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Explicit Weighted Min-Max Polynomials

on the Disc

Ionela Moale∗

We consider the problem of finding a best weighted uniform approxima-
tion on the unit disc to the bivariate monomials x

n

y
m, n, m ∈ N, by

polynomials in two variables of lower degree with real coefficients. We
give explicit solutions to this problem for two types of weight functions,
continuous and positive on the unit disc.

1. Introduction

Let D := {(x, y) ∈ R
2 : x2 + y2 ≤ 1} denote the unit disc and let Π2

N ,
N ∈ N, denote the set of polynomials in two variables with real coefficients of
total degree at most N , i.e.,

Π2
N := {P : P (x, y) =

∑

0≤k+l≤N

ak,lx
kyl, ak,l ∈ R}.

Let w be a continuous function on D such that w(x, y) > 0 for all (x, y) ∈ D. As
usual, we define the weighted uniform norm on the set of continuous functions
on D by ‖f‖w := max(x,y)∈D |f(x, y)w(x, y)|. For the bivariate monomial
xnym, n,m ∈ N0, n + m ≥ 1, we look for a polynomial p∗ ∈ Π2

n+m−1 such
that xnym − p∗(x, y) has the least weighted uniform norm on D, that is,

‖xnym − p∗‖w := inf
p∈Π2

n+m−1

‖xnym − p‖w. (1)

We call xnym − p∗(x, y) a min-max polynomial on D with respect to the

weight function w (or simply a min-max polynomial on D if w(x, y) = 1 for all
(x, y) ∈ D), and minimum deviation the value

En+m−1(x
nym;w) := ‖xnym − p∗‖w.
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Concerning the existence, uniqueness and characterization of min-max polyno-
mials, see [6, 11, 12], where a more general setting than the one of this problem
is considered. In what follows we will use the characterization of min-max
polynomials in terms of extremal signatures, see e.g. [11, Theorem 2], and also
[5, 12] for some examples of extremal signatures in several dimensions.

In the non-weighted case, i.e., w(x, y) = 1 for all (x, y) ∈ D, the first solution
to this problem was given by Gearhart in [4]. He has shown that

Gn,m(x, y) :=
1

2n+m

(

Un(x)Um(y) + Un−2(x)Um−2(y)
)

= xnym+ e(x, y), (2)

where e(x, y) ∈ Π2
n+m−1, is a min-max polynomial on the disc and the minimum

deviation is

En+m−1(x
nym) =

1

2n+m−1
. (3)

As usual, Un denotes the Chebyshev polynomial of the second kind defined by

Un(x) :=
sin((n + 1) arccos x)

sin(arccos x)
, n ∈ N0, x ∈ [−1, 1],

and U−1(x) = 0, U−2(x) = −1. A second family of min-max polynomials was
introduced by Reimer by means of a generating function, see [10, Theorem 2].
Other min-max polynomials for special degrees of monomials were given by
Bojanov, Haußmann and Nikolov [2], Braß [3], Newman and Xu [9], where a
connection between approximation problems on the disc and on the triangle
∆ := {(x, y) ∈ R

2 : 0 ≤ x, y ≤ 1, x+y ≤ 1} is used, see [2, Proposition 2].
Another class of min-max polynomials was considered recently in [7], see also
Remark 1 below. The extremal signature corresponding to the min-max poly-
nomials to the bivariate monomial is given by 2(n + m) points (cos ϕi, sin ϕi)
on the boundary of the disc with alternating sign. More precisely, the ϕi’s are
the zeros of sin(n + m)ϕ if m is even, respectively of cos(n + m)ϕ if m is odd,
see [4].

In this paper we give explicitly min-max polynomials for the problem (1)
for two types of weight functions:

1) w(x, y) = 1/(ρk(x)ρl(y)), where ρk(x) and ρl(y) are monic polynomials
in one variable with real coefficients, positive on the interval [−1, 1];

2) w(x, y) = 1/
√

∏k
i=1 (−2aix − 2biy + a2

i + b2
i + 1), k = 1, 2, 3, where the

parameters ai, bi, i = 1, 2, 3, satisfy some conditions, see Section 2 below.

