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Let Tn(x) =
nP

k=0

tn,kxk denote the n-th Chebyshev polynomial of the

first kind which is even or odd, according to the parity of n, and let

Pn(x) =
nP

k=0

akxk denote any real polynomial of degree ≤ n which

satisfies |Pn(x)| ≤ 1 for |x| ≤ 1 or merely |Pn(cos (n−i)π
n

)| ≤ 1 for
0 ≤ i ≤ n. It is known that the maximal value of the sum of the moduli of
two consecutive coefficients of Pn(x) is then attained if Pn(x) = ±Tn(x):

|ak−1| + |ak| ≤ |tn,k−1| + |tn,k| = |tn,k|, provided k ≡ n mod 2. (i)

Inequality (i) is referred to as Szegő’s coefficient inequality [22, p. 673].
This implies V. A. Markov’s coefficient inequality [17, p. 56], [25,

p. 167] for single coefficients, which in turn implies Chebyshev’s inequality
for the leading coefficient of Pn(x), see [15, p. 385], [23, p. 68 and p. 108].
In an attempt to extend (i) to pairs of coefficients |aj |+|ak| with j < k−1
we obtain, for n ≥ 6:

Theorem. Additionally to Szegő’s coefficient inequality (i) there
holds

|ak−1−2m| + |ak| ≤ |tn,k|, (ii)

provided k ≡ n mod 2 and k ≤ 2n

3
, where m ≥ 1 is an integer.

Addendum 1. The range of inequality (ii) can be improved by
replacing k ≤ 2n

3
(and k ≡ n mod 2) with k ≤ k∗, where k∗ = k∗(n) =

n − 2q∗ < n and q∗ =
�

n2−2n
6n+4

�
.

Addendum 2. The range of inequality (ii) can be further improved
by replacing k ≤ k∗ with k ≤ k∗∗, where k∗∗ = k∗∗(n) = n−2q∗∗ < n, in
which the positive integer q∗∗ stems from the solution of a certain cubic
equation.

The magnitude of k∗∗ results from the numerically verified inequality
|k∗∗ +1−⌈ n√

2
⌉| ≤ 1. By a counterexample we demonstrate that (ii) does
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not hold if one allows k ≤ n, where n ≥ 6. The marginal cases n ≤ 5
are treated separately. Our result can be extended to Pn(x) bounded
symmetrically on [−1, 1] in the sense of [5], [24]. The related issue of
maximizing pairs of coefficients of bounded polynomials in the complex
domain is treated in [3], [15, pp. 125–130], [22, pp. 637–641]. In the
course of the proof we provide explicit values for the elements of the
inverse of the Vandermonde matrix associated with the extremal points
of Tn(x).

Keywords and Phrases: Coefficient, counterexample, elementary sym-
metric function, estimate, extension, extremal (points, polynomial, prob-
lem, property), generalization, height, inequality (Chebyshev, Markov,
Szegő), inverse, majorant, pair of coefficients, polynomial (Chebyshev,
Rogosinski, bounded), unit interval, Vandermonde matrix.

“We all know that the extreme is beautiful.”
Blagovest Sendov in his Reminiscence of Borislav Bojanov,

J. Approx. Theory 162 (2010), no. 10

1. Introduction

Let Φn denote the linear space of real algebraic (univariate) polynomials of

degree ≤ n with elements Pn given in power form by Pn(x) =
n
∑

k=0

akxk (n ≥ 1,

ak real), and let Bn denote the unit ball in Φn with respect to the interval
I = [−1, 1] and the uniform norm ‖Pn‖∞ = supx∈I |Pn(x)|:

Bn = {Pn ∈ Φn : ‖Pn‖∞ ≤ 1}. (1.1)

The n-th Chebyshev polynomial of the first kind with respect to I, Tn,
belongs to Bn since Tn(x) = cos(n arccos x) if x ∈ I, and plays an outstanding
role in providing solutions to extremal coefficient problems for polynomials
bounded (pointwise) in the uniform norm. It is well-known that Tn(x) =

n
∑

k=0

tn,kxk satisfies the three-term recurrence relation

Tn(x) = 2xTn−1(x) − Tn−2(x), n ≥ 2, (1.2)

with T0(x) = 1 and T1(x) = x, and is hence an even resp. odd polynomial,
according to the parity of n. So tn,k = 0, if n − k is odd, whereas, if n − k is
even, the coefficients tn,k are nonzero integers given in descending order by:

tn,n−2m =
(−1)mn2n−2m−1

n − m

(

n − m

m

)

, 0 ≤ m ≤
⌊n

2

⌋

. (1.3)

The extremal points of Tn are the alternation points x∗
n,i where Tn(x∗

n,i) =

(−1)n−i. These points are

x∗
n,i = cos

(n − i)π

n
, 0 ≤ i ≤ n, (1.4)
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with x∗
n,i + x∗

n,n−i = 0 (symmetry with respect to the origin), and ordering

−1 = x∗
n,0 < x∗

n,1 < · · · < x∗
n,n−1 < x∗

n,n = 1 (1.5)

(see [14] or [23] for more information on Tn).
The roots of the topic of coefficient inequalities for polynomials Pn ∈ Bn

trace back to Chebyshev’s pioneering paper [4] on polynomials with fixed
leading coefficient which deviate least from zero on I (implying the estimate
|an| ≤ tn,n = 2n−1, see e.g. [15, p. 385], [23, p. 68 and p. 108], [25, p. 10 and
p. 162], [27, p. 86]), and to an explicit question concerning the magnitude of
the three coefficients of bounded quadratic parabolas, raised by the chemist
D. I. Mendeleev and answered by A. A. Markov, see e.g. [1, p. 31] and [20,
pp. 329–330].

V. A. Markov in his celebrated paper of 1892 [12, pp. 80–81], [13, p. 248]
(see also [2, p. 248], [15, p. 423], [17, p. 56], [25, p. 167]) settled the general
case by providing exact estimates for all the n + 1 coefficients of Pn ∈ Bn, in
terms of the nonzero coefficients of Tn and Tn−1:

Theorem A. Let Pn ∈ Bn with Pn(x) =
n
∑

k=0

akxk, then

|ak| ≤ |tn,k| =
n2k−1(n+k−2

2 )!

k! (n−k
2 )!

, if n − k is even, (1.6)

|ak| ≤ |tn−1,k| =
(n − 1)2k−1(n+k−3

2 )!

k! (n−k−1
2 )!

, if n − k is odd, (1.7)

with equality if Pn = ±Tn resp. Pn = ±Tn−1.

Actually, (1.7) follows as a corollary from (1.6) by considering the coefficients
of the polynomial Pn−1(x) = (Pn(x) + (−1)n+1Pn(−x))/2 and applying the
triangle inequality.

Some 50 years later G. Szegő found a striking strengthening of V. A. Markov’s
coefficient inequality (Theorem A) by considering two consecutive coefficients
of Pn(x), ak (with n − k even) and its predecessor coefficient, ak−1:

Theorem B. Let Pn ∈ Bn with Pn(x) =
n
∑

k=0

akxk, then

|ak−1| + |ak| ≤ |tn,k|, if n − k is even, (1.8)

with equality if Pn = ±Tn and setting a−1 = 0.

This result was published, without proof, by Erdös in [7, p. 1176], based on
Szegő’s oral communication, see also [22, p. 679]. To the best of our knowledge,
Munch [16, p. 26] was the first to provide a proof for (1.8), without however
quoting [7]. His proof works under the assumption Pn ∈ Cn which is weaker
than Pn ∈ Bn (see [23, p. 139]), where

Cn = {Pn ∈ Φn : |Pn(x∗
n,i)| ≤ 1 for 0 ≤ i ≤ n}, (1.9)
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with x∗
n,i given by (1.4).

Obviously, ±Tn belong to both classes Cn and Bn. We thus have, see also
[22, p. 673]:

Theorem C. Let Pn ∈ Bn or Pn ∈ Cn with Pn(x) =
n
∑

k=0

akxk, then

|ak−1| + |ak| ≤ |tn,k|, if n − k is even, (1.10)

with equality if Pn = ±Tn and setting a−1 = 0.

This inequality has been rediscovered by several authors, see [20], [21] for
details. It immediately implies, for n − k even,

|ak| ≤ |tn,k|, if Pn ∈ Cn, and in particular, (1.11)

|an| ≤ 2n−1, (Chebyshev’s coefficient inequality),

and this refinement of the first part of V. A. Markov’s coefficient inequality,
(1.6), had been noticed earlier by Shohat [26, p. 687], see also [22, p. 672].
The second part of Theorem A, (1.7), does not hold true if Pn ∈ Bn is relaxed
to Pn ∈ Cn, as simple examples show. As was pointed out by Rogosinski
[24, p. 10], the following polynomial replaces Tn−1 as an extremizer for the
coefficients ak of arbitrary Pn ∈ Cn, if n − k is odd:

Πn−1 ∈ Cn with Πn−1(x) =
n−1
∑

k=0

cn−1,kxk, which is defined by

Πn−1(x
∗
n,i) = (−1)i+1, if 0 ≤ i ≤ n

2
− 1

Πn−1(x
∗
n,i) = 0, if i =

n

2
(1.12)

Πn−1(x
∗
n,i) = (−1)i, if

n

2
+ 1 ≤ i ≤ n,

provided n is even, resp.

Πn−1(x
∗
n,i) = (−1)i, if 0 ≤ i ≤ n − 1

2

Πn−1(x
∗
n,i) = (−1)i+1, if

n + 1

2
≤ i ≤ n,

(1.13)

provided n is odd. We thus have, see also [5, p. 2744]:

Theorem D. Let Pn ∈ Cn with Pn(x) =
n
∑

k=0

akxk, then

|ak| ≤ |cn−1,k|, if n − k is odd, (1.14)

with equality if Pn = ±Πn−1.



290 On an Extremal Property of the Chebyshev Polynomials...

We note in passing that inequality (1.7) does hold true if one assumes
Pn ∈ Cn ∩ Cn−1, see [20, p. 324], [22, p. 673], [23, p. 112].

In the present paper we try to extend Szegő’s fundamental coefficient ine-
quality (Theorem C, which implies Theorem B, and hence Theorem A) to pairs
of coefficients that are not necessarily adjacent to each other. We thus ask:

Given Pn ∈ Bn or Pn ∈ Cn with Pn(x) =
n
∑

k=0

akxk, is |tn,k| large enough

to sharply majorize |aj | + |ak|, if j < k and n − k is even?

