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Given ᾱ = (α0, . . . , αn) with 0 < α0 < · · · < αn, let Vn(ᾱ) be the
set of all exponential polynomials of the form v(x) =

Pn

i=0 bie
−αix. We

denote by Vn(ᾱ) the subset of Vn(ᾱ) consisting of the polynomials v(x)
which have n simple zeros in (0,∞). Let hj(v), j = 0, . . . , n, be the
absolute values of the local extrema of a polynomial v ∈ Vn(ᾱ). We prove
that for every v ∈ Vn(ᾱ), k ∈ N and every convex and strictly increas-
ing on [0,∞) function ψ such that ψ(0) = 0, the quantities hj(v

(k)),
j = 0, . . . , n, and the integral

R
∞

0
ψ(|v(k)(x)|) dx are increasing functions

of h0(v), . . . , hn(v). As a corollary we obtain the following exact Markov-
type inequality for polynomials from Vn(ᾱ):

‖v(k)‖Lp[0,∞) ≤ ‖v(k)
n,∗‖Lp[0,∞) ‖v‖C[0,∞), 1 ≤ p <∞, k ∈ N,

where vn,∗ is the Chebyshev polynomial from Vn(ᾱ).

Keywords and Phrases: Markov inequality, exponential polynomials.

1. Introduction

Let us denote by πn the set of all real algebraic polynomials of degree at
most n. We shall say that a polynomial f ∈ πn is oscillating in the interval
(a, b) if f has n simple zeros in (a, b). Let Pn be the subset of πn, which consists
of the oscillating polynomials in (−1, 1).

Denote by Φ the class of all functions ϕ ∈ C1[0,∞) ∩ C2(0,∞), which are
strictly increasing and convex on [0,∞).

In [4] Bojanov proved the following remarkable result.

∗Research was supported by the Sofia University Science Foundation under Contract
196/2010.
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Theorem A. Let ϕ ∈ Φ and M > 0. Then for every f ∈ πn such that

‖f‖C[−1,1] ≤M , we have

∫ 1

−1

ϕ(|f ′(x)|) dx ≤
∫ 1

−1

ϕ(M |T ′

n(x)|) dx, (1)

where Tn(x) = cos(n arccosx), x ∈ [−1, 1], is the n-th Chebyshev polynomial of

the first kind. Moreover, the equality is attained if and only if f = ±M Tn.

The above theorem generalizes two other famous Bojanov’s results.
The particular case ϕ(x) =

√
1 + x2 was studied in [2], where Bojanov

gave a proof of a longstanding conjecture of Erdős [12] about the “longest”
polynomial.

Another important case is ϕ(x) = xp, 1 ≤ p < ∞, which leads to the
following generalization of the inequality of A. Markov:

‖f ′‖Lp[−1,1] ≤ ‖T ′

n‖Lp[−1,1] ‖f‖C[−1,1], for all f ∈ πn. (2)

The equality in (2) is attained only for polynomials of the form f = c Tn, where
c is a nonzero constant. This was proved directly in [3].

A problem, which was of special interest to Professor Bojanov, is to extend
Theorem A to higher order derivatives. In its full generality the above problem
is still open. An elegant solution for the class Pn was obtained by Bojanov and
Rahman [10] as a consequence from the following monotonicity results.

Let us denote by hj(f), j = 0, . . . , n, the absolute values of the local extrema
of a polynomial f ∈ Pn, including these at the end points of the interval [−1, 1].
According to a result of Davis [11] (see also [22], [13], [1] and [7]) the values
{hj(f)}nj=0 determine uniquely (up to multiplication by −1) the oscillating
polynomial f . The following theorems were proved in a more general setting
in [10] (see also [5] and [7]).