Finally, we mention the paper [8] which deals with a complex analogue of
the non-weighted problem (1). As a consequence of some results there, see
Proposition 6 and the proof of Theorems 1 and 3, and the above mentioned
connection between approximation on the unit disc and on the triangle, min-
max polynomials on D for the monomials with respect to the weight function
xkyl, k, l ≥ 0, are obtained.
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2. Main Results

In order to state our main result in the case of the first type of weight
functions, let k ∈ N0 and ρk(x) =

∏k
j=1(x − aj) = xk + · · · be a polynomial

of degree k with real coefficients, positive on [−1, 1]. We denote

ck =
k

∏

j=1

|2zj |, zj = aj −
√

a2
j − 1, j = 1, . . . , k, (4)

where it is chosen the branch of the square root with |zj | < 1, j = 1, . . . , k.
Furthermore, let Un(x; 1/ρk) = (2n/ck)xn + · · · , n ≥ k, denote the weighted
Chebyshev polynomial of the second kind, defined by

Un(cos ϕ; 1/ρk)

ρk(cos ϕ)
=

sin((n + 1 − k)ϕ + φ1(ϕ))

sin ϕ
, ϕ ∈ [0, π], (5)

where φ1(ϕ) is such that

eiφ1(ϕ) =

k
∏

j=1

eiϕ − zj

1 − eiϕz̄j
, (6)

see e.g. [1, p. 249–254]. In a completely similar manner we introduce the
polynomials ρl(y), l ∈ N0, and the corresponding weighted Chebyshev polyno-
mials of the second kind Um(y; 1/ρl), m ≥ l.

Theorem 1. Let n,m ∈ N, n ≥ k + 2, m ≥ l + 2 and

w(x, y) =
1

ρk(x)ρl(y)
.

Then the polynomial

Pn,m(x, y;w) =
ckcl

2n+m

[

Un(x; 1/ρk)Um(y; 1/ρl) + Un−2(x; 1/ρk)Um−2(y; 1/ρl)
]

= xnym + e(x, y),

where e(x, y) ∈ Π2
n+m−1, is a min-max polynomial on D with respect to the

weight function w. The minimum deviation is ckcl/2n+m−1.

In the following we state the results regarding the second class of weights.

Theorem 2. Let n,m ∈ N, n,m ≥ 3, ai, bi ∈ R, i = 1, 2, 3, be such that

a2
1 + b2

1 < 3 − 2
√

2, a2
2 + b2

2 < 3 − 2
√

2, a2
3 + b2

3 < 1 and

w3(x, y) =
1

√

∏3
i=1(−2aix − 2biy + a2

i + b2
i + 1)

.
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Then the polynomial

Pn,m(x, y;w3) =
1

8
(x − a1)(x − a2)(x − a3)Gn−3,m(x, y)

+
1

8

[

(x − a1)(x − a2)(y − b3) + (x − a1)(y − b2)(x − a3)

+ (y − b1)(x − a2)(x − a3)
]

Gn−2,m−1(x, y)

+
1

8

[

(x − a1)(y − b2)(y − b3) + (y − b1)(x − a2)(y − b3)

+ (y − b1)(y − b2)(x − a3)
]

Gn−1,m−2(x, y)

+
1

8
(y − b1)(y − b2)(y − b3)Gn,m−3(x, y)

= xnym + e(x, y),

where e(x, y) ∈ Π2
n+m−1, is a min-max polynomial on D with respect to the

weight function w3. The minimum deviation is 1/2n+m−1.

The polynomial Pn,m(x, y;w3) defined in Theorem 2 is obtained as a result
of a step-by-step construction. In the first two steps of this construction, the
following polynomials are obtained, see Section 3 below. For n,m ≥ 1 we
determine

Pn,m(x, y;w1) =
1

2
(x − a1)Gn−1,m(x, y) +

1

2
(y − b1)Gn,m−1(x, y)

= xnym + e(x, y),
(7)

where e(x, y) ∈ Π2
n+m−1 and a1, b1 ∈ R satisfy a2

1 + b2
1 < 1. The polynomial

Pn,m(x, y;w1) is a min-max polynomial on D with respect to the weight function

w1(x, y) =
1

√

−2a1x − 2b1y + a2
1 + b2

1 + 1
. (8)

For n,m ≥ 2 we find

Pn,m(x, y;w2) =
1

4
(x − a1)(x − a2)Gn−2,m(x, y)

+
1

4
[(x − a1)(y − b2) + (x − a2)(y − b1)]Gn−1,m−1(x, y)