The special choice j = k − 1 would take us back to Theorem C. To avoid
trivial cases we assume that the index j with j < k has a parity different from
k, i.e. we assume that n− j is odd. For if both n− j and n−k were even, then
|aj |+ |ak| would be majorized by |tn,j |+ |tn,k|, in view of (1.11), with equality
if Pn = ±Tn. We notice that if both n − j and n − k were assumed to be odd,
then |aj |+ |ak| would be majorized by |tn−1,j |+ |tn−1,k|, in view of (1.7), with
equality if Pn = ±Tn−1, if Pn ∈ Bn, resp. by |cn−1,j | + |cn−1,k|, in view of
(1.14), with equality if Pn = ±Πn−1, if Pn ∈ Cn.

It will turn out (see the Theorem below) that ±Tn indeed maximizes many
more pairs of coefficients of Pn ∈ Bn or Pn ∈ Cn than is indicated by Theorem C,
and this finding reveals a new extremal property of the classical polynomial
±Tn. But a single coefficient of ±Tn cannot maximize all pairs |aj |+|ak| if j < k
(with n− k even and n− j odd) as we will show by a twofold counterexample:

For n ≥ 7, the modulus of the coefficient cn−1,n−3 of the above introduced
Rogosinski polynomial Πn−1 ∈ Cn is larger than tn,n = 2n−1, so that |an−3| +
|an| ≤ |tn,n| does not hold for all Pn ∈ Cn; for n = 6, we provide an explicit
polynomial P6 ∈ C6 whose coefficients satisfy |a3| + |a6| > t6,6 = 32. This is
why in our Theorem we will have to restrict the index k (where n − k is even)
by some upper bound which is smaller than n, and thus we cannot allow k ≤ n,
as is the case in Theorem C. Actually, we will provide three upper bounds in
ascending order.

Our question may be considered as a special case of V. A. Markov’s general
problem on extremal values of coefficient functionals (see [9, p. 24], [12, p. 79],
[13, p. 246]) which we state here in an extended version that includes polyno-
mials from Cn:

Extended V. A. Markov’s Coefficient Problem of 1892:

Given the real scalars βk, 0 ≤ k ≤ n,find the maximum of |
n

∑

k=0

βkak| (1.15)

subject to the condition that Pn ∈ Bn or Pn ∈ Cn with Pn(x) =
n
∑

k=0

akxk.

V. A. Markov’s two-staged coefficient inequality (Theorem A) is the solution
for the cases ±βk = 1 and βi = 0 elsewhere, with Pn ∈ Bn.

Szegő’s coefficient inequality (Theorem C) is the solution to (1.15) for the
cases βk−1 = ±βk = 1 and βi = 0 elsewhere, where n − k is even, since (1.10)
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implies |ak−1 ± ak| ≤ |tn,k| for all Pn ∈ Bn or Pn ∈ Cn, with equality if
Pn = ±Tn.

A solution to our problem (with restricted index k) would give the solution
to (1.15) for the cases βj = ±βk = 1 and βi = 0 else, where j < k with n − k
even and n − j odd, since |aj | + |ak| ≤ |tn,k| implies |aj ± ak| ≤ |tn,k| for
all Pn ∈ Bn or Pn ∈ Cn, with equality if Pn = ±Tn. We mention that the
problem of maximizing partial coefficient sums of Pn ∈ Bn or Pn ∈ Cn, i.e.
β0 = β1 = · · · = βk = 1, if n − k is even, and βi = 0, if i > k, has been settled
in [19] to the effect that, again, ±Tn is extremal.

2. Results and Examples

We obtain a proper extension of Szegő’s coefficient inequality (Theorem C).
The result is stated in three versions concerning the upper bound for the index
k of the majorizing coefficients tn,k of Tn. These versions are ascending in
sharpness but at the same time the computational complexity of the upper
bound increases. In Section 4 we briefly address the question of optimality of
the upper bounds for the index k. The Theorem is stated for n ≥ 6 since the
marginal cases n ≤ 5 are treated separately.

Theorem. Let Pn ∈ Bn or Pn ∈ Cn, n ≥ 6, with Pn(x) =
n
∑

k=0

akxk

be arbitrary and let Tn with Tn(x) =
n
∑

k=0

tn,kxk denote the n-th Chebyshev

polynomial of the first kind. The nonzero coefficients of Tn exhibit the following
majorizing property for pairs of coefficients of Pn:

|aj | + |ak| ≤ |tn,k| (a−1 = 0; equality if Pn = ±Tn) (2.1)

for all k ≤ 2n
3 with n − k even, and for all j with j < k and n − j odd.

The upper bound for k is thus k◦ = k◦(n) = the largest integer ≤ 2n
3 with

n − k◦ even. For j = k − 1 inequality (2.1) covers less cases than Theorem C
due to k ≤ k◦ compared with k ≤ n. For j ≤ k − 3 inequality (2.1) is a proper
extension of Theorem C.

Addendum 1. The upper bound k◦ for the index k can be improved to

k∗ = k∗(n) = n − 2q∗ < n, with q∗ =
⌈n2 − 2n

6n + 4

⌉

, (2.2)

so that (2.1) holds for all indices j and k with j < k ≤ k∗ and n − k even and
n − j odd. For a given n holds either k◦ = k∗ or k◦ < k∗.

Addendum 2. The upper bound k∗ for the index k can be further
improved to

k∗∗= k∗∗(n) = n−2q∗∗< n, with q∗∗=
⌈

2R cos
(π

3
− 1

3
arccos

Q

R3

)

+S
⌉

, (2.3)
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where

Q =
(1 − 4n2)(2n4 − 10n2 + 35)

1728
, (2.4)

R = − 1

12

√

4n4 + 4n2 + 13, (2.5)

S =
n2

6
+

n

2
− 5

12
, (2.6)

so that (2.1) holds for all indices j and k with j < k ≤ k∗∗ and n− k even and
n − j odd. For a given n holds either k∗ = k∗∗ or k∗ < k∗∗, and n = 43 is
the first polynomial degree for which the constellation k◦ < k∗ < k∗∗ occurs:
k◦(43) = 27 < k∗(43) = 29 < k∗∗(43) = 31.

Example 1. We choose n = 20 and obtain (see the Table below) 2n
3 =

13.3 . . . (and hence k◦ = 12), q∗ = q∗∗ = 3, and k∗ = k∗∗ = 14. The inequality
(2.1) thus holds for all k ≤ 12, and in fact, according to Addendum 1 and 2,
for all k ≤ 14, with 20−k even, and for all j < k with 20− j odd. This renders
the following set of twenty-eight sharp inequalities for pairs of coefficients of

P20 ∈ B20 or P20 ∈ C20 with P20(x) =
20
∑

k=0

akxk:

k = 14 : |aj | + |a14|≤ |t20,14|= 6553600 for j = 1, 3, 5, 7, 9, 11, 13,

k = 12 : |aj | + |a12|≤ |t20,12|= 4659200 for j = 1, 3, 5, 7, 9, 11,

k = 10 : |aj | + |a10|≤ |t20,10|= 2050048 for j = 1, 3, 5, 7, 9,

k = 8 : |aj | + |a8| ≤ |t20,8| = 549120 for j = 1, 3, 5, 7,

k = 6 : |aj | + |a6| ≤ |t20,6| = 84480 for j = 1, 3, 5,

k = 4 : |aj | + |a4| ≤ |t20,4| = 6600 for j = 1, 3,

k = 2 : |a1| + |a2| ≤ |t20,2| = 200.

The seven inequalities above with j = k−1 are covered by Theorem C, whereas
the twenty-one inequalities above for non-adjacent coefficients (that is, j ≤
k − 3) go beyond Szegő’s coefficient inequality (Theorem C).

Suppose the task is given to estimate from above the pair of coefficients
|a11| + |a14| when P20 varies in the unit ball B20. V. A. Markov’s coefficient
inequality (Theorem A) would give the estimate

|t19,11| + |t20,14| = 8324096.

Szegő’s coefficient inequality (Theorem C) would give the estimate

|t20,12| + |t20,14| = 11212800;

our Theorem gives the optimal upper bound

|t20,14| = 6553600.
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Example 2. It follows from the Table below that the first three even
polynomial degrees n where the upper bound k∗∗ (from Addendum 2) outper-
forms k∗ (from Addendum 1) are n = 16, n = 22, and n = 28, in which cases
we get the improved upper bounds k ≤ k∗∗ = 12 (instead of k ≤ k∗ = 10),
resp. k ≤ k∗∗ = 16 (instead of k ≤ k∗ = 14) resp. k ≤ k∗∗ = 20 (instead of
k ≤ k∗ = 18).

Correspondingly, the first five odd polynomial degrees n where k∗∗ is larger
than k∗ are n ∈ {9, 15, 21, 27, 29}.

Comparing Addendum 2 with Addendum 1 we thus get, additionally to
Addendum 1, the following set of new inequalities, i.e. j ≤ k − 3 (with n − j
odd and n − k even), for pairs of non-adjacent coefficients of Pn ∈ Bn or
Pn ∈ Cn, where 6 ≤ n ≤ 30:

n = 9 : |aj | + |a7| ≤ |t9,7| = 576 for j = 0, 2, 4,

n = 15 : |aj | + |a11| ≤ |t15,11| = 92160 for j = 0, 2, 4, 6, 8,

n = 16 : |aj | + |a12| ≤ |t16,12| = 212992 for j = 1, 3, 5, 7, 9,

n = 21 : |aj | + |a15| ≤ |t21,15| = 15597568

for j = 0, 2, 4, 6, 8, 10, 12, (2.7)

n = 22 : |aj | + |a16| ≤ |t22,16| = 36765696

for j = 1, 3, 5, 7, 9, 11, 13,

n = 27 : |aj | + |a19| ≤ |t27,19| = 2724986880

for j = 0, 2, 4, 6, 8, 10, 12, 14, 16,

n = 28 : |aj | + |a20| ≤ |t28,20| = 6499598336

for j = 1, 3, 5, 7, 9, 11, 13, 15, 17,

n = 29 : |aj | + |a21| ≤ |t29,21| = 15386804224

for j = 0, 2, 4, 6, 8, 10, 12, 14, 16, 18.

