤ τi+1, for i, i + 1 ∈ J(ᾱ). (3)

Moreover, if x̄ 6= ȳ, then all the inequalities in (3) are strict.
In addition, if α0 < · · · < αn < 0, then for every natural k, the zeros

{t
(k)
i }n

i=1 of f (k) and the zeros {τ
(k)
i }n

i=1 of g(k) interlace too:

t
(k)
1 ≤ τ

(k)
1 ≤ t

(k)
2 ≤ τ

(k)
2 ≤ · · · ≤ t(k)

n ≤ τ (k)
n .

A similar statement holds true provided 0 < α0 < · · · < αn.

The next result concerns the space of Müntz polynomials:

Mn(γ̄) := span
{

xγ0 , . . . , xγn

}

,
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where γ̄ = (γ0, . . . , γn) with γ0 < γ1 < · · · < γn. As it is well-known,
{xγ0 , . . . , xγn} is an ET-system on (0,∞). Note that if f(x) ∈ Mn(γ̄) then a
change of the variable x = et produces a polynomial F (t) ∈ Vn(γ̄). Consequently,
if f has n distinct zeros in (0,∞), then F is an oscillating polynomial. The
above reasoning and the monotonicity of the exponential function show that
the zeros of the derivative of any oscillating Müntz polynomial can be indexed
by the set J(γ̄). For this system we prove the following

Theorem 3. Let f ∈ Mn(γ̄) has zeros x̄ ∈ X with x1 > 0 and g ∈ Mn(γ̄)
has zeros ȳ ∈ X with y1 > 0. Assume that x̄ and ȳ interlace as in (1). Then
the zeros {ti}i∈J(γ̄) of f ′ and the zeros {τi}i∈J(γ̄) of g′ interlace too:

ti ≤ τi ≤ ti+1 ≤ τi+1, for i, i + 1 ∈ J(γ̄).

Moreover, if x̄ 6= ȳ, then all the inequalities above are strict.
In addition, if γ0 < · · · < γn < 0, then for every k ∈ N, f (k) (resp., g(k))

has n simple zeros t
(k)
1 < · · · < t

(k)
n (τ

(k)
1 < · · · < τ

(k)
n ) in (0,∞) and

t
(k)
1 ≤ τ

(k)
1 ≤ · · · ≤ t(k)

n ≤ τ (k)
n .

It is known that the system of polynomials with Laguerre weight

Vn :=
{

e−xPn(x) : Pn ∈ πn

}

can be considered as a limit case of Vn(ᾱ), as α0, α1, . . . , αn tend to −1. Then,
it is quite natural to expect that the Markov interlacing property holds for Vn,
too. Note that if f ∈ Vn is an oscillating polynomial with zeros x1 < · · · < xn,
then f ′ ∈ Vn and it is also oscillating, with zeros ti ∈ (xi, xi+1), i = 1, . . . , n,
where xn+1 := ∞. For Vn we have

Theorem 4. Let f and g be two oscillating polynomials from Vn with zeros
x̄ and ȳ, respectively. Assume that x̄ and ȳ interlace as in (1). Then for

every natural number k, the zeros {t
(k)
i }n

i=1 and {τ
(k)
i }n

i=1 of f (k) and g(k),
respectively, interlace in the same order:

t
(k)
1 ≤ τ

(k)
1 ≤ · · · ≤ t(k)

n ≤ τ (k)
n .

Moreover, if x̄ 6= ȳ, then all the inequalities above are strict.

A linear change of the variable shows that Markov’s interlacing property
remains valid even for the space

{

eλxPn(x) : Pn ∈ πn

}

, λ 6= 0.