+
1

4
(y − b1)(y − b2)Gn,m−2(x, y)

= xnym + e(x, y),

(9)

where e(x, y) ∈ Π2
n+m−1 and a1, b1, a2, b2 ∈ R are such that a2

1 + b2
1 < 1 and

a2
2 +b2

2 < 1. The polynomial Pn,m(x, y;w2) is a min-max polynomial on D with
respect to the weight function

w2(x, y) =
1

√

∏2
i=1(−2aix − 2biy + a2

i + b2
i + 1)

. (10)
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Remark 1. Setting the parameters ai, bi, i = 1, 2, 3, to zero in the above
definitions of Pn,m(x, y;w1), Pn,m(x, y;w2), and Pn,m(x, y;w3) we obtain min-
max polynomials in the non-weighted case. For Pn,m(x, y;w1) with a1 = b1 = 0,
see also [7].

The min-max polynomials defined by Theorem 1 and relations (7) and (9)
all satisfy quadratic equations on the disc D, see respectively, Propositions 1,
5 and 6 below. In what follows we present two methods of generating new
weighted min-max polynomials on the disc.

Theorem 3. Suppose that n,m ∈ N, n ≥ k + 3 and m ≥ l + 2. Let

w(x, y) and Pn,m(x, y;w) be defined as in Theorem 1 and cn,m = ckcl/2n+m−1.

Furthermore, let Qν,µ(x, y) = xνyµ + · · · be any min-max polynomial on D
with ν, µ ∈ N0 and ν + µ ≥ 0. Then the polynomial

( cn,m

w(x, y)

)ν+µ

Qν,µ

(

c−1
n,mPn,m(x, y;w)w(x, y), c−1

n,mPn−1,m+1(x, y;w)w(x, y)
)

= xn(ν+µ)−µym(ν+µ)+µ + e(x, y),

where e(x, y) ∈ Π2
(ν+µ)(n+m)−1, is a min-max polynomial on D with respect to

the weight function wν+µ. The minimum deviation is cν+µ
n,m /2ν+µ−1.

Corollary 1. Let ν, µ,m ∈ N0, n ∈ N, ν + µ ≥ 0, and let Qν,µ(x, y) =
xνyµ + · · · be any min-max polynomial on D. Then

1

2(n+m−1)(ν+µ)
Qν,µ

(

2n+m−1Gn,m(x, y), 2n+m−1Gn−1,m+1(x, y)
)

= xn(ν+µ)−µym(ν+µ)+µ + e(x, y),

where e(x, y) ∈ Π2
(n+m)(ν+µ)−1, is a min-max polynomial on D. The minimum

deviation is 1/2(n+m)(ν+µ)−1.

For the special cases m = 0 and µ = 0, see [2, Theorem 1], respectively [4,
Corollary 2.1].

Theorem 4. Let n1 ∈ N, m1 ∈ N0, and

Pn1,m1
(x, y; w̃1) = xn1ym1 + · · · , Pn1−1,m1+1(x, y; w̃1) = xn1−1ym1+1 + · · ·

be min-max polynomials with respect to the weight function w̃1(x, y), positive

on D, satisfying

[Pn1,m1
(x, y; w̃1)w̃1(x, y)]2 + [Pn1−1,m1+1(x, y; w̃1)w̃1(x, y)]2

= c2
n1,m1

− (1 − x2 − y2)[w̃1(x, y)]2q(x, y; w̃1) (11)
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for all (x, y) ∈ D, where q(x, y; w̃1) ∈ Π2
2(n1+m1−1), q(x, y; w̃1) ≥ 0 on D and

cn1,m1
> 0 is a real constant depending on n1 and m1 with

Pn1,m1
(cos ϕ, sin ϕ; w̃1)w̃1(cos ϕ, sin ϕ)=cn1,m1

cos((n1+m1)ϕ+ϕ1)

Pn1−1,m1+1(cos ϕ, sin ϕ; w̃1)w̃1(cos ϕ, sin ϕ)=cn1,m1
sin((n1+m1)ϕ+ϕ1)

(12)

for all ϕ ∈ [0, 2π), where ϕ1 ∈ [0, 2π). Completely analogously, we consider the

polynomials

Pn2+1,m2−1(x, y; w̃2) = xn2+1ym2−1 + · · · , Pn2,m2
(x, y; w̃2) = xn2ym2 + · · · ,

n2 ∈ N0,m2 ∈ N. Then the polynomial

1

2

[

Pn1,m1
(x, y; w̃1)Pn2,m2

(x, y; w̃2) + Pn1−1,m1+1(x, y; w̃1)Pn2+1,m2−1(x, y; w̃2)
]

= xn1+n2ym1+m2 + e(x, y),

where e(x, y) ∈ Π2
n1+m1+n2+m2−1, is a min-max polynomial on D with respect

to the weight function w̃1w̃2. The minimum deviation is cn1,m1
cn2,m2

/2.