Theorem B. If f and g are polynomials from Pn such that

hj(f) ≤ hj(g), j = 0, . . . , n

then for every k = 1, . . . , n

hj(f
(k)) ≤ hj(g

(k)), j = 0, . . . , n− k. (3)

Moreover, all the inequalities (3) are strict, unless f = ±g.
Theorem C. Let ϕ ∈ Φ. Then for every f ∈ Pn and k = 1, . . . , n the

integral

I(f) =

∫ 1

−1

ϕ(|f (k)(x)|) dx

is a strictly increasing function of h0(f), . . . , hn(f).

The ideas and methods related to the proofs of Theorems A, B and C were
applied and developed to solve various extremal problems for polynomials and
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other spaces of functions. For example, in [5] Bojanov obtained generalizations
of the inequalities of I. Schur and P. Turán for algebraic polynomials. The
paper [6] contains the trigonometric variants of Theorems B and C. Markov-
type inequalities for weighted polynomials on infinite intervals were proved in
[14, 16, 17, 18, 19]. The corresponding algorithmic aspects were studied in [15].
The paper [8] provides Markov-type inequalities for oscillating perfect splines
and oscillating splines with fixed knots. Additional properties of oscillating
polynomials were revealed in [23, 20, 9].

2. Statement of the Results

The aim of this paper is to establish results of the type of Theorems B
and C for exponential polynomials. We begin with some definitions.

Given ᾱ = (α0, . . . , αn) ∈ R
n+1 such that 0 < α0 < · · · < αn, we set

Vn(ᾱ) :=
{

v(x) =
n

∑

i=0

bie
−αix : (b0, . . . , bn) ∈ R

n+1
}

and
Vn(ᾱ) := {v ∈ Vn(ᾱ) : v has n simple zeros in (0,∞)}.

Furthermore, let

H := {h = (h0, . . . , hn) : h0 > 0, . . . , hn > 0}.

Given a vector h ∈ H, there exists a unique v = v(h; · ) ∈ Vn(ᾱ) and a
unique set of points 0 =: t0(h) < t1(h) < · · · < tn(h), such that

v(h; tk(h)) = (−1)n−k hk, k = 0, . . . , n,

v′(h; tk(h)) = 0, k = 1, . . . , n.
(4)

This can be proved by using the method of Fitzgerald and Schumaker [13].
We shall denote by hi(v), i = 0, . . . , n, the absolute values of the local extrema
of a v ∈ Vn(ᾱ) on [0,∞). Note that if v ∈ Vn(ᾱ) then v(k) ∈ Vn(ᾱ) for all
k ∈ N.

Theorem 1. If v1, v2 ∈ Vn(ᾱ) and hj(v1) ≤ hj(v2), j = 0, . . . , n, then for

every natural number k,

hi(v
(k)
1 ) ≤ hi(v

(k)
2 ), i = 0, . . . , n. (5)

Moreover, if at least one of the inequalities hj(v1) ≤ hj(v2), j = 1, . . . , n is

strict, then inequalities (5) are strict for every k ∈ N. If h0(v1) < h0(v2) then

h0(v
(k)
1 ) < h0(v

(k)
2 ), k ∈ N.
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Let vn,∗ := v((1, 1, . . . , 1); · ) be the Chebyshev polynomial from Vn(ᾱ). As
an immediate consequence of Theorem 1, we obtain the following analog of
V. Markov’s inequality for Vn(ᾱ).

Corollary 1. For every v ∈ Vn(ᾱ) and k ∈ N, the inequality

‖v(k)‖C[0,∞) ≤ ‖v(k)
n,∗‖C[0,∞) ‖v‖C[0,∞) (6)

holds true. The equality in (6) is attained if and only if v = c vn,∗, where c is

a nonzero constant.

We denote by Ψ the class of all functions ψ ∈ C1[0,∞) ∩ C2(0,∞), which
are strictly increasing and convex on [0,∞) and satisfy ψ(0) = 0.