It also follows from the Table below that within the range 6 ≤ n ≤ 30 the
upper bound k∗ is larger than k◦ for n ∈ {7, 8, 13, 14, 19, 20, 25, 26}, compare
with Lemma 11 below.

2.1. The Marginal Cases 1 ≤ n ≤ 5

To avoid tedious distinctions of low-degree cases, we present below the
inequalities for pairs |aj | + |ak| of coefficients of Pn ∈ Bn or Pn ∈ Cn for the
first five polynomial degrees n. We confine ourselves to the instances j ≤ k− 3
(with n − j odd and n − k even) which are not covered by Szegő’s coefficient
inequality, and hence we need only to consider the marginal cases 3 ≤ n ≤ 5.
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A proof of the following five inequalities is indicated in Section 3.2 below:

n = 3 : |a0| + |a3| ≤ |t3,3| = 4,

n = 4 : |a1| + |a4| ≤ |t4,4| = 8,

n = 5 : |a0| + |a3| ≤ |t5,3| = 20, (2.8)

|a0| + |a5| ≤ |t5,5| = 16,

|a2| + |a5| ≤ |t5,5| = 16.

2.2. A Counterexample if k = n

Our Theorem does not hold any longer if we drop the upper bound k◦ resp.
k∗ resp. k∗∗ on the index k and would thus allow k ≤ n, because then there
exist polynomials Pn ∈ Cn (n ≥ 6) with coefficients aj (n − j odd) and ak

(n−k even and j < k) with |aj |+ |ak| > |tn,k|. In particular, this is always the
case for the choice j = n−3 and k = n, since we will show in Section 3.3 below
that the coefficient cn−1,n−3 of the Rogosinski polynomial Πn−1 ∈ Cn satisfies:

|cn−1,n−3| > tn,n = 2n−1 for all n ≥ 7. (2.9)

Concerning the special case n = 6 consider the polynomial P6 ∈ C6 given
explicitly by

P6(x) =
6

∑

k=0

akxk

= (−1) +
3 + 4

√
3

3
x +

43

3
x2

+
(−16 − 20

√
3)

3
x3 +

(−88)

3
x4 +

16 + 16
√

3

3
x5 + 16x6.

Its coefficients satisfy the inequality

|a3| + |a6| =
16 + 20

√
3

3
+ 16 = 32.88 . . . > t6,6 = 32.

2.3. The Table

The following Table displays, for 6 ≤ n ≤ 30, the above defined values k◦,
k∗, k∗∗, q∗, q∗∗, and the numerically calculated value kopt, see Section 4 below.

Within the Table the following three constellations occur regarding the three
upper bounds: k◦ = k∗ = k∗∗, k◦ < k∗ = k∗∗ and k◦ = k∗ < k∗∗.
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n k◦ k∗ = n − 2q∗ k∗∗ = n − 2q∗∗ q∗ q∗∗ kopt

6 4 4 4 1 1 4
7 3 5 5 1 1 5
8 4 6 6 1 1 6
9 5 5 7 2 1 7

10 6 6 6 2 2 8
11 7 7 7 2 2 9
12 8 8 8 2 2 10
13 7 9 9 2 2 9
14 8 10 10 2 2 10
15 9 9 11 3 2 11
16 10 10 12 3 2 12
17 11 11 11 3 3 13
18 12 12 12 3 3 14
19 11 13 13 3 3 15
20 12 14 14 3 3 14
21 13 13 15 4 3 15
22 14 14 16 4 3 16
23 15 15 15 4 4 17
24 16 16 16 4 4 18
25 15 17 17 4 4 19
26 16 18 18 4 4 20
27 17 17 19 5 4 19
28 18 18 20 5 4 20
29 19 19 21 5 4 21
30 20 20 20 5 5 22

3. Proofs

3.1. Proof of the Theorem

We will prove the Theorem in the version of Addendum 2, i.e. with the
upper bound k∗∗ < n valid for the index k in (2.1). We will then show
that k∗∗ majorizes the value k∗ which can hence be chosen as a weaker but
more convenient upper bound for k (Addendum 1). Finally we show that k∗

majorizes k◦ which can hence be used as an even weaker upper bound for k. It
is, on the other hand, easiest to evaluate for a given n.

To check which n is the lowest polynomial degree to satisfy the constellation
k◦(n) < k∗(n) < k∗∗(n) we may restrict the search to n = 6m + 1 or n =
6m + 2, with m ≥ 1, see Lemma 11 below, and a straightforward evaluation
of k∗∗(6m + 1) and k∗∗(6m + 2) according to (2.3) to (2.6) yields as solution
m = 7 and n = 43, giving k◦(43) = 27 < k∗(43) = 29 < k∗∗(43) = 31.
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To set the stage, let us consider an arbitrary Pn ∈ Cn. It can be represented

on the grid (1.5) in Lagrange’s interpolation form as Pn(x)=
n
∑

i=0

Pn(x∗
n,i)Ln,i(x),

where Ln,i ∈ Φn is given by

Ln,i(x) =
Gn,i(x)

Gn,i(x∗
n,i)

, with Gn,i(x) =

n
∏

s=0,s 6=i

(x − x∗
n,s) =

n
∑

k=0

rn,i,kxk. (3.1)

The coefficients rn,i,k = ri,k (for short) of Gn,i(x) are, up to the factor
(−1)n−k, elementary symmetric functions associated with the set of roots
{x∗

n,0, x
∗
n,1, . . . , x

∗
n,n−1, x

∗
n,n} \ {x∗

n,i}, with special instances

ri,n = 1, ri,n−1 = −
n

∑

s=0,s 6=i

x∗
n,s, and ri,0 = (−1)n

n
∏

s=0,s 6=i

x∗
n,s. (3.2)

Combining coefficients of like powers we obtain from (3.1) for the k-th coefficient

of Pn with Pn(x) =
n
∑

k=0

akxk the representation

ak =
n

∑

i=0

Pn(x∗
n,i)ri,k

Gn,i(x∗
n,i)

. (3.3)

The crucial numbers

Vn,i,k = Vi,k (for short) =
ri,k

Gn,i(x∗
n,i)

(3.4)

are, for each i, the coefficients of Ln,i(x) with respect to the grid (1.5), and
can be identified with the elements of the inverse of the Vandermonde matrix
associated with the extremal points of Tn. This Vandermonde matrix vn and
its inverse Vn are given by

Vn = (Vi,k)0≤i,k≤n = (vn)−1, (3.5)

where

vn = (vi,k)0≤i,k≤n, with vi,k = (x∗
n,k)i and x∗

n,k = cos
(n − k)π

n
. (3.6)

In the course of the proof we will utilize properties of the matrix Vn and
therefore we need to delve into the structure of Vn. There is a vast literature
on the inversion of the (arbitrary) Vandermonde matrix, see e.g. [8] and the
references given therein, but for the particular case of the Vandermonde matrix
and its inverse associated with the extremal points of Tn there seem to be only
few references, such as [6] and [11]. For our purpose we find it appropriate to
start from the scratch.
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The zero-symmetry of the x∗
n,i’s induces a special form for the polynomials

Gn,i(x):

for n even:

Gn,i(x) = x2
n

∏

s= n
2 +1,s 6=n−i

(x2 − (x∗
n,s)

2) − xx∗
n,n−i

×
n

∏

s= n
2 +1,s 6=n−i

(x2 − (x∗
n,s)

2), if 0 ≤ i ≤ n

2
− 1,

(3.7)

Gn,i(x) =

n
∏

s= n
2 +1

(x2 − (x∗
n,s)

2), if i =
n

2
, (3.8)

Gn,i(x) = x2
n

∏

s= n
2 +1,s 6=i

(x2 − (x∗
n,s)

2)

+ xx∗
n,i

n
∏

s= n
2 +1,s 6=i

(x2 − (x∗
n,s)

2), if
n

2
+ 1 ≤ i ≤ n.

(3.9)

for n odd:

Gn,i(x) = x

n
∏

s= n+1
2 ,s 6=n−i

(x2 − (x∗
n,s)

2)

− x∗
n,n−i

n
∏

s= n+1
2 ,s 6=n−i

(x2 − (x∗
n,s)

2), if 0 ≤ i ≤ n − 1

2
,

(3.10)

Gn,i(x) = x

n
∏

s= n+1
2 ,s 6=i

(x2 − (x∗
n,s)

2)

+ x∗
n,i

n
∏

s= n+1
2 ,s 6=i

(x2 − (x∗
n,s)

2), if
n + 1

2
≤ i ≤ n.

(3.11)

It follows from this representation that for each index k with n − k even
the coefficient ri,k of the even resp. odd part of Gn,i(x) is, up to the factor
(−1)n−k, an elementary symmetric function associated with the following sets
of positive roots:

X2
n,i = {(x∗

n, n
2 +1)

2, (x∗
n, n

2 +2)
2, . . . , (x∗

n,n−1)
2, (x∗

n,n)2} \ {(x∗
n,n−i)

2},

if n is even and 0 ≤ i ≤ n
2 − 1;

X2
n, n

2
= {(x∗

n, n
2 +1)

2, (x∗
n, n

2 +2)
2, . . . , (x∗

n,n−1)
2, (x∗

n,n)2},
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if n is even and i = n
2 ;

X2
n,i = {(x∗

n, n+1
2

)2, (x∗
n, n+1

2 +1
)2, . . . , (x∗

n,n−1)
2, (x∗

n,n)2} \ {(x∗
n,n−i)

2},

if n is odd and 0 ≤ i ≤ n−1
2 .

If X = {x1, x2, . . . , xw−1, xw} is a set of positive distinct real numbers, we
will denote by Cq = Cq(X) the q-th (positive) elementary symmetric function
of the variables from X, i.e. Cq is the sum of the products, q at a time, of the

xu’s, with C0 = 1, C1 =
w
∑

u=1
xu, . . . , Cw =

w
∏

u=1
xu, compare with [15, p. 72].

For later reference we set, for k with n − k even,

|ri,k| = |ri,n−2q| = Cq(X
2
n,i) (3.12)

with 0 ≤ i, q ≤ n
2 − 1 if n is even, and 0 ≤ i, q ≤ n−1

2 if n is odd;

|rn
2 ,k| = |rn

2 ,n−2q| = Cq(X
2
n, n

2
) (3.13)

with 0 ≤ q ≤ n
2 if n is even.