Corollary 2. Let n1,m1, n2,m2 ∈ N, n1,m2 ≥ 3, n2,m1 ≥ 2 and ai, bi∈R

be such that a2
i +b2

i < 3−2
√

2, i = 1, 2, 3, 4. Let the polynomials Pn1,m1
(x, y; w̃1)

and Pn2,m2
(x, y; w̃2) be of the form (9) with weight functions w̃1(x, y) and

w̃2(x, y) as in (10) using parameters ai, bi, i = 1, 2, and ai, bi, i = 3, 4,
respectively. Then the polynomial defined by Theorem 4 is a min-max polynomial

on D with respect to the weight function 1/
√

∏4
i=1(−2aix − 2biy + a2

i + b2
i + 1).

Moreover, the minimum deviation is 1/2n1+n2+m1+m2−1.

Finally, we mention that any min-max polynomial to a monomial xnym

obtained above is characterized by the same type of extremal signature whose
support consists of 2(n+m) points (cos ϕi, sin ϕi) lying on the boundary of the
unit disc with alternating sign. In the non-weighted case ϕi’s are the zeros of
sin((n + m)ϕ + ϕ0) if m is even, and the zeros of cos((n + m)ϕ + ϕ0) if m is
odd, where ϕ0 ∈ [0, 2π).

3. Proofs

Proof of Theorem 1. First we prove the inequality

|Pn,m(x, y;w)w(x, y)| ≤ ckcl

2n+m−1
(13)

for all (x, y) ∈ D.
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Let us take an arbitrary point in the interior of D, e.g. (x, y) = (cos ϕ, cos θ),
ϕ, θ ∈ (0, π), with cos2 ϕ + cos2 θ < 1. Using (5) we easily get

Pn,m(cos ϕ, cos θ;w)w(cos ϕ, cos θ)

=
ckcl

2n+m−1

{cos ϕ

sin θ

cos θ

sin ϕ
sin[(n − k)ϕ + φ1(ϕ)] sin[(m − l)θ + φ2(θ)]

+ cos[(n − k)ϕ + φ1(ϕ)] cos[(m − l)θ + φ2(θ)]
}

.

(14)

Since ϕ, θ ∈ (0, π) and cos2 ϕ + cos2 θ < 1 we have | cos ϕ
sin θ | < 1 and | cos θ

sin ϕ | < 1.

Hence, by (14) we obtain

|Pn,m(cos ϕ, cos θ;w)w(cos ϕ, cos θ)|
≤ ckcl

2n+m−1

{

| sin[(n − k)ϕ + φ1(ϕ)]| | sin[(m − l)θ + φ2(θ)]|

+ | cos[(n − k)ϕ + φ1(ϕ)]| | cos[(m − l)θ + φ2(θ)]|
}

.

Applying Schwarz’s inequality, it follows that inequality (13) holds for all (x, y)
in the interior of D.

It remains to prove (13) for the points on ∂D, i.e. the boundary of the unit
disc. For any point (x, y) = (cos ϕ, sin ϕ), ϕ ∈ [0, 2π), combining (5), (6) and
the fact that sinϕ = cos(ϕ − π

2 ) yields

Pn,m(cos ϕ, sin ϕ;w)w(cos ϕ, sin ϕ)

=

{

Ln,m,k,l cos
[

(n − k + m − l)ϕ + φ1(ϕ) + φ2(ϕ − π
2 )

]

, m − l even,

Ln,m,k,l sin
[

(n − k + m − l)ϕ + φ1(ϕ) + φ2(ϕ − π
2 )

]

, m − l odd,
(15)

where Ln,m,k,l = (−1)⌊(m−l)/2⌋ ckcl/2n+m−1. Therefore inequality (13) holds
also for all (x, y) ∈ ∂D and thus the proof of (13) is completed.