Theorem 2. Let 0 < α0 < · · · < αn and ψ ∈ Ψ. Then for every h ∈ H
and every natural number k, the integral

Ik(h) =

∫

∞

0

ψ(|v(k)(h;x)|) dx

is a strictly increasing function of h0, . . . , hn.

Setting ψ(t) = tp (1 ≤ p <∞) in Theorem 2, we obtain the following exact
Markov-type inequality for polynomials from Vn(ᾱ).

Corollary 2. For every v ∈ Vn(ᾱ), k ∈ N and p ∈ [1,∞), the inequality

‖v(k)‖Lp[0,∞) ≤ ‖v(k)
n,∗‖Lp[0,∞) ‖v‖C[0,∞) (7)

holds true. The equality in (7) is attained if and only if v = c vn,∗, where c is

a nonzero constant.

3. Proofs of Theorems 1 and 2

We proved recently in [21] that Markov’s interlacing property holds true
for various spases of exponential polynomials. The next result, which is a
particular case of [21, Theorem 2], is crucial for the proof of Theorem 1.

Lemma 1. Assume that the oscillating polynomials u and v from Vn(ᾱ)
have zeros x1 < · · · < xn and y1 < · · · < yn, respectively, which interlace:

x1 ≤ y1 ≤ x2 ≤ y2 ≤ · · · ≤ xn ≤ yn. (8)

Then, the zeros t1 < · · · < tn of u′ and the zeros τ1 < · · · < τn of v′ interlace

too:

t1 ≤ τ1 ≤ t2 ≤ τ2 ≤ · · · ≤ tn ≤ τn. (9)

Moreover, if at least one inequality in (8) is strict, then all the inequalities in

(9) are strict.
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The following lemma provides a useful formula for the derivative of v′(h;x)
with respect to hj , j = 0, . . . , n. Recall that (see (4)) the zeros of v′(h;x) are
denoted by t1(h) < · · · < tn(h).

Lemma 2. We have

∂

∂hj
v′(h;x) = (−1)n−j g′j(x), j = 0, . . . , n, (10)

where gj(x) = gj(h;x) is the unique polynomial from Vn(ᾱ), which satisfies the

conditions gj(ti(h)) = δij for i = 0, . . . , n.

Proof. We set Gj(x) := ∂
∂hj

v(h;x). Since v(h;x) =
∑n
k=0 bk(h)e−αkx, we

have Gj ∈ Vn(ᾱ). Differentiating with respect to hj the equality v(h; ti(h)) =
(−1)n−i hi, we get

∂

∂hj
v(h; t)

∣

∣

∣

t=ti(h)
+ v′(ti(h))

∂ti(h)

∂hj
= (−1)n−i δij .

Note that if i ≥ 1, then v′(ti(h)) = 0, while ∂t0(h)
∂hj

= 0. This implies

Gj(ti(h)) = (−1)n−i δij , i = 0, . . . , n. Comparing with the definition of gj ,
we conclude that Gj(x) = (−1)n−j gj(x). In order to finish the proof, we
differentiate the last equality with respect to x interchanging the operators ∂

∂x

and ∂
∂hj

. �

Proof of Theorem 1. Suppose first that k = 1. Let ξ(h) be an extremal point
of v′(h;x), i.e. ξ(h) = 0 or v′′(h; ξ(h)) = 0. We shall show that |v′(h; ξ(h))| is
a strictly increasing function of hj , j = 1, . . . , n in the domain H. To this end,
we shall prove that

sign
∂

∂hj
v′(h; ξ(h)) = sign v′(h; ξ(h)), j = 1, . . . , n. (11)

There are two cases to be considered.

Case 1. ξ(h) > 0, i.e. v′′(ξ(h)) = 0. Then we have

∂

∂hj
v′(h; ξ(h)) =

∂

∂hj
v′(h;x)

∣

∣

∣

x=ξ(h)
+ v′′(ξ(h))

∂ξ(h)

∂hj

= (−1)n−j g′j(ξ(h)).