Next we turn to the denominator of Vi,k in (3.4). It follows by inspection
that the numbers Gn,i(x

∗
n,i) alternate in sign (see also Lemma 2 below):

sign (Gn,i(x
∗
n,i)) = (−1)n−i, 0 ≤ i ≤ n. (3.14)

These observations suffice to state a “skeleton theorem” concerning the
matrix Vn: All the elements of Vn are uniquely determined if one knows the
elements in the upper halves of the columns (Vi,k)0≤i≤n, where only those
columns need to be considered whose column index k is such that n−k is even,
see also [20, p. 341]. More precisely, we have:

Lemma 1. If n − k is even and 0 ≤ i ≤
⌊

n
2

⌋

, then

Vi,k = (−1)kVn−i,k and Vi,k−1 = x∗
n,iVi,k. (3.15)

Proof. The proof follows immediately from (3.4) to (3.11), and (3.14). �

With this information at hand we continue with the proof of our Theorem.
We deduce from (3.3), with j < k and n − k even and n − j odd, that

|aj + ak| =
∣

∣

∣

n
∑

i=0

Pn(x∗
n,i)Vi,j +

n
∑

i=0

Pn(x∗
n,i)Vi,k

∣

∣

∣
=

∣

∣

∣

n
∑

i=0

Pn(x∗
n,i)(Vi,j + Vi,k)

∣

∣

∣

≤
n

∑

i=0

|Pn(x∗
n,i)||Vi,j + Vi,k| ≤

n
∑

i=0

|Vi,j + Vi,k|.
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This upper bound can be split into

n
2 −1
∑

i=0

|Vi,j +Vi,k|+
n
∑

i= n
2 +1

|Vi,j +Vi,k|+ |Vn
2 ,k|,

if n is even (note that Vn
2 ,j = 0), resp. into

n−1
2

∑

i=0

|Vi,j +Vi,k|+
n
∑

i= n−1
2 +1

|Vi,j +Vi,k|,

if n is odd. Now, Lemma 1 implies:

|aj + ak| ≤
n
2 −1
∑

i=0

|Vi,j + Vi,k| +
n
2 −1
∑

i=0

|Vi,j − Vi,k| + |Vn
2 ,k|, if n is even,

|aj + ak| ≤
n−1

2
∑

i=0

|Vi,j + Vi,k| +
n−1

2
∑

i=0

|Vi,j − Vi,k|, if n is odd.

The obvious identity |γ + δ| + |γ − δ| = 2max{|γ|, |δ|}, valid for any real
numbers γ and δ, further implies that

|aj + ak| ≤ 2

n
2 −1
∑

i=0

max{|Vi,j |, |Vi,k|} + |Vn
2 ,k|, if n is even, (3.16)

|aj + ak| ≤ 2

n−1
2

∑

i=0

max{|Vi,j |, |Vi,k|}, if n is odd. (3.17)

Suppose now that we had |Vi,j | ≤ |Vi,k| for all i in question. We could then
conclude as follows, see (3.15):

|aj + ak| ≤ 2

n
2 −1
∑

i=0

|Vi,k| + |Vn
2 ,k| =

n
∑

i=0

|Vi,k|, if n is even,

|aj + ak| ≤ 2

n−1
2

∑

i=0

|Vi,k| =
n

∑

i=0

|Vi,k|, if n is odd.

It follows from the oscillating properties of the polynomials Tn (and Πn−1),

see [20, p. 340] and the references given there, that
n
∑

i=0

|Vi,k| = |tn,k|, if n − k

is even (and
n
∑

i=0

|Vi,k| = |cn−1,k|, if n − k is odd), and hence we would get

|aj + ak| ≤ |tn,k|. Applying the same conclusion to the polynomial P ◦
n ∈ Cn,

where P ◦
n(x) = Pn(−x), we would likewise get |aj − ak| ≤ |tn,k|, and hence

altogether |aj |+ |ak| ≤ |tn,k|, as required, since |γ|+ |δ| = max{|γ + δ|, |γ − δ|}
is valid for any real numbers γ and δ.

According to Lemma 1 we have, for j = k − 1, Vi,k−1 = x∗
n,iVi,k, and

|x∗
n,i| ≤ 1, so that we get |Vi,k−1| ≤ |Vi,k| for all admissible k and i and thus

we arrive at a proof of (1.10). But we are particularly interested in the cases
where j ≤ k − 3 and n − j is odd.
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The basic problem is thus to

(∗) find out for which values of k, with n − k even, there holds |Vi,j | ≤ |Vi,k|,
for all j ≤ k − 3 with n − j odd, and for all i with 0 ≤ i ≤ ⌊n−1

2 ⌋.

In an attempt to approach the problem (∗) we confine ourselves to find out
for which values of k, with l < k and both n − l and n − k even, there holds
|Vi,l| ≤ |Vi,k| for all admissible i since this implies |Vi,l−1| = |x∗

n,i||Vi,l| ≤ |Vi,l| ≤
|Vi,k| for all i under consideration. But we are aware that this confinement may
produce less admissable values of k than is asked for in (∗). The reason is that
it may happen, for some i, that |Vi,j | ≤ |Vi,k| holds, but |Vi,j+1| ≤ |Vi,k| does
not hold (j ≤ k − 3 with n− j odd). This case occurs for the first time for the
polynomial degree n = 10 and k = 8 and i = j = 5, see Remark 7 below.

We will thus compare the magnitude of the elements in the i-th row of the
upper half of the matrix Vn, and will thereby consider only those columns of
Vn whose column index has the same parity as n. To this end, we have to delve
even deeper into the structure of Vn.

We shall first need the explicit value of the denominator of Vi,k and obtain
(thus extending (3.14)), see also [6, p. 1395]:

Lemma 2.

Gn,i(x
∗
n,i) = (−1)n−in22−n, if i = 0 or i = n, (3.18)

Gn,i(x
∗
n,i) = (−1)n−in21−n, if 1 ≤ i ≤ n − 1. (3.19)

Proof. Consider Sn+1 ∈ Φn+1 given by

Sn+1(x) =

n
∏

s=0

(x − x∗
n,s) =

n+1
∑

p=0

σn+1,px
p. (3.20)

Differentiating Sn+1 at x = x∗
n,i yields S′

n+1(x
∗
n,i) = Gn,i(x

∗
n,i), 0 ≤ i ≤ n.

Since the interior extrema x∗
n,1, x

∗
n,2, . . . , x

∗
n,n−1 of Tn are the zeros of Un−1 =

T ′
n/n (the Chebyshev polynomial of the second kind of degree n − 1, with

leading coefficient 2n−1, see [23, p. 7]), we get

Sn+1(x) = 21−n(x2 − 1)Un−1(x), (3.21)

S′
n+1(x) = 21−n(x2 − 1)U ′

n−1(x) + 22−nxUn−1(x). (3.22)

Evaluating (3.22) at x = x∗
n,0 = −1 resp. at x = x∗

n,n = 1 gives Gn,0(x
∗
n,0) =

−22−nUn−1(−1) = (−1)nn22−n resp. Gn,n(x∗
n,n) = 22−nUn−1(1) = n22−n,

which proves (3.18). Evaluating (3.22) at x = x∗
n,i, 1 ≤ i ≤ n − 1, gives

Gn,i(x
∗
n,i) = 21−n((x∗

n,i)
2−1)U ′

n−1(x
∗
n,i). Invoking the identities U ′

n−1 = T ′′
n /n

and (1 − x2)T ′′
n (x) − xT ′

n(x) + n2Tn(x) = 0 (see [23, p. 36]), gives

Gn,i(x
∗
n,i) =

21−n((x∗
n,i)

2 − 1)(−n2Tn(x∗
n,i))

n(1 − (x∗
n,i)

2)
= (−1)n−in21−n,
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which proves (3.19). �

Next, we are going to establish an explicit representation for the coefficients
σn+1,p of Sn+1 in terms of the known coefficients tn,k of Tn. Note that,
according to (3.20), the σn+1,p’s are, up to the sign, elementary symmetric
functions associated with the zero-symmetric extremal points (1.5) of Tn, com-
pare with [15, p. 53].

Lemma 3. The coefficients σn+1,p of the monic polynomial Sn+1 are ex-
plicitly given by

σn+1,n+1 = 1, (3.23)

σn+1,p = p−1n−121−n(n2 + p − 1)tn,p−1, (3.24)

if n + 1 − p is even and 2 ≤ p ≤ n − 1,

σn+1,p = 0, if n − p is even and 2 ≤ p ≤ n, (3.25)

σn+1,1 = (−1)
n
2 n21−n, if n is even, (3.26)

σn+1,1 = 0, if n is odd,

σn+1,0 = (−1)
n+1

2 21−n, if n is odd (3.27)

σn+1,0 = 0, if n is even.

Proof. We apply the known identity (x2 − 1)Un−1(x) = xTn(x) − Tn−1(x)
(see (1.2) and [23, p. 9]) to alternatively obtain Sn+1(x) = 21−n(xTn(x) −
Tn−1(x)). Expanding the right-hand side of this equation in powers of x and
collecting coefficients of like powers immediately yields (3.23) to (3.27). �

The explicit expression in Lemma 3 for the coefficients of Sn+1 induces an
explicit expression for the coefficients of Gn,i ∈ Φn, that is, for the numerator
of Vi,k:

Lemma 4. The coefficients ri,k(0 ≤ i, k ≤ n) of the monic polynomials
Gn,i (see (3.1)) are explicitly given by

ri,n = 1, (3.28)

ri,n−1 = x∗
n,iri,n = x∗

n,i, (3.29)

ri,n−2 = σn+1,n−1 + (x∗
n,i)

2, (3.30)

ri,n−3 = x∗
n,i(σn+1,n−1 + (x∗

n,i)
2) = x∗

n,iri,n−2, (3.31)

ri,n−2q =

q
∑

t=0

(x∗
n,i)

2tσn+1,n+1−2(q−t), if 2 ≤ q ≤ ⌊n+1
2 ⌋, (3.32)

ri,n−2q−1 = x∗
n,iri,n−2q, if 2 ≤ q ≤ ⌈n−2

2 ⌉. (3.33)

Proof. Since Sn+1 is an even resp. odd polynomial, depending on the parity
of n + 1, we obtain recursively by synthetic polynomial division, in virtue of