Furthermore, it follows from (15) that |Pn,m(x, y;w)w(x, y)| attains the
upper bound ckcl/2n+m−1 in (13) on the boundary of the unit disc at the
points (cos ϕi, sin ϕi) with alternating sign, where ϕi ∈ [0, 2π) are the zeros
of sin[(n − k + m − l)ϕ + φ1(ϕ) + φ2(ϕ − π/2)] if m − l is even, and zeros of
cos[(n− k +m− l)ϕ+φ1(ϕ)+φ2(ϕ−π/2)] if m− l is odd. Next we show that
these are precisely 2(n + m) points. By the Principle of the Argument, recall
also (6) and (4), the argument of eiφ1(ϕ)eiφ2(ϕ−π/2) has an increase of 2(k + l)π
when ϕ increases from 0 to 2π. More precisely, φ1(ϕ) + φ2(ϕ − π/2) increases
from ϕ0 to ϕ0 + 2(k + l)π when ϕ ∈ [0, 2π), where ϕ0 = φ1(0) + φ2(−π/2)
and therefore (n − k + m − l)ϕ + φ1(ϕ) + φ2(ϕ − π/2) increases from ϕ0 to
ϕ0 +2(n+m)π for ϕ ∈ [0, 2π). Thus we get exactly 2(n+m) extreme points of
Pn,m(x, y;w)w(x, y) on ∂D. The fact that these points form the support of an
extremal signature with respect to Π2

n+m−1 follows by Shapiro’s Theorem [12,
Theorem 2]. In view of the characterization theorem in terms of extremal
signatures [11, Theorem 2], the assertion is proved. �
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In the following proposition we show that the polynomials defined by Theo-
rem 1 satisfy a quadratic equation on the disc.

Proposition 1. Let n,m ∈ N, n ≥ k + 3, m ≥ l + 2, and let w(x, y) and

Pn,m(x, y;w) be defined as in Theorem 1. Then

[

Pn,m(x, y;w)w(x, y)
]2

+
[

Pn−1,m+1(x, y;w)w(x, y)
]2

=
( ckcl

2n+m−1

)2

− (1 − x2 − y2)w2(x, y)q(x, y;w),

where

q(x, y;w) =
( ckcl

2n+m−1

)2

×
[

U2
n−1(x; 1/ρk)U2

m(y; 1/ρl) + U2
n−2(x; 1/ρk)U2

m−1(y; 1/ρl)
]

.

Proof. For k = l = 0, the statement is precisely that of Proposition 2 below.
Its proof, which can be found in [7], is based on the following identities for the
Chebyshev polynomials of the second kind:

Un(x)Un−2(x) = U2
n−1(x) − 1,

U2
n(x) + U2

n−2(x) − 2 = (4x2 − 2)U2
n−1(x),

n ∈ N. It is easy to show that their analogues for the weighted Chebyshev
polynomials of the second kind also hold true:

Un(x; 1/ρk)

ρk(x)

Un−2(x; 1/ρk)

ρk(x)
=

(Un−1(x; 1/ρk)

ρk(x)

)2

− 1,

(Un(x; 1/ρk)

ρk(x)

)2

+
(Un−2(x; 1/ρk)

ρk(x)

)2

− 2 = (4x2 − 2)
(Un−1(x; 1/ρk)

ρk(x)

)2

,

n ≥ k + 2. Having these identities, the proof of the proposition is completely
analogous to the one of Proposition 2. �

In order to prove Theorem 2 we need some auxiliary results. Let us introduce
the polynomials

Qn,m(x, y) := Un(x)Um−2(y) + Un−2(x)Um(y), n,m ∈ N0,

and

S0(x, y) := 0, S1(x, y) := 0,

Si(x, y) :=
2[(−1 − (−1)i)/2]i/2−1 − Qi,i(x, y)

2(1 − x2 − y2)
, i ∈ N, i ≥ 2.

With these notations we have the following relations satisfied by the Gear-
hart polynomials defined in (2).
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Proposition 2. Let n ∈ N and m ∈ N0. Then

[Gn,m(x, y)]2 + [Gn−1,m+1(x, y)]2

=
1

22(n+m−1)
− 1 − x2 − y2

22(n+m−1)

[

U2
n−1(x)U2

m(y) + U2
n−2(x)U2

m−1(y)
]

.