(12)

(We have used (10) for the last equality.)
It is seen that the zeros of gj and v′ interlace, hence by Lemma 1, the zeros

η1 < · · · < ηn of g′j and the zeros ξ1(h) < · · · < ξn(h) of v′′ interlace strictly,
namely

η1 < ξ1(h) < · · · < ηn < ξn(h).

We set for brevity ti := ti(h) and ξi := ξi(h) for all admissible values
of i. Let us suppose that ξ = ξi for some i ∈ {1, . . . , n}. Since ξi ∈ (ti, ti+1)
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and v′(x) < 0 for x > tn, we have sign v′(ξ) = (−1)n−i+1. On the other
hand, sign {g′j(x) : x ∈ (ηn,∞)} = (−1)n−j+1 and ξi ∈ (ηi, ηi+1), which

implies sign g′j(ξ) = (−1)i+j+1. Consequently, making use of (12) we obtain

sign ∂
∂hj

v′(ξ) = (−1)n−j (−1)i+j+1 = sign v′(ξ), which completes the proof of

(11) in Case 1.

Case 2. ξ(h) = 0. Similarly to (12), we get

∂

∂hj
v′(h; 0) = (−1)n−j g′j(0).

Now we have sign g′j(0) = (−1)j−1, hence sign ∂
∂hj

v′(h; 0) = (−1)n−1. Since

v′ changes its sign at the points t1, . . . , tn and v′(x) < 0 for x > tn, we have
sign v′(0) = (−1)n+1 and (11) is proved.

Next we shall investigate the dependence of |v′(h; ξ(h))| on the parameter
h0, i.e. we shall determine the sign of ∂

∂h0
|v′(h; ξ(h))|. Suppose first that ξ = ξi

for some i ∈ {1, . . . , n}. As in (12)

∂

∂h0
|v′(h; ξi)| = sign (v′(h; ξi)) · (−1)n g′0(ξi).

Furthermore, the zeros of g0 and v′ coincide, hence g0(x) = cv′(x) and g′0(ξi) =
cv′′(ξi) = 0, i.e. sign ∂

∂h0
|v′(h; ξi)| = 0. It remains to consider the case ξ(h) = 0.

In this case we have

∂

∂h0
|v′(h; 0)| = sign (v′(h; 0)) · (−1)n g′0(0).

Using the fact that g0(0) = 1, we get

sign
∂

∂h0
|v′(h; 0)| = (−1)n+1 (−1)n (−1) = 1. (13)

The conclusion is that |v′(h; ξ(h))| is a nondecreasing function of h0. This
finishes the proof of (5) for the first derivative.

The validity of (5) for k ≥ 2 follows by induction.
Finally, let us suppose that hj(v1) < hj(v2) for some j ∈ {1, . . . , n}.

It follows from (11) that all the quantities hi(v
′), i = 0, . . . , n, are strictly

increasing functions of hj , which implies hi(v
′

1) < hi(v
′

2) for every i = 0, . . . , n.
By induction, we conclude that (5) are strict for every natural number k.

Similarly, if h0(v1) < h0(v2), then using (13) we obtain h0(v
(k)
1 ) < h0(v

(k)
2 )

for every k ∈ N. The theorem is proved. �

Lemma 3. Let f and g be polynomials from Vn(ᾱ) with zeros x1 < · · · < xn
and y1 < · · · < yn, respectively. Suppose that

x1 ≤ y1 ≤ · · · ≤ xn ≤ yn. (14)

Then R(x) := f ′(x)g(x) − f(x)g′(x) does not change its sign on R.
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Proof. Step 1. Let us suppose first that {xi}ni=1 and {yi}ni=1 interlace
strictly, i.e.

x1 < y1 < · · · < xn < yn. (15)

We shall prove that R(x) 6= 0 for every x ∈ R. Let us fix a point η ∈ R.
We consider v(x) := f(x)g(η) − f(η)g(x) ∈ Vn(ᾱ). Clearly v(η) = 0. Since
v′(η) = R(η), it is sufficient to prove that v′(η) 6= 0.