Gn,i(x) = Sn+1(x)
(x−x∗

n,i
) , see also [15, p. 53]:
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ri,n = σn+1,n+1 = 1, (3.34)

ri,n−1 = σn+1,n + x∗
n,iσn+1,n+1 = σn+1,n + x∗

n,iri,n = x∗
n,iri,n = x∗

n,i, (3.35)

ri,n−2 = σn+1,n−1 + x∗
n,i(σn+1,n + x∗

n,iσn+1,n+1) (3.36)

= σn+1,n−1 + x∗
n,iri,n−1 = σn+1,n−1 + (x∗

n,i)
2,

ri,n−3 = σn+1,n−2 + x∗
n,i(σn+1,n−1 + x∗

n,i(σn+1,n + x∗
n,iσn+1,n+1)) (3.37)

= σn+1,n−2 + x∗
n,i(σn+1,n−1 + (x∗

n,i)
2)

= x∗
n,i(σn+1,n−1 + (x∗

n,i)
2) = x∗

n,iri,n−2,

and generally, by mathematical induction, we get (3.32) and (3.33). �

From this we eventually obtain an explicit expression for the (n + 1)2

elements of Vn:

Lemma 5. The elements Vi,k, 0 ≤ i, k ≤ n, of the inverse of the Vander-
monde matrix (3.5) associated with the extremal points of Tn are given as
follows:

(a) Elements V0,k, if n − k is even, are:

V0,n = (−1)nn−12n−2, (3.38)

V0,n−2q = (−1)nn−12n−2

q
∑

t=0

σn+1,n+1−2(q−t), if 1 ≤ q ≤ ⌈n−2
2 ⌉. (3.39)

V0,0 = 0, if n is even. (3.40)

(b) Elements Vi,k with 1 ≤ i ≤ ⌊n−1
2 ⌋, if n − k is even, are:

Vi,n = (−1)n−in−12n−1, (3.41)

Vi,n−2q = (−1)n−in−12n−1

q
∑

t=0

(x∗
n,i)

2tσn+1,n+1−2(q−t), (3.42)

if 1 ≤ q ≤ ⌈n−2
2 ⌉.

Vi,0 = 0, if n is even. (3.43)

(c) Elements Vi,k in the row for i = n
2 , if n is even and n − k is even, are:

Vn
2 ,n = (−1)

n
2 n−12n−1, (3.44)

Vn
2 ,n−2q = (−1)

n
2 n−2(n − 2q + 1)−1(n2 + n − 2q)tn,n−2q, (3.45)

if 2 ≤ n − 2q ≤ n − 2,

Vn
2 ,0 = 1. (3.46)

Those elements Vi,k of Vn not covered by identities (3.38) to (3.46) can be
recovered from these identities by applying Lemma 1.
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Proof. The proof is a straightforward combination of the preceding Lemmas 2,
3, and 4. �

With this additional information at hand we are able to complete the proof
of our Theorem. Since we treat the marginal cases n ≤ 5 separately, we will
henceforth assume that n ≥ 6. Consider first an even n, and pick in Vn the
middle row, with row number i = n

2 . In that row the elements in the columns
k with n − k even read as given in (3.44), (3.45), and (3.46).

We set, invoking the definitions (3.13) and (3.19),

|Vn
2 ,n−2q| =

|rn
2 ,n−2q|

|Gn, n
2
(x∗

n, n
2
)| = |rn

2 ,n−2q|n−12n−1

= Cq(X
2
n, n

2
)n−12n−1, 0 ≤ q ≤ n

2
,

(3.47)

and compare the ratio of two consecutive such elements:

Lemma 6. If n is even, then

|Vn
2 ,n−2q|

|Vn
2 ,n−2q−2|

=
|rn

2 ,n−2q|
|rn

2 ,n−2q−2|
=

Cq(X
2
n, n

2
)

Cq+1(X2
n, n

2
)

= Fn(q) =
4(n2 + n − 2q)(n − q − 1)(q + 1)

(n2 + n − 2q − 2)(n − 2q + 1)(n − 2q)
.

(3.48)

Proof. The identities follow from (1.3), (3.45) and (3.47) by straightforward
calculation. �

We will consider Fn(q) a real function in the variable q and with parameter n.

Lemma 7. For n even, the function Fn(q) in (3.48) is strictly monotone

increasing for q = 0, 1, . . . , n
2 −1 with Fn(0)= 4

n+2 <1 and Fn(n
2 −1)= n2+2

6 >1.

Proof. The proof follows from (3.48) by making use of a well-known inequality
for elementary symmetric functions (see [10, p. 52], [15, p. 73], [28, p. 238]),
stated here with respect to the set X2

n, n
2
:

(Cq(X
2
n, n

2
))2 − Cq−1(X

2
n, n

2
)Cq+1(X

2
n, n

2
) > 0. (3.49)

This inequality implies
Cq(X2

n, n
2

)

Cq+1(X2
n, n

2
)

>
Cq−1(X

2
n, n

2
)

Cq(X2
n, n

2
)

, that is, Fn(q) > Fn(q−1)

for all q = 1, . . . , n
2 − 1. The evaluation of the marginal cases Fn(0) and

Fn(n
2 − 1) is straightforward. �

The monotonicity of Fn at the integer points of the interval [0, n
2 − 1] and

the values of Fn at the endpoints of that interval imply that Fn will cross the
line y = y(q) = 1 at some interior point of the interval [0, n

2 − 1]. Actually, Fn
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is strictly monotone increasing on the whole interval [0, n
2 − 1], as follows from

calculus since we have there 0 < F ′
n(q) = α(q)

β(q) with

α(q) = 4
(

10n2 − 2n3 − 15n4 + n5 + 5n6 + n7

+ q(−24n + 28n2 + 42n3 − 26n4 − 18n5 − 2n6)

+ q2(24 − 72n − 18n2 + 72n3 + 18n4)

+ q3(48 − 48n − 48n2) + 24q4
)

,

β(q) = (n − 2q)2(1 + n − 2q)2(−2 + n + n2 − 2q)2.

The cubic equation in q (see (3.48)), Fn(q) − 1 = 0, i.e.,

q3 +
q2(−2n2 − 6n + 5)

4
+

q(2n3 + n2 − 5n + 1)

4
+

(−n4 + 2n3 + n2 − 2n)

16
= 0,

yields with the aid of Cardano’s formula a suitable solution q = q##, and in
order to continue the argument with integer values, we choose q = q∗∗ = ⌈q##⌉,
as is explicitly given in (2.3).

We thus have Cq(X
2
n, n

2
) = Fn(q)Cq+1(X

2
n, n

2
) with Fn(q) ≥ 1 for all q ≥ q∗∗

and this means

|Vn
2 ,n−2q| = Cq(X

2
n, n

2
)n−12n−1 ≥ |Vn

2 ,n−2q−2| = Cq+1(X
2
n, n

2
)n−12n−1

for all q ≥ q∗∗, and hence |Vn
2 ,n−2q∗∗ | ≥ |Vn

2 ,n−2q| for all q ≥ q∗∗, i.e.,

|Vn
2 ,n−2q∗∗ | ≥ |Vn

2 ,n−2q∗∗−2| ≥ |Vn
2 ,n−2q∗∗−4| ≥ · · · ≥ |Vn

2 ,2|,

and eventually
|Vn

2 ,k∗∗ | ≥ |Vn
2 ,k| ≥ |Vn

2 ,j | = 0 (3.50)

for all j < k ≤ k∗∗ = n − 2q∗∗ with n − k even and n − j odd.
This set of inequalities describes an ordering of elements in the middle row

of Vn, where n is even. Observe that k∗∗ < n since 0 < q## and hence
1 ≤ q∗∗. We continue with an even n and consider now the rows of Vn with
row number i where 0 ≤ i ≤ n

2 − 1. We proceed as follows, going back on the
solution already found for the row number i = n

2 : We compare row-wise the
elements in the upper halves of two arbitrary columns with column number
k − 2 = n − 2q − 2 and k = n − 2q, where q∗∗ ≤ q ≤ n

2 − 2. We will
show that then |Vi,n−2q| ≥ |Vi,n−2q−2| ≥ |x∗

n,i||Vi,n−2q−2| = |Vi,n−2q−3| holds
for all i with 0 ≤ i ≤ n

2 , where the second inequality is trivial. Since the
pair of columns with column number k − 2 and k is arbitrary (subject to
4 ≤ k ≤ k∗∗ = n − 2q∗∗), we eventually will arrive at |Vi,k∗∗ | ≥ |Vi,k| ≥ |Vi,j |
for all indices j < k ≤ k∗∗ = n − 2q∗∗, with n − k even and n − j odd, and for
all i.

Lemma 8. Let (Vi,k−2)0≤i≤n and (Vi,k)0≤i≤n, with 4 ≤ k ≤ k∗∗ and n− k
even, denote two columns of the matrix Vn, where n is even and k∗∗ = n−2q∗∗
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with q∗∗ given by (2.3). For the elements of these columns then holds the
inequality

|Vi,k−2| ≤ |Vi,k| for 0 ≤ i ≤ n

2
− 1, (3.51)

and hence (3.51) holds for all i, by virtue of Lemma 1 and (3.50).

Proof. We start with 0 ≤ i ≤ n
2 − 2, and with the obvious inequality

(x∗
n,n−i−1)

2 < (x∗
n,n−i)

2 and multiply both sides of this inequality by the
positive quantity

(Cq(X
2
n,i\{(x∗

n,n−i−1)
2}))2 − Cq+1(X

2
n,i\{(x∗

n,n−i−1)
2})Cq−1(X

2
n,i\{(x∗

n,n−i−1)
2}),

see [10, p. 52], [15, p. 73], [28, p. 238], where

X2
n,i = {(x∗

n, n
2 +1)

2, (x∗
n, n

2 +2)
2, . . . , (x∗

n,n−1)
2, (x∗

n,n)2} \ {(x∗
n,n−i)

2}

and

X2
n,i \ {(x∗

n,n−i−1)
2} = X2

n,i+1 \ {(x∗
n,n−i)

2}
= {(x∗

n, n
2 +1)

2, (x∗
n, n

2 +2)
2, . . . , (x∗

n,n−1)
2, (x∗

n,n)2} \ {(x∗
n,n−i−1)

2, (x∗
n,n−i)

2}.