Proposition 3. Let n ∈ N and m, i ∈ N0 be such that i ≤ n − 1. Then

Gn,m(x, y)Gn−i,m+i(x, y) + Gn−1,m+1(x, y)Gn−(i+1),m+(i+1)(x, y)

=
[(−1 − (−1)i)/2]i/2

22(n+m−1)
− 1 − x2 − y2

22(n+m−1)

[

Un−1(x)Un−i−1(x)Um(y)Um+i(y)

+ Un−2(x)Un−i−2(x)Um−1(y)Um+i−1(y) − Si(x, y)
]

.

Complete proofs of Propositions 2 and 3 can be found in [7].

Proposition 4. Let n ∈ N, m, k ∈ N0 be such that k ≤ n − 1 and let

ai ∈ R, i = 0, . . . , k. Then the following identity holds:

(

k
∑

i=0

aiGn−i,m+i(x, y)
)2

+
(

k
∑

i=0

aiGn−(i+1),m+(i+1)(x, y)
)2

=
1

22(n+m−1)

[(

[k/2]
∑

i=0

(−1)ia2i

)2

+
(

[(k−1)/2]
∑

i=0

(−1)ia2i+1

)2]

− 1 − x2 − y2

22(n+m−1)

[(

k
∑

i=0

aiUn−1−i(x)Um+i(y)
)2

+
(

k
∑

i=0

aiUn−2−i(x)Um−1+i(y)
)2

− 2
k

∑

i=1

(

k−i
∑

j=0

ajaj+i

)

Si(x, y)
]

.

(16)

Proof. The assertion follows immediately from Propositions 2 and 3. �

Theorem 5. Let n,m ∈ N, a1, b1 ∈ R be such that a2
1+b2

1 < 1 and w1(x, y)
be given by (8). Then the polynomial Pn,m(x, y;w1) defined in (7) is a min-

max polynomial on D with respect to the weight function w1 and the minimum

deviation is 1/2n+m−1.

Proof. By the definition (7) of Pn,m(x, y;w1), Schwarz’s inequality and
Proposition 2, it follows that

|Pn,m(x, y;w1)| ≤
1

2

√

(x − a1)2 + (y − b1)2
√

G2
n,m−1(x, y) + G2

n−1,m(x, y)

≤
√

−2a1x − 2b1y + a2
1 + b2

1 + 1

2n+m−1
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holds for all (x, y) ∈ D. Therefore, using (8), we obtain

|Pn,m(x, y;w1)w1(x, y)| ≤ 1

2n+m−1
, (x, y) ∈ D.

Let us set

p1(x, y) =
x − a1

√

−2a1x − 2b1y + a2
1 + b2

1 + 1
,

q1(x, y) =
y − b1

√

−2a1x − 2b1y + a2
1 + b2

1 + 1
.

From the identity

(x − a1)
2 + (y − b1)

2 = (−2a1x − 2b1y + a2
1 + b2

1 + 1) − (1 − x2 − y2)

it follows that on the boundary of the unit disc we have

p2
1(x, y) + q2

1(x, y) = 1, (x, y) ∈ ∂D,

i.e.
p2
1(cos ϕ, sin ϕ) + q2

1(cos ϕ, sin ϕ) = 1 (17)

for all ϕ ∈ [0, 2π).
If z1 = a1 + ib1, then relation (17) can be written as

(Re (z − z1)

|z − z1|
)2

+
( Im (z − z1)

|z − z1|
)2

= 1, z = eiϕ.

Since |z1| < 1, it follows by a simple application of the Principle of the
Argument that

p1(cos ϕ, sin ϕ) = cos(ϕ + ϕ0) and q1(cos ϕ, sin ϕ) = sin(ϕ + ϕ0), (18)

where ϕ0 ∈ [0, 2π). Hence, using the fact that on the boundary of the unit disc
the Gearhart polynomials are equal to

Gn,m(cos ϕ, sin ϕ) =















(−1)[m/2]

2n+m−1
cos(n + m)ϕ, if m is even,

(−1)[m/2]

2n+m−1
sin(n + m)ϕ, if m is odd,

(19)

see [4], and (18), we conclude that

Pn,m(cos ϕ, sin ϕ;w1)w1(cos ϕ, sin ϕ)

=















(−1)[m/2]

2n+m−1
cos((n + m)ϕ + ϕ0), if m is even,

(−1)[m/2]