Case 1. η = xk for some k ∈ {1, . . . , n}. Then v(x) = f(x)g(η) and it has
only simple zeros x1, . . . , xn, hence v′(η) = v′(xk) 6= 0.

Case 2. η = yk for some k ∈ {1, . . . , n}. This case is completely analogous
to Case 1.

Case 3. η 6= {x1, . . . , xn}∪{y1, . . . , yn}. Note first that v(x) 6≡ 0. Otherwise,
f(x) = (f(η)/g(η))g(x) which contradicts (15). Let us assume the contrary,
i.e. v′(η) = 0. Thus η is at least double zero of v. We shall show that v has
n+1 zeros, counting the multiplicities. Since Vn(ᾱ) is a Chebyshev space, this
will imply v ≡ 0, a contradiction.

We have v(xk) = −f(η)g(xk). By (15), the numbers {v(xk)}nk=1 have
alternating signs, hence there exist at least n − 1 points z1 < · · · < zn−1 in
(x1, xn), where v changes its sign. If η 6∈ {z1, . . . , zn−1} then v has n+ 1 zeros,
as desired. Suppose now that η = zl. Since zl has to be at least triple zero of
v, we conclude again that v has n+ 1 zeros.

Step 2. Now we shall consider the general case, where there can be equalities
in (14). We introduce the points

tk(ǫ) =











yk, if xk < yk < xk+1,

yk + ǫ, if xk = yk,

yk − ǫ, if yk = xk+1.

We have x1 < t1(ǫ) < · · · < xn < tn(ǫ), provided ǫ > 0 is sufficiently small. Let
gǫ ∈ Vn(ᾱ) be the unique polynomial from Vn(ᾱ) which satisfies the conditions:

gǫ(tk(ǫ)) = 0, k = 1, . . . , n,

gǫ(t
∗) = g(t∗),

where t∗ is an arbitrary point, different from {yk}nk=1. Applying Step 1 to f
and gǫ, we conclude that

Rǫ(x) := f ′(x)gǫ(x) − f(x)g′ǫ(x)

does not vanish on R. In order to determine the sign of Rǫ(x), we consider
Rǫ(xn). It is not difficult to see that sign f ′(xn) = σ and sign gǫ(xn) = −δ,
where σ := sign {f(x) : x → ∞} and δ := sign {g(x) : x → ∞}. Hence
signRǫ(x) = −σδ for every sufficiently small ǫ.

It follows from the definition of gǫ that gǫ(x) → g(x) and g′ǫ(x) → g′(x) as
ǫ → 0, for every x ∈ R. Therefore Rǫ(x) → R(x) as ǫ → 0, which implies that
signR(x) is equal to −σδ or 0. Lemma 3 is proved. �
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Lemma 4. Let ψ ∈ C1[0,∞) ∩ C2(0,∞) be a convex and increasing on

[0,∞) function, such that ψ(0) = ψ′(0) = 0. Then the integral

I(h) :=

∫

∞

0

ψ(|v′(h;x)|) dx

is an increasing function of every argument hj, j = 0, . . . , n, in the domain H.

Moreover, if ψ is strictly increasing, then I(h) is strictly increasing, too.

Proof. We fix an index j ∈ {0, . . . , n}. Differentiating I with respect to hj
we get

∂I

∂hj
=

∫

∞

0

ψ′(|v′(h;x)|) sign v′(h;x)
∂

∂hj
v′(h;x) dx. (16)

According to Lemma 2,

∂

∂hj
v′(h;x) = (−1)n−j g′j(x), (17)

where gj(x) = gj(h;x) is the unique polynomial from Vn(ᾱ), which satisfies
the conditions gj(ti) = δij for i = 0, . . . , n.