The next theorem extends the Markov interlacing property to a more general
than Vn(ᾱ) space of functions. Let µ ∈ C∞(R) be a positive function such that
the ratio µ′/µ is non-increasing on the real line. We introduce the set

Wn(ᾱ;µ) :=
{

µ(x)v(x) : v ∈ Vn(ᾱ)
}

.
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Clearly, {µ(x)eα0x, µ(x)eα1x, . . . , µ(x)eαnx} is an ET-system on R. Furthermore,
we define an index set J(ᾱ;µ) ⊂ {0, 1, . . . , n} as follows:

• {1, . . . , n − 1} ⊂ J(ᾱ;µ);
• 0 ∈ J(ᾱ;µ) if and only if α0 > −A, where A := lim

x→−∞

µ′(x)/µ(x);

• n ∈ J(ᾱ;µ) if and only if αn < −B, where B := lim
x→+∞

µ′(x)/µ(x).

We prove that Wn(ᾱ;µ) has property (P) and J(Wn(ᾱ;µ)) = J(ᾱ;µ). For
this space we have the following result.

Theorem 5. Let f and g be two oscillating polynomials from Wn(ᾱ;µ)
with zeros x̄ and ȳ, respectively. Assume that the interlacing condition (1)
holds true. Then the zeros {ti}i∈J(ᾱ;µ) of f ′ and the zeros {τi}i∈J(ᾱ;µ) of g′

satisfy the inequalities:

ti ≤ τi ≤ ti+1 ≤ τi+1, for i, i + 1 ∈ J(ᾱ;µ). (4)

Moreover, if x̄ 6= ȳ, then all the inequalities in (4) are strict.

The next corollary describes the interlacing properties of the zeros of linear
combinations of Gaussian kernels.

Corollary 1. Let f and g be two oscillating polynomials of the form
∑n

i=0 bie
−(x−βi)

2

(β0 < · · · < βn) which have zeros x̄ and ȳ, respectively.
Assume that x̄ and ȳ interlace in the order (1). Then the zeros {ti}

n
i=0 of

f ′ and the zeros {τi}
n
i=0 of g′ interlace in the same order. Moreover, if x̄ 6= ȳ,

then the interlacing is strict.

2. Examples

We give some examples, which show that the assumptions in the theorems
presented in Section 1, are essential.

Example 1. Let us consider the Tchebycheff system {µ(x), µ(x)x, µ(x)x2}
and the corresponding space

Q2 := {µ(x)p(x) : p ∈ π2} = span {µ(x), µ(x)x, µ(x)x2},

where

µ(x) := 2 +
sin x

cosh(x/2)
.

We take the following polynomials from Q2:

f(x) = µ(x)(x + 1)(x − 8),

g(x) = µ(x)(x + 0.5)(x − 9),

h(x) = µ(x)x(x − 10).
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Clearly, the zeros of every of these polynomials interlace with the zeros of the
others. We claim that:

• the only real zero of f ′ is t1 = 1.9262...;

• the zeros of g′ are τ1 = 2.2120..., τ2 = 4.2752..., and τ3 = 4.9786...;

• the zeros of h′ are θ1 = 2.6490..., θ2 = 3.5731..., and θ3 = 5.7762...

The above statements can be verified in the following way. One proves
analytically that each of f ′, g′ and h′ have no zeros outside the interval [−10, 10],
and then uses a computer to find numerically all their zeros in [−10, 10] (see
Figure 1).
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Figure 1. Graphs of f ′ (left), g′ (center) and h′ (right).

The space Q2 does not satisfy property (P), since g′ has three zeros in the
interval between the zeros of g.

The conclusions of Theorem 1 fail to hold because of two reasons. First, f ′

and g′ have different number of zeros, hence these zeros cannot interlace. On
the other hand, g′ and h′ have the same number of zeros, but they satisfy the
inequalities

τ1 < θ1 < θ2 < τ2 < τ3 < θ3.

Example 2. Let us consider the ET-space Vn(ᾱ) , where −1 = α0 < α1 <
· · · < αn = 1. Clearly, ᾱ does not satisfy the requirements of Theorem 2,
concerning higher order derivatives. We shall prove that for every oscillating
polynomial from Vn(ᾱ), its k-th derivative is different from zero for every x ∈ R,
provided k is sufficiently large and has the same parity as n. This shows that
in the general case Theorem 2 is not true for k-th derivative.