We temporarily set X2
n,i\{(x∗

n,n−i−1)
2} = X2, and thus get

(x∗
n,n−i−1)

2((Cq(X
2))2 − Cq+1(X

2)Cq−1(X
2))

< (x∗
n,n−i)

2((Cq(X
2))2 − Cq+1(X

2)Cq−1(X
2)).

Adding Cq(X
2)Cq+1(X

2)+(x∗
n,n−i−1)

2(x∗
n,n−i)

2Cq(X
2)Cq−1(X

2) to both sides
of the latter inequality results in

[Cq+1(X
2) + (x∗

n,n−i−1)
2Cq(X

2)][Cq(X
2) + (x∗

n,n−i)
2Cq−1(X

2)]

< [Cq(X
2) + (x∗

n,n−i−1)
2Cq−1(X

2)][Cq+1(X
2) + (x∗

n,n−i)
2Cq(X

2)].

It follows from the definition of elementary symmetric functions that the
linear combinations within the square brackets on the left-hand side of this
inequality can be replaced by Cq+1(X

2
n,i) and Cq(X

2
n,i+1), see also [10, p. 54],

[15, p. 54] or [28, p. 235].
Analogously we get for the linear combinations within the square brackets

on the right-hand side of this inequality the values Cq(X
2
n,i) and Cq+1(X

2
n,i+1).

This amounts to the inequality |ri,k−2||ri+1,k| < |ri,k||ri+1,k−2| or, equivalently,
|Vi,k−2||Vi+1,k| < |Vi,k||Vi+1,k−2|, from which we deduce

|Vi,k−2|
|Vi,k|

<
|Vi+1,k−2|
|Vi+1,k|

for 0 ≤ i ≤ n

2
− 2. (3.52)

We now consider the case i = n
2 −1 which will link the rows with row number

n
2 − 1 and n

2 . Consider the elementary symmetric function Cq = Cq(X
2
n, n

2 −1)
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where X2
n, n

2 −1 = X2
n, n

2
\ {(x∗

n, n
2 +1)

2} = {(x∗
n, n

2 +2)
2, . . . , (x∗

n,n−1)
2, (x∗

n,n)2}.
We have (x∗

n, n
2 +1)

2((Cq)
2 −Cq+1Cq−1) > 0, since both factors are positive. By

adding Cq+1Cq−1 > 0 to both sides of this inequality we obtain the inequality
Cq+1[Cq + (x∗

n, n
2 +1)

2Cq−1] < Cq[Cq+1 + (x∗
n, n

2 +1)
2Cq]. The values in square

brackets are, by the same argument as above, identical with Cq(X
2
n, n

2
) resp.

Cq+1(X
2
n, n

2
). We thus get the inequality Cq+1Cq(X

2
n, n

2
) < CqCq+1(X

2
n, n

2
), i.e.,

Cq+1(X
2
n, n

2 −1)Cq(X
2
n, n

2
) < Cq(X

2
n, n

2 −1)Cq+1(X
2
n, n

2
).

This implies |rn
2 −1,k−2||rn

2 ,k| < |rn
2 −1,k||rn

2 ,k−2|, or equivalently,

|Vn
2 −1,k−2||Vn

2 ,k| < |Vn
2 −1,k||Vn

2 ,k−2| and hence
|V n

2
−1,k−2|

|V n
2

−1,k| <
|V n

2
,k−2|

|V n
2

,k| . But

for i = n
2 we already know from (3.50) that

|V n
2

,k−2|
|V n

2
,k| ≤ 1 holds. Altogether we

thus obtain the following chain of inequalities so that 3.51 holds:

|V0,k−2|
|V0,k|

<
|V1,k−2|
|V1,k|

<
|V2,k−2|
|V2,k|

< · · · <
|Vn

2 −1,k−2|
|Vn

2 −1,k|
<

|Vn
2 ,k−2|

|Vn
2 ,k|

≤ 1. �

We next turn to the case of odd n. Similarly to the case of even n, we want

to show that there is some k∗∗ = n − 2q∗∗ with
|Vi,n−2q−2|
|Vi,n−2q| =

|ri,n−2q−2|
|ri,n−2q| ≤ 1 for

all k = n−2q ≤ k∗∗, i.e. for all q ≥ q∗∗, and for all i subject to 0 ≤ i ≤ (n−1)/2,
and hence for all i, in view of Lemma 1. To this end, we first observe that we
have, for any k = n − 2q,

|Vi,k−2|
|Vi,k|

<
|Vi+1,k−2|
|Vi+1,k|

for 0 ≤ i ≤ n − 1

2
− 1. (3.53)

We skip the proof of this inequality since it is quite analogous to the proof of
(3.52), however, the set X2

n,i is now adjusted to n odd, i.e.,

X2
n,i = {(x∗

n, n+1
2

)2, (x∗
n, n+1

2 +1
)2, . . . , (x∗

n,n−1)
2, (x∗

n,n)2} \ {(x∗
n,n−i)

2},

and the row number i now ranges from 0 to n−1
2 − 1, since for n odd the

exceptional “middle-row” does not exist.
Consider now the ratio of two elements in row number i = n−1

2 of Vn. The
elements are supposed to have column numbers k − 2 and k, with n − k even.
We obtain

|Vn−1
2 ,k|

|Vn−1
2 ,k−2|

=
|Vn−1

2 ,n−2q|
|Vn−1

2 ,n−2q−2|
=

|rn−1
2 ,n−2q|

|rn−1
2 ,n−2q−2|

=
Cq(X

2
n, n−1

2

)

Cq+1(X2
n, n−1

2

)
,

with X2
n, n−1

2

= {(x∗
n, n+1

2 +1
)2, . . . , (x∗

n,n−1)
2, (x∗

n,n)2}.
By adding Cq(X

2
n, n−1

2

)Cq+1(X
2
n, n−1

2

) to both sides of the obvious inequality

(x∗
n, n+1

2

)2
[

(Cq(X
2
n, n−1

2

))2 − Cq−1(X
2
n, n−1

2

)Cq+1(X
2
n, n−1

2

)
]

> 0
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we get

Cq(X
2
n, n−1

2

)[Cq+1(X
2
n, n−1

2

) + (x∗
n, n+1

2

)2Cq(X
2
n, n−1

2

)]

> Cq+1(X
2
n, n−1

2

)[Cq(X
2
n, n−1

2

) + (x∗
n, n+1

2

)2Cq−1(X
2
n, n−1

2

)],

or
[Cq+1(X

2
n, n−1

2

) + (x∗
n, n+1

2

)2Cq(X
2
n, n−1

2

)]

[Cq(X2
n, n−1

2

) + (x∗
n, n+1

2

)2Cq−1(X2
n, n−1

2

)]
>

Cq+1(X
2
n, n−1

2

)

Cq(X2
n, n−1

2

)
.

Set

Y 2
n, n+1

2

= X2
n, n−1

2

∪ {(x∗
n, n+1

2

)2} = {(x∗
n, n+1

2

)2, (x∗
n, n+1

2 +1
)2, . . . , (x∗

n,n)2}.

The preceding inequality then reads, taking reciprocal values and invoking
the already used formula for linear combinations of elementary symmetric
functions,

Cq(Y
2
n, n+1

2

)

Cq+1(Y 2
n, n+1

2

)
<

Cq(X
2
n, n−1

2

)

Cq+1(X2
n, n−1

2

)
. (3.54)

A moment’s reflection will show that the left-hand side of this inequality

is identical to the ratio
|σn+1,n+1−2q|

|σn+1,n+1−2q−2| of nonzero (absolute) coefficients of the

here even polynomial Sn+1, see (3.20). And this value we already have come
across:

Lemma 9. If n is odd, then

|σn+1,n+1−2q|
|σn+1,n+1−2q−2|

= Fn(q), (3.55)

where Fn(q) is identical with the function given in (3.48).

Proof. The proof follows from (1.3) and (3.24) by straightforward division. �

Here we are using the definition (3.48) equally for even and odd values of
the parameter n.

We thus get the identical solution q## of Fn(q)−1 = 0 as before, and hence

the same integer value q∗∗ as explicitly given in (2.3), so that
Cq(Y 2

n,
n+1

2

)

Cq+1(Y 2

n,
n+1

2

)
=

Fn(q) ≥ 1 for q ≥ q∗∗ and thus Cq+1(X
2
n, n−1

2

) ≤ Cq(X
2
n, n−1

2

) for q ≥ q∗∗.

Together with (3.53) we thus obtain the following chain of inequalities:

|V0,k−2|
|V0,k|

<
|V1,k−2|
|V1,k|

<
|V2,k−2|
|V2,k|

< · · · <
|Vn−1

2 ,k−2|
|Vn−1

2 ,k|
=

Cq+1(X
2
n, n−1

2

)

Cq(X2
n, n−1

2

)
≤ 1,

so that eventually |Vi,k−2| ≤ |Vi,k| holds for 0 ≤ i ≤ n−1
2 and for all k =

n − 2q ≤ k∗∗ = n − 2q∗∗.
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This completes the main part of the proof for the Addendum 2. We are
now going to show that the function Fn(q) majorizes some appropriately chosen
function fn(q). From this we will then derive an alternative but weaker upper
bound k∗ in place of k∗∗ (see Addendum 1).

Lemma 10. Let the function Fn(q) be given by (3.48) and the function
fn(q) be defined by

fn(q) =
4n(1 + q)

(n + 2)(n − 2q)
. (3.56)

Then, for n ≥ 6, we have 0 < Fn(0) = fn(0) = 4
n+2 < 1, and for q ∈ (0, ⌊n−1

2 ⌋]
there holds Fn(q) > fn(q) > 0.

Proof. We consider fn(q) a real function in the variable q and with parameter
n, and we focus on the case of n even because the argument is quite analogous
for n odd. The following inequalities are readily verified:

0 < Fn(0) = fn(0) =
4

n + 2
< 1,

fn(
n

2
− 1) =

n2

2 + n
> 1,

f ′
n(q) = 4n

(n−2q)2 > 0 on [0, n
2 −1], i.e., fn(q) is strictly monotone increasing and

hence positive on this interval. To show that Fn(q) > fn(q) holds for q > 0,
which implies that fn(q) crosses the line y = y(q) = 1 later than Fn(q), we
proceed as follows: Consider the auxiliary function gn(q) in the variable q and
with parameter n, given by

gn(q) = q(4 − 2n) + n3 − n2 − 6n + 4.