Substituting (17) in (16), we obtain

∂I

∂hj
=

∫

∞

0

χj(x) dx, (18)

where
χj(x) := (−1)n−j ψ′(|v′(h;x)|) sign v′(h;x) g′j(x).

The condition ψ′(0) = 0 implies that χj is a continuous function. Next we
introduce the set Ej(δ) := R

+ \ (tj − δ, tj + δ). If Ij(δ) :=
∫

Ej(δ)
χj(x) dx then

by the continuity of χj

lim
δ→0

Ij(δ) =

∫

∞

0

χj(x) dx. (19)

We transform Ij(δ) as follows:

Ij(δ) =

∫

Ej(δ)

(−1)n−j ψ′(|v′(x)|) sign v′(x)
{

v′(x)
gj(x)

v′(x)

}

′

dx

=

∫

Ej(δ)

(−1)n−j ψ′(|v′(x)|) sign v′(x)
{

v′′(x)
gj(x)

v′(x)
+ v′(x)

(gj(x)

v′(x)

)

′
}

dx

=

∫

Ej(δ)

(−1)n−j
gj(x)

v′(x)
dψ(|v′(x)|)

+

∫

Ej(δ)

(−1)n−j ψ′(|v′(x)|) |v′(x)|
(gj(x)

v′(x)

)

′

dx

=: Aj(δ) +Bj(δ).
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Let us suppose that j ≥ 1. We integrate by parts Aj(δ) and obtain

Aj(δ) = Cj(δ) −
∫

Ej(δ)

(−1)n−j ψ(|v′(x)|)
(gj(x)

v′(x)

)

′

dx, (20)

where

Cj(δ) := (−1)n−j
[gj(x)

v′(x)
ψ(|v′(x)|)

∣

∣

∣

tj−δ

0
+
gj(x)

v′(x)
ψ(|v′(x)|)

∣

∣

∣

∞

tj+δ

]

.

Bringing together Bj(δ) and the integral in (20), we get

Ij(δ) = Cj(δ)

+

∫

Ej(δ)

(−1)n−j
[

ψ′(|v′(x)|)|v′(x)| − ψ(|v′(x)|)
]

(gj(x)

v′(x)

)

′

dx.
(21)

From convexity of ψ and conditions ψ(0) = ψ′(0) = 0 we infer that the
term in the square brackets in the last integral is nonnegative for every x. We
set

H(x) := (−1)n−j
(gj(x)

v′(x)

)

′

= (−1)n−j
h(x)

(v′(x))2
,

where h(x) := g′j(x)v
′(x)−gj(x)v′′(x). We shall show that H(x) is nonnegative

for every x ∈ Ej(δ). It is seen that the zeros of gj(x) and v′(x) interlace.
According to Lemma 3, h(x) does not change its sign on R. But sign v′′(tj) =
(−1)n−j+1, hence sign h(tj) = (−1)n−j . This implies H(x) ≥ 0 for x ∈ Ej(δ).

Note that gj(0) = 0 and limt→0
ψ(t)
t

= ψ′(0) = 0. We also have v′(tj) = 0
and limx→∞ v′(x) = 0. Therefore limδ→0 Cj(δ) = 0. Letting δ → 0 in (21), by
using (18) and (19), we obtain

∂I

∂hj
=

∫

∞

0

[

ψ′(|v′(x)|)|v′(x)| − ψ(|v′(x)|)
]

H(x) dx ≥ 0. (22)

It remains to prove that if ψ(t) is strictly increasing, then (22) holds true
as a strict inequality. Since v(x) 6≡ 0 and H(x) 6≡ 0, it is sufficient to show
that f(t) := ψ′(t)t − ψ(t) > 0 for every t > 0. Indeed, f(0) = 0 and f ′(t) ≥ 0
for every t ≥ 0, hence f(t) ≥ 0 for t > 0. Suppose that there exists a point
t0 > 0 such that f(t0) = 0. Then f(t) ≡ 0 on (0, t0), which implies ψ′′(t) = 0
for every t ∈ (0, t0). But ψ(0) = ψ′(0) = 0, hence ψ(t) ≡ 0 on (0, t0), which
contradicts the strict monotonicity of ψ. This completes the case j ≥ 1.