Let f(x) :=
∑n

i=0 aie
αix be an oscillating polynomial from Vn(ᾱ). This

implies ai 6= 0 for every i = 0, . . . , n. In addition, sign a0 = (−1)n sign an,
which follows from the asymptotic behavior of f for x → ±∞. Since α0 = −1
and αn = 1, we have

f (k)(x) = a0(−1)ke−x +

n−1
∑

i=1

aiα
k
i eαix + anex.

Furthermore, we shall suppose that k ≡ n (mod 2). This implies

sign an = (−1)k sign a0. (5)
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Case 1. x ≥ 0. We represent the k-th derivative of f in the form

f (k)(x) = ex[Ak(x) + Bk(x)],

where

Ak(x) := an + a0(−1)ke−2x, Bk(x) :=
n−1
∑

i=1

aiα
k
i e(αi−1)x.

Since αi < 1 for i = 1, . . . , n − 1, we obtain the estimate

|Bk(x)| ≤

n−1
∑

i=1

|ai| |αi|
ke(αi−1)x ≤

n−1
∑

i=1

|ai| |αi|
k

for every x ≥ 0. Consequently, Bk(x) tends to zero uniformly on [0,∞). It
follows from (5) that |Ak(x)| ≥ |an| for every x ≥ 0. Therefore sign f (k)(x) =
sign Ak(x) = sign an for every x ≥ 0, provided k is sufficiently large.

Case 2. x ≤ 0. Now we have

f (k)(x) = e−x[Ak(x) + Bk(x)],

where

Ak(x) := a0(−1)k + ane2x, Bk(x) :=

n−1
∑

i=1

aiα
k
i e(αi+1)x.

It can be proved, as in Case 1, that Bk(x) tends to zero uniformly on (−∞, 0]
and |Ak(x)| ≥ |a0| for every x ≤ 0. This implies sign f (k)(x) = (−1)k sign a0 =
sign an for every x ≤ 0, provided k is sufficiently large.

The conclusion is that if k is a sufficiently large natural number satisfying
k ≡ n (mod 2), then f (k)(x) 6= 0 for every x ∈ R.

Example 3. The claim of Theorem 3 concerning higher order derivatives is
not true if we replace the assumption γ0 < · · · < γn < 0 by 0 < γ0 < · · · < γn.
(Compare with Vn(ᾱ).) Indeed, take f(x) := x1/2 − x3/2 ∈ M1(

1
2 , 3

2 ), then

f ′′(x) = − 1
4 x−3/2(1 + 3x) 6= 0 for every positive x. Consequently, f ′′ can be

different from zero for every x ∈ (0,∞), and Theorem 3 cannot be extended to
the second derivative.

Example 4. Here we show that the assumptions for the weight function µ
from the definition of Wn(ᾱ;µ) are essential for the conclusion of Theorem 5.

Let us consider µ(x) = ex2

. It is easy to check that µ′(x)/µ(x) increases
on R. We set ᾱ = (1, 2, 3), and claim that the space W2(ᾱ;µ) does not satisfy
property (P). To prove this, we take the polynomial f ∈ V2(ᾱ) which has zeros
x1 = 1, x2 = 3, and let F (x) := µ(x)f(x) ∈ W2(ᾱ;µ). The zeros of F ′ are
t1 = −0.2910..., t2 = 0.6148..., and t3 = 2.8814... . The interval (−∞, x1)
contains two zeros of F ′, which proves the claim.
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Moreover, the interlacing property for the derivatives does not hold true for
W2(ᾱ;µ). Indeed, let g ∈ V2(ᾱ) has zeros y1 = 2, y2 = 4. If G(x) := µ(x)g(x),
then the zeros of F and G interlace. The zeros of G′ are τ1 = −0.4466...,
τ2 = 1.7981..., τ3 = 3.9045.... Clearly τ1 < t1 < t2 < τ2 < t3 < τ3, so the
interlacing property is not fulfilled.
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