2n+m−1
sin((n + m)ϕ + ϕ0), if m is odd.
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Therefore, |Pn,m(x, y;w1)w1(x, y)| attains its maximum 1/2n+m−1 on ∂D at
the points (cos ϕi, sin ϕi), i = 1, . . . , 2(n+m), with alternating sign. Moreover,
ϕi’s are the zeros in [0, 2π) of sin((n + m)ϕ + ϕ0) if m is even, and the zeros
in [0, 2π) of cos((n + m)ϕ + ϕ0) if m is odd. Since by Shapiro’s Theorem, see
[12, Theorem 2], these points form the support of an extremal signature with
respect to Π2

n+m−1, the assertion follows by Theorem 2 in [11]. �

Proposition 5. Let n,m ∈ N, n ≥ 2 and a1, b1 ∈ R, a2
1 + b2

1 < 1.
Furthermore, let w1(x, y) be the function defined in (8) and Pn,m(x, y;w1) the

polynomial given by (7). Then the following relation holds:

[Pn,m(x, y;w1)w1(x, y)]2 + [Pn−1,m+1(x, y;w1)w1(x, y)]2

=
1

22(n+m−1)
− (1 − x2 − y2)w2

1(x, y)q(x, y;w1)

where

q(x, y;w1) =
1

22(n+m−1)

[

p2
n,m(x, y;w1) + p2

n−1,m−1(x, y;w1) + 1
]

and

pn,m(x, y;w1) = (x − a1)Un−2(x)Um(y) + (y − b1)Un−1(x)Um−1(y).

Proof. The identity follows immediately from (16) with k = 1, a0 = 1
2 (y−b1)

and a1 = 1
2 (x − a1), and then by replacing m by m − 1. �

Theorem 6. Let n,m ∈ N, n,m ≥ 2, ai, bi ∈ R be such that a2
i + b2

i < 1,
i = 1, 2, and w2(x, y) be given by (10). Then the polynomial Pn,m(x, y;w2)
defined in (9) is a min-max polynomial on D with respect to the weight function

w2 and the minimum deviation is 1/2n+m−1.

Proof. The proof is analogous to that of Theorem 5 taking into account
that

Pn,m(x, y;w2) =
1

2
(x − a2)Pn−1,m(x, y;w1) +

1

2
(y − b2)Pn,m−1(x, y;w1)

holds for all (x, y) ∈ D. Also, Proposition 5 is to be used in this case. �

Proposition 6. Let n,m ∈ N, n ≥ 3, m ≥ 2, and ai, bi ∈ R be such that

a2
i + b2

i < 3 − 2
√

2, i = 1, 2. Furthermore, let w2(x, y) be defined by (10) and

let Pn,m(x, y;w2) be the polynomial given in (9). Then the following identity

holds:

[Pn,m(x, y;w2)w2(x, y)]2 + [Pn−1,m+1(x, y;w2)w2(x, y)]2

=
1

22(n+m−1)
− (1 − x2 − y2)w2

2(x, y)q(x, y;w2)
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where

q(x, y;w2) =
1

22(n+m−1)

[

p2
n,m(x, y;w2) + p2

n−1,m−1(x, y;w2)

+ (x − a1)
2 + (y − b1)

2 + (x − a2)
2 + (y − b2)

2

− 4(x − a1)(x − a2)(y − b1)(y − b2) + (1 − x2 − y2)
]

is non-negative on the unit disc and

pn,m(x, y;w2) = (x − a1)(x − a2)Un−3(x)Um(y)

+ [(x − a1)(y − b2) + (x − a2)(y − b1)]Un−2(x)Um−1(y)

+ (y − b1)(y − b2)Un−1(x)Um−2(y).

Proof. The proposition follows immediately from identity (16) with k = 2,
a0 = 1

4 (y − b1)(y − b2), a1 = 1
4 [(x − a1)(y − b2) + (x − a2)(y − b1)] and

a2 = 1
4 (x − a1)(x − a2) and then by replacing m by m − 2. The inequalities

a2
i + b2

i < 3 − 2
√

2, i = 1, 2, give a sufficient condition for

(x− a1)
2 + (y − b1)

2 + (x− a2)
2 + (y − b2)