It follows by straightforward calculations that we have, for n ≥ 6,

gn(0) = n3 − n2 − 6n + 4 > 0,

gn(
n

2
− 1) = n(n2 − 2n − 2) > 0,

gn(0) > gn(
n

2
− 1).

These properties imply that the linear function gn(q) is positive on [0, n
2 − 1].

Let A(q) denote the numerator and B(q) > 0 the denominator of the
rational function H(q) on [0, n

2 − 1],

H(q) =
A(q)

B(q)
=

(2 + n)(n2 + n − 2q)(n − q − 1)

(1 + n − 2q)n(n2 + n − 2q − 2)
.

We then have A(q) − B(q) = qgn(q) > 0, since gn(q) > 0. Hence we get

H(q) = A(q)
B(q) > 1, and this completes the proof of the last claim of Lemma 10

since H(q) = Fn(q)
fn(q) , as is verified by straightforward division. �
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The linear equation in q (see (3.56)), fn(q) − 1 = 0, i. e.,

q(6n + 4) − n2 + 2n = 0,

has the solution q = q#, and in order to continue the argument with integer
values, we choose q = q∗ = ⌈q#⌉ as explicitly given in (2.2). According to
Lemma 10, we have q∗∗ ≤ q∗ and hence k∗ = n − 2q∗ ≤ k∗∗ = n − 2q∗∗, and
the Table shows that k∗ < k∗∗ holds for some n. Thus k∗ is an admissible
weaker upper bound for k. We still need to show that k∗ ≥ k◦ holds in order
to finalize the proof of the Theorem. This inequality, which is a strict one for
some n, is contained in the following lemma:

Lemma 11. The upper bounds k◦ and k∗ in the Theorem, defined by

k◦ = k◦(n) = largest integer ≤ 2n

3
with n − k◦ even,

k∗ = k∗(n) = n − 2q∗ with q∗ = ⌈q#⌉ = ⌈n2 − 2n

6n + 4
⌉,

are related to each other as follows:

k◦ + 2 = k∗, if n = 6m + 1 or n = 6m + 2, where m ≥ 1 is an integer, and
k◦ = k∗, otherwise.

Proof. Let n = 6m+1, then 2n
3 = 4m+ 2

3 , so that k◦ = k◦(n)∈{4m, 4m−1},
but for n−k◦ to be even we must choose k◦ = 4m−1. We obtain q# = n2−2n

6n+4 =

m − ε with ε = 10m+1
36m+10 and hence 0 < ε < 1. This implies q∗ = ⌈q#⌉ = m and

thus k∗ = n − 2q∗ = 4m + 1 = k◦ + 2.
Similarly, for n = 6m + 2 one gets k◦ = 4m and q# = m − ε with 0 < ε =

4m
36m+16 < 1. This implies q∗ = ⌈q#⌉ = m and thus k∗ = n − 2q∗ = 4m + 2 =
k◦ + 2.

Likewise, for n = 6m one gets 2n
3 = 4m, which implies k◦ = 4m. Furthermore,

q# = m − ε with 0 < ε = 16m
36m+4 < 1. This implies q∗ = ⌈q#⌉ = m and thus

k∗ = n − 2q∗ = 4m = k◦.
Likewise, for n = 6m+3 one gets 2n

3 = 4m+2, which implies k◦ = 4m+1.
Furthermore, q# = m + ε with 0 < ε = 2m+3

36m+22 < 1. This implies q∗ = ⌈q#⌉ =
m + 1 and thus k∗ = n − 2q∗ = 4m + 1 = k◦.

The proof is also quite analogous for the remaining cases:

n = 6m+4 with k◦ = 4m+2, q# = m+ 8m+8
36m+28 , q∗ = m+1, and k∗ = 4m+2,

and

n = 6m+5 with k◦ = 4m+3, q# = m+ 14m+5
36m+34 , q∗ = m+1, and k∗ = 4m+3,

which exhaust all possible cases. �

3.2. Proof of the Inequalities for the Marginal Cases 3 ≤ n ≤ 5

We now turn to a proof of (2.8) and start with the lowest polynomial degree,
n = 3, so that we have to show that |a0| + |a3| ≤ |t3,3| = 4 holds for the
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coefficients a0 and a3 of any polynomial P3(x) = a0 + a1x + a2x
2 + a3x

3

from class B3 or C3. According to (3.17), we evaluate the right-hand side of

the inequality |aj + ak| ≤ 2

n−1
2

∑

i=0

max{|Vi,j |, |Vi,k|}, where we have to set here

j = 0 and k = n = 3, i.e. we evaluate the upper bound 2(max{|V0,0|, |V0,3|} +
max{|V1,0|, |V1,3|}), and the goal is to verify that this expression indeed equals 4.
We obtain by elementary calculations according to Lemmas 1, 3 and 5:

|V0,0| = |V0,1| =
1

6
, |V0,3| =

2

3
, |V1,0| = |x∗

3,1||V1,1| =
1

2
|V1,1| =

2

3
, |V1,3| =

4

3
.

Hence we effectively have

|a0 + a3| ≤ 2
(

max{|V0,1|, |V0,3|} + max{|x∗
3,1||V1,1|, |V1,3|}

)

= 4.

The same upper bound applies to |a0 − a3| since the upper bound depends on
the grid (1.5) but not on the values of P3 resp. of P ◦

3 on that grid.
The verification of the inequalities for the remaining polynomial degrees

n = 4 and n = 5 follows the same pattern as for the case n = 3. The absolute
values of the affected elements of V4 are, suppressing their elementary derivation
from Lemma 5,

|V0,2| =
1

2
, |V1,2| = 2, |V2,2| = 3, |V0,4| = 1, |V1,4| = 2, |V2,4| = 2.

To show that |a1|+|a4| ≤ |t4,4| = 8 holds, we evaluate only the corresponding
upper bound (3.16), where |x∗

4,1| = 1√
2
, and get, as required:

|a1 + a4| ≤ 2
(

max{|V0,2|, |V0,4|} + max{|x∗
4,1||V1,2|, |V1,4|}

)

+ |V2,4| = 8.

The absolute values of the affected elements of V5 are, again suppressing
their derivation from Lemma 5,

|V0,1|=
1

10
, |V1,1|=

2

5
(3−

√
5), |V2,1|=

2

5
(3+

√
5), |V0,3|=

6

5
,

|V1,3|= |V1,1|+
16

5
, |V2,3| = |V2,1|+

16

5
, |V0,5| =

8

5
, |V1,5| =

16

5
, |V2,5| =

16

5
.

To show that |a0|+|a3| ≤ |t5,3| = 20 holds, we evaluate only the correspond-

ing upper bound (3.17), with |x∗
5,1| = 1

2

√

3+
√

5
2 , |x∗

5,2| = 1
2

√

3−
√

5
2 , and get:

|a0 + a3| ≤ 2
[

max{|V0,1|, |V0,3|} + max{|x∗
5,1||V1,1|, |V1,3|}

+ max{|x∗
5,2||V2,1|, |V2,3|}

]

= 20.

To show that |a0|+|a5| ≤ |t5,5| = 16 holds, we evaluate only the correspond-
ing upper bound (3.17) and get:

|a0 + a5| ≤ 2
[

max{|V0,1|, |V0,5|} + max{|x∗
5,1||V1,1|, |V1,5|}

+ max{|x∗
5,2||V2,1|, |V2,5|}

]

= 16.
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Finally, to show that |a2| + |a5| ≤ |t5,5| = 16 holds, we evaluate only the
corresponding upper bound (3.17) and likewise get, as required:

|a2 + a5| ≤ 2
[

max{|V0,3|, |V0,5|} + max{|x∗
5,1||V1,3|, |V1,5|}

+ max{|x∗
5,2||V2,3|, |V2,5|}

]

= 16.

3.3. Proof of the Counterexample

We at last turn to a proof of (2.9). From (3.39) and (3.42) we deduce

V0,n−2 =
2n−2

n

[

(−1)n + (−1)n+1
(n

4
+

1

2

)

]

,

and, for 1 ≤ i ≤ ⌊n−1
2 ⌋,

Vi,n−2 =
2n−1

n

[

(−1)n−i(x∗
n,i)

2 + (−1)n+1−i
(n

4
+

1

2

)

]

.

Hence,

|cn−1,n−3| =

n
∑

i=0

|Vi,n−3| =

n
∑

i=0

|x∗
n,i||Vi,n−2| = 2|V0,n−2| + 2

⌊n−1
2 ⌋

∑

i=1

|x∗
n,i||Vi,n−2|

=
2n−1

n

∣

∣

∣
(−1)n + (−1)n+1

(n

4
+

1

2

)

∣

∣

∣

+
2n

n

⌊n−1
2 ⌋

∑

i=1

|x∗
n,i|

∣

∣

∣
(−1)n−i(x∗

n,i)
2 + (−1)n+1−i

(n

4
+

1

2

)

∣

∣

∣

=
2n−1

n

(n

4
− 1

2

)

+
2n

n

⌊n−1
2 ⌋

∑

i=1

|x∗
n,i|

[

(n

4
+

1

2

)

− (x∗
n,i)

2
]

.

Replacing (x∗
n,i)

2 by 1 yields the estimate

|cn−1,n−3| >
2n−1

n

(n

4
− 1

2

)

+
2n

n

⌊n−1
2 ⌋

∑

i=1

|x∗
n,i|

(n

4
− 1

2

)

=
2n−1

n

(n

4
− 1

2

)

[

1 + 2

⌊n−1
2 ⌋

∑

i=1

|x∗
n,i|

]

.

We proceed to show that the product of the last two factors is larger than
n for all n ≥ 9, which implies |cn−1,n−3| > 2n−1. That |cn−1,n−3| > 2n−1 holds
for n = 7 and n = 8, too, can be verified through straightforward computation
of c6,4 and c7,5 with reference to the interpolatory condition (1.13) resp. (1.12):
|c6,4| = 65.297 · · · > 64 = t7,7 and |c7,5| = 146.751 · · · > 128 = t8,8.
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We shall need the two identities for the sum of the moduli of the extremal
points of ±Tn as given in Lemma 12 below. With the aid of these identities,
which are not without interest in themselves, it is then readily verified by
methods of calculus that we indeed have

(n

4
− 1

2

)

[

1 + 2

n−1
2

∑

i=1

|x∗
n,i|

]

=
(n

4
− 1

2

) 1

sin π
2n

> n for all odd n ≥ 9,

(n

4
− 1

2

)

[

1 + 2

n
2 −1
∑

i=1

|x∗
n,i|

]

=
(n

4
− 1

2

) 1

tan π
2n

> n for all even n ≥ 10.