Suppose now that j = 0. It follows from (16) and (17) that

∂I

∂h0
=

∫

∞

0

ψ′(|v′(x)|) sign v′(x) · (−1)n g′0(x) dx.
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On the other hand, the zeros of g0 and v′ coincide, hence g0(x) = cv′(x). The
condition g0(0) = 1 gives c = 1/v′(0) = (−1)n+1/|v′(0)|. Therefore

∂I

∂h0
= − 1

|v′(0)|

∫

∞

0

ψ′(|v′(x)|) sign v′(x) · v′′(x) dx

= − 1

|v′(0)| ψ(|v′(x)|)
∣

∣

∣

∞

0
=
ψ(|v′(0)|)
|v′(0)| ≥ 0.

Note that v′(0) 6= 0 since v is an oscillating polynomial. Consequently, ∂I
∂h0

> 0
provided ψ(t) is a strictly increasing function. �

Lemma 5. If ψ ∈ Ψ, then the integral I(h) is a strictly increasing function

of every argument hj, j = 0, . . . , n, in the domain H.

Proof. Let us suppose first that ψ(t) = t. Recall that 0 =: t0 < t1 < · · · < tn
are the extremal points of v(h;x). Let us set tn+1 := ∞. In this case I(h) can
be computed in explicit form as follows:

I =

∫

∞

0

|v′(h;x)| dx =

n
∑

k=0

∫ tk+1

tk

|v′(h;x)| dx = h0 + 2

n
∑

k=1

hk.

Clearly, this is a strictly increasing function of h0, . . . , hn.
Next we consider the general case, i.e. ψ is an arbitrary function from Ψ.

Since ψ(0) = 0, ψ(t) can be represented as

ψ(t) = ψ′(0)t+ ψ̃(t),

where ψ̃(t) := ψ(t) − ψ′(0)t is an increasing and convex function, such that
ψ̃(0) = ψ̃′(0) = 0. Consequently,

∫

∞

0

ψ(|v′(h;x)|) dx = ψ′(0)

∫

∞

0

|v′(h;x)| dx+

∫

∞

0

ψ̃(|v′(h;x)|) dx

= ψ′(0)
(

h0 + 2
n

∑

k=1

hk

)

+

∫

∞

0

ψ̃(|v′(h;x)|) dx.

If ψ′(0) = 0, then ψ̃(t) = ψ(t) is strictly increasing and the statement
follows from Lemma 4. Otherwise, the first summand is strictly increasing,
while according to Lemma 4, the second summand is increasing. Therefore
I(h) is strictly increasing. Lemma 5 is proved. �

Proof of Theorem 2. For a fixed j ∈ {0, . . . , n}, let h(1) = (h
(1)
0 , . . . , h

(1)
n )

and h(2) = (h
(2)
0 , . . . , h

(2)
n ) be two vectors from H, whose components satisfy

the conditions: h
(1)
j < h

(2)
j and h

(1)
i = h

(2)
i for all i 6= j. For k ≥ 2 Theorem 1

gives
hi(v

(k−1)(h(1); · )) ≤ hi(v
(k−1)(h(2); · )), i = 0, . . . , n. (23)
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Moreover, at least the inequality (23) for i = j is strict. Note that the same is
true for k = 1 according to the assumptions for h(1) and h(2).

Applying Lemma 5 for v(k−1)(h(1); · ) and v(k−1)(h(2); · ), we conclude that
Ik(h

(1)) < Ik(h
(2)). Theorem 2 is proved. �
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