2 − 4(x− a1)(y − b1)(x− a2)(y − b2),

and hence for q(x, y;w2), to be non-negative on the unit disc. �

Proof of Theorem 2. The proof is similar to that of Theorem 5. Since

Pn,m(x, y;w3) =
1

2
(x − a3)Pn−1,m(x, y;w2) +

1

2
(y − b3)Pn,m−1(x, y;w2)

holds for all (x, y) ∈ D, we just apply Proposition 6. �

Proof of Theorem 3. Let us denote the polynomial from the theorem by
Pn(ν+µ)−µ,m(ν+µ)+µ(x, y;wν+µ). One can easily check that it is indeed of the

form xn(ν+µ)−µym(ν+µ)+µ+ terms of lower degree. Proposition 1 yields that if
(x, y) ∈ D then (c−1

n,mPn,m(x, y;w)w(x, y), c−1
n,mPn−1,m+1(x, y;w)w(x, y)) ∈ D,

too. Consequently, having in mind (3),

|Pn(ν+µ)−µ,m(ν+µ)+µ(x, y;wν+µ)w(x, y)ν+µ|
= |cν+µ

n,m Qν,µ(c−1
n,mPn,m(x, y;w)w(x, y), c−1

n,mPn−1,m+1(x, y;w)w(x, y))|

≤
cν+µ
n,m

2ν+µ−1

holds for all (x, y) ∈ D. In addition, by (15) and (19) combined with the
fact that all min-max polynomials to a monomial agrees on the boundary
of the unit disc, see [4, Theorem 2.2], we can easily show that the function
Pn(ν+µ)−µ,m(ν+µ)+µ(cos ϕ, sin ϕ;wν+µ)wν+µ(cos ϕ, sin ϕ) has an increase of
2(ν + µ)(n + m)ϕ, when ϕ increases from 0 to 2π. Hence, the maximum
modulus is attained at 2(n+m)(ν +µ) points on the boundary of the disc with
alternating sign. Since by [12, Theorem 2] these points form the support of an
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extremal signature with respect to Π2
(n+m)(ν+µ)−1, the statement follows from

[11, Theorem 2]. �

Proof of Corollary 1. The assertion is an immediate consequence of Theo-
rem 3 with w ≡ 1 and the Gearhart polynomials defined by (2), taking into
consideration also Proposition 2 and relation (19). �

Proof of Theorem 4. Let us denote the polynomial from the theorem by
Pn1+n2,m1+m2

(x, y; w̃1w̃2). Then combining Schwarz’s inequality, relation (11)
for Pn1,m1

(x, y; w̃1) and the corresponding one for Pn2,m2
(x, y; w̃2), we have

|Pn1+n2,m1+m2
(x, y; w̃1w̃2)w̃1(x, y)w̃2(x, y)|

≤ 1

2

√

[Pn1,m1
(x, y; w̃1)w̃1(x, y)]2 + [Pn1−1,m1+1(x, y; w̃1)w̃1(x, y)]2

√

[Pn2,m2
(x, y; w̃2)w̃2(x, y)]2 + [Pn2+1,m2−1(x, y; w̃2)w̃2(x, y)]2

≤ 1

2
cn1,m1

cn2,m2

for all (x, y) ∈ D. Moreover, due to (12) and the corresponding relation for
Pn2,m2

(x, y; w̃2), we easily get that on the boundary of the unit disc we have

Pn1+n2,m1+m2
(cos ϕ, sin ϕ; w̃1w̃2) w̃1(cos ϕ, sin ϕ) w̃2(cos ϕ, sin ϕ)

=
cn1,m1

cn2,m2

2

[

cos((n1 + m1)ϕ + ϕ1) sin((n2 + m2)ϕ + ϕ2)

+ sin((n1 + m1)ϕ + ϕ1) cos((n2 + m2)ϕ + ϕ2)
]

=
cn1,m1

cn2,m2

2
sin((n1 + m1 + n2 + m2)ϕ + ϕ1 + ϕ2)

for all ϕ ∈ [0, 2π). Therefore, the maximum modulus cn1,m1
cn2,m2

/2 is attained
at 2(n1 + m1 + n2 + m2) points on the boundary of the disc with alternating
sign. Since by [12, Theorem 2] these points form an extremal signature with
respect to Π2

n1+m1+n2+m2−1, the statement of the theorem follows from [11,
Theorem 2]. �

Proof of Corollary 2. The assertion is an immediate application of Theorem 4
for the min-max polynomials defined by (9). �
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