Lemma 12.

n
∑

i=0

|x∗
n,i| = 2 + 2

n−1
2

∑

i=1

|x∗
n,i| = 1 +

1

sin π
2n

, if n is odd,

n
∑

i=0

|x∗
n,i| = 2 + 2

n
2 −1
∑

i=1

|x∗
n,i| = 1 +

1

tan π
2n

, if n is even.

Proof. Dirichlet’s kernel identity [15, p. 148] reads

DN (x) = 1 + 2
N

∑

m=1

cos mx =
sin(N + 1

2 )x

sin x
2

, if x 6= 2Nπ. (3.57)

Since
n
∑

i=0

|x∗
n,i| = 2 +

n−1
∑

i=1

|x∗
n,i| = 2 +

n−1
∑

i=1

| cos (n−i)π
n

|, we get, in view of

(1.4),

n
∑

i=0

|x∗
n,i| = 2 + 2

n−1
2

∑

m=1

cos
mπ

n
, if n is odd,

n
∑

i=0

|x∗
n,i| = 2 + 2

n
2 −1
∑

m=1

cos
mπ

n
, if n is even.

Applying identity (3.57) for DN (π
n
) to the first of these equations (n odd) gives:

n
∑

i=0

|x∗
n,i| = 1 +

(

1 + 2

n−1
2

∑

m=1

cos
mπ

n

)

= 1 +
1

sin π
2n

.

Similarly, applying the identity for DN (π
n
) to the second of these equations

(n even) gives:

n
∑

i=0

|x∗
n,i| = 1 +

(

1 + 2

n
2 −1
∑

m=1

cos
mπ

n

)

= 1 +
1

tan π
2n

,

as required. �
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4. Concluding Remarks

Remark 1. As mentioned before, for a given polynomial degree n the
upper bound k∗∗ in Addendum 2 of our Theorem needs not to be optimal,
i.e. largest possible, see also Remark 7 below. A numerical calculation of the
optimal upper bound kopt = kopt(n) for 6 ≤ n ≤ 30 shows that either k∗∗ = kopt

or k∗∗ + 2 = kopt holds, see the Table, so that k∗∗ is rather close to kopt.

And this conclusion actually holds for all n ≥ 6, in the following sense: The
magnitude of k∗∗ can be sketched by means of the inequality |k∗∗+1−

⌈

n√
2

⌉

| ≤
1, where 1√

2
= 0.7071 . . ., which we have verified numerically utilizing (2.3).

Incidentally, the magnitude of the index k• = k•(n) which determines the
height H(Tn) of Tn, i.e. H(Tn) = max0≤k≤n |tn,k| = |tn,k• |, can be sketched
by means of the similar inequality |k• −

⌈

n√
2

⌉

| ≤ 1, which we have verified

numerically utilizing (5.27) in [21]. A further numerical calculation involving
Lemma 5 indicates that likewise the optimal upper bound kopt can be sketched
by means of the similar inequality |kopt −

⌈

n√
2

⌉

| ≤ 1. This means that we

approximately have, with an error not greater than 2, k∗∗ + 1 ≈ k• ≈ kopt ≈
⌈

n√
2

⌉

. For example, for n = 36 we get k∗∗(36) = k•(36) = kopt(36) =
⌈

36√
2

⌉

=

26. The connection of k∗∗ with the index k• manifests itself in the asymptotic
equation q## − qH = 1

4 for n → ∞, where q## = q##(n) is defined in (2.3) by
means of k∗∗ = n − 2q∗∗ with q∗∗ = ⌈q##⌉. The value qH = qH(n) is defined
in [21, p. 69] by means of k• = n− 2⌈qH⌉ with qH = n

2 − 5
8 − 1

8

√
8n2 − 7. The

question of uniqueness of k• is settled in [21].

Remark 2. Szegő’s coefficient inequality (Theorem C) can be extended
as follows: In place of Pn ∈ Bn or Pn ∈ Cn consider Pn ∈ Dn where Dn =
{Pn ∈ Φn : |Pn(xn,i)| ≤ Mi for 0 ≤ i ≤ n}. Here the points xn,i belong to
some arbitrary zero-symmetric partition of I, i.e. −1 = xn,0 < xn,1 < · · · <
xn,n−1 < xn,n = 1 with xn,i + xn,n−i = 0, and the upper bounds Mi are given
nonnegative real numbers, not all zero, which are symmetric in the sense that
Mi = Mn−i. Obviously, Cn is a special case of Dn. The set Dn has been
utilized e.g. in [5], [19], [24] to extend coefficient inequalities originally stated
for Pn ∈ Bn or Pn ∈ Cn, and it has been shown in [5, pp. 2744–2745] (see also
[21, p. 49]) that a Szegő-like coefficient inequality analogous to (1.10) holds
for Pn ∈ Dn. In place of Tn the extremal polynomial is now Rn, given by
Rn(xn,i) = (−1)n−iMi for 0 ≤ i ≤ n. An extension of our present Theorem to
class Dn can also be derived, but we leave the details to the reader. Multivariate
extensions of Theorem C are provided in [20], [21].

Remark 3. In (1.10) and (2.1) sharp majorants, in terms of the nonzero
coefficients of Tn, are provided for pairs of coefficients |aj | + |ak| of Pn ∈ Bn

or Pn ∈ Cn under the assumption j < k. The natural question arises under
which conditions the Chebyshev polynomial will likewise be extremal for pairs
of coefficients |ak|+ |aj | with k < j (where n−k even and n−j odd). A partial
answer for the case of ak and its successor coefficient ak+1, i.e. j = k + 1, has
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already been announced in [20, pp. 326–327]. The posed question is explored
in an unpublished manuscript of the present author.

Remark 4. In [18, Theorem 2] the authors have obtained an interesting
generalization of Chebyshev’s inequality, see (1.11), for the leading coefficient
of Pn, not covered by (1.10) and (2.1):

If Pn ∈ Bn or Pn ∈ Cn with Pn(x) =
n
∑

k=0

akxk, then

|a0| + |an| ≤ 2n−1, if n is odd, (iii)

with equality if Pn = ±Tn.

It provides another example where the Chebyshev polynomial is extremal
for a pair of coefficients. Estimates for the magnitude of the leading coefficients
of bounded polynomials are explored in an unpublished manuscript of the
present author. We announce here a partial result which for n ≥ 7 further
extends the above generalization (iii) of Chebyshev’s coefficient inequality and
also generalizes Chebyshev’s coefficient inequality in case n is even:

If Pn ∈ Bn or Pn ∈ Cn with Pn(x) =
n
∑

k=0

akxk, then

|a0| + |an| ≤ 2n−1 as well as (iv)

|a2| + |an| ≤ 2n−1, if n ≥ 7 is odd,

|a1| + |an| ≤ 2n−1 as well as (v)

|a3| + |an| ≤ 2n−1, if n ≥ 8 is even,

with equality if Pn = ±Tn.

Actually, inequality (iii) is stated in [18] for Pn ∈ Dn, and the inequalities
(iv) and (v) can also be lifted to Pn ∈ Dn with the extremal polynomial Rn

replacing Tn, see Remark 2 above.

Remark 5. Majorants for pairs of coefficients of complex polynomials
which are bounded by 1 in the unit disc are given in [3], [15, pp. 125–130], [22,
pp. 637–641].

Remark 6. There is an interesting connection of the polynomial Sn+1 (see
(3.20)) with the snake polynomial Mn+1,0 = (Tn+1 − Tn−1)/2 (with respect to
the circular majorant ϕ0(x) =

√
1 − x2), whose graph on I lies entirely in the

unit disc, i.e. |Mn+1,0(x)| ≤ ϕ0(x) for all x ∈ I, and alternately touches there
±ϕ0(x), compare with [15, p. 546], [21, Section 2.2 and 5.3], [23, p. 145]. In
view of (1.2) and the proof of Lemma 3, Sn+1 is a scalar multiple of Mn+1,0:

Sn+1 = 21−nMn+1,0 for n ≥ 2.
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and hence the properties of Mn+1,0 and of its coefficients, as described in [21],
can be easily carried over to Sn+1.

Remark 7. A column of Vn which determines the height H(Tn) of the
Chebyshev polynomial Tn (compare [21]),

H(Tn) = max
0≤k≤n

|tn,k| = max
0≤k≤n

n
∑

i=0

|Vi,k| = ‖Vn‖1 (column-sum norm),

needs not to coincide with a column of Vn that contains the maximal element
of Vn in absolute value, and hence determines the matrix norm ‖Vn‖max =
(n + 1)max0≤i,k≤n |Vi,k|.

For example, for n = 10 we obtain from (1.3) and Lemma 5: H(T10) =

‖V10‖1 =
10
∑

i=0

|Vi,8| = |t10,8| = 1280, but on the other hand max0≤i,k≤10 |Vi,k| =

|V5,6| = 1696
10 , which gives ‖V10‖max = 1865.6. By the way, the largest element,

in absolute value, in column (Vi,8)0≤i≤10 is |V5,8| = 1536
10 < |V5,6|.

This example also shows that although the inequality |V5,6| ≤ |V5,8| is false,
we nevertheless have 0 = |V5,5| ≤ |V5,8| and in fact |Vi,5| ≤ |Vi,8| for all i, and

hence |a5|+ |a8| ≤ |t10,8| for all P10(x) =
10
∑

k=0

akxk with P10 ∈ C10. This is why

for n = 10 we have kopt = 8 > k∗∗ = 6, see the Table.
In the present example (n = 10) there is the coincidence that |t10,k• | =

H(T10) for k• = kopt = 8. But for n = 12 we have |t12,k• | = H(T12) = 6912 for
k• = 8 6= kopt = 10, see the Table and Remark 1 above.
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[2] P. Borwein and T. Erdélyi, “Polynomials and Polynomial Inequalities”,
Graduate Texts in Mathematics Vol. 161, Springer-Verlag, New York, 1995.

[3] L. Brickman, Q. I. Rahman, and St. Ruscheweyh, On pairs of coefficients
of bounded polynomials, Proc. Amer. Math. Soc. 92 (1984), 533–537.
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