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1. Introduction

In various applications it is necessary to approximate functions preserving
properties like monotonicity, convexity, concavity, etc. The last 25 years have
marked extensive research in the theory of shape-preserving approximation by
means of polynomials and splines. The most significant results were gathered
in [1], [2].

Note that a function f possesses some shape properties in the interval [0, 1]
usually means that the element f belongs to some cone V in C[0, 1].

Let X be a normed linear space, X, be a n-dimensional subspace of X,
and V be a cone in X. In the theory of shape-preserving approximation the
following classical problems are of interest:

1. the problem of existence, uniqueness, and characterization of the best
shape-preserving approximation g* € X,, NV to f € V, where

—*llv = inf —allx:
If =gl x geglnm/ﬂf 9llx;

*This work is supported by RFBR (grant 10-01-00270) and the President of the Russian
Federation (NS-4383.2010.1).
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2. estimation of the deviation of ANV from X, NV, i.e.

E(ANV:X,NV)= s inf —gllx:
( i XnNV) fesggv gegpmVHf gllx;

3. estimation of the (nonlinear) relative n-widths

d, (A — inf inf -
ANV, V)x %ﬁzfesﬂﬁvge%mv”f gllx,

the leftmost infimum being taken over all n-dimensional subspaces X, of
X, such that X,, NV # {;

4. estimation of the linear relative n-widths.

In this paper we obtain some results related to the latter task.

Note that the definition of (nonlinear) relative n-width was first introduced
in 1984 by Konovalov [3]. Though he considered a problem not connected
with preserving shapes, the concept of relative n-width arises in the theory of
shape-preserving approximation naturally. Of course, it is impossible to obtain
d,(ANV,V)x and determine optimal subspaces X,, (if they exist) for all A,
V, X. Nevertheless, some estimations of (nonlinear) relative shape-preserving
n-widths have been obtained in papers [4, 5, 6].

Definition 1. Let L : X — X be a linear operator and V', W be cones in
X, V,W # 0. We say that the operator L has the shape-preserving property
relative to the cones V., W, if L(V) C W.

Let X be a linear normed space, and let V', W be some cones in X, W C V.

Definition 2. Linear relative n-width of a set ANV C X in X relative to
the cones (V, W) is defined by

p(ANV, V. W)x := inf sup — L, ,
( )x by, s IIf fllx

where the infimum is taken over all linear continuous operators L, : X — X
of finite rank n and L, (V) C W.

If 0,(A, V,W)x = supseq [|(I — Ln)fl|lx, where L, is a linear continuous
operator of rank at most n, such that L, (V) C W, then L, is said to be an
optimal linear operator for 0, (A, V,W)x.

Determination of linear relative m-widths is of interest in the theory of
shape-preserving approximation as, knowing the value of the relative linear
n-width 6,(A NV, V,W)x, we can estimate how good or bad (in terms of
optimality) this or that finite-dimensional method with shape-preserving prop-
erty L, (V) C W is.

The estimations of linear relative n-widths of some sets of algebraic polyno-
mials in X = C[0, 1] relative to the cone of all non-negative continuous functions
defined on [0, 1] was considered in [7].
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Based on the ideas of Korovkin [8], Videnskii [9] and Vassiliev [10], the
work [11] presents some estimations of the order of approximation of the r-th
derivative of a function by means of linear operators under different assumptions
related to shape preserving properties. In this paper estimations of the error
of approximation by means of linear shape-preserving rank n operators will be
presented in the form of estimations of linear relative n-widths.

2. The Cone

A function f : [0,1] — R is said to be p-monotone on [0,1], p > 1, if and
only if for all choices of p + 1 distinct points to,...,t, in [0,1] the inequality
[to,...,tp]f >0
holds, where [to,...,t,]f = Z?:o f(t;)/w'(t;) denotes the p-th divided differ-

ence of fat 0 <ty <t; <---<t, <1, and w(t) =[[}_,(t — ;).

Note that 2-monotone functions are just convex functions. The class of all
p-monotone functions on [0, 1] is denoted by AP[0,1]. If f € CP[0,1], then
f € AP[0,1] if and only if f®P)(t) > 0, t € [0,1]. We set for completeness
A%0,1] :={f € C[0,1]: f(t) >0, te[0,1]}.

Let 0 = (00, ...,01) € RE1 5, € {~1,0,1}, and o, # 0.

Following ideas of [12], we denote

A% (g):={f € C[0,1]: o,f € AP[0,1], 0 < p < k}. (1)

Without loss of generality we will assume that og = 1. By A%%(o) we
denote the cone of all non-negative continuous functions, defined on [0,1]:

A"O (o) :={feC[0,1]: f>0 in [0,1]}.

3. Examples of Linear Shape-Preserving Operators

Let Li—1f(-;Y0,Y1,---,Yk—1) € span{eq,...,ex_1}, e;(t) = t*, denote the
Lagrange interpolating polynomial, which coincides with the function f at the
points 0 <yp <y1 < ... <yYp—1 < Lt

Ly—1f(isyo, 1, - yk—1) = f(yi), i=0,....,k—1.
Set y_1 = —00, yx = 00.
Lemma 1. Let f € A% (o).
(a) If ooor > 0, then for all x € Ug(jo_l)m [Yh—1—(2i41)s Yk —1—2i]

ooLk—1f(x;90, -, yk—1) > 0. (2)
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(b) If coor < 0, then for all @ € ULT My 1 oi0), Y1 (i) the
inequality (2) holds.

Proof. Suppose that x € (y;_1,u), 1 =0,...,k. It follows from f € A% (o)
that o Ag—1f(z;90,...,yk—1) > 0, where

eo() eo(¥o) eo(Yr—1)
Akt fl@i o, o) = (D) |0
f(x) f(o) fyr—1)

It follows from

Ap—1f(x;905 -, Yk—1)
= (=D MLy f (w390, o pe1) — F()]det (ea(y)) iy 10 (3)

that op (=1 "Ly 1 f(z590,- s ye—1) > on(—1)F "1 f(x). Since aof > 0,
the inequality (2) holds for appropriate x. O

It is obvious from (3) that
Li—1ei( 590,y Yk—1) = €i, 1=0,...,k—1. (4)
Let k,ne N, 2 <k <n. Weset z; = %,i:17...,n, and denote
Zi={j: 0<j<nandi—-k+2<j<i}.
We define the linear operator Agfa}n : C10,1] — C0,1] by
AE:’]nf(a:) =Ly f(@2i6), 5 Tiy+r), T E [T mip], 1=0,...,n—1, (5)
where j(i) € Z; satisfies

Ly—1f(@5253), -+ Tja)4x) =0 forall fe A%* () and z € [x;_1,x;).

It is obvious that AE:]n is of finite rank n.

Lemma 2. Let AE:]n : C[0,1] — C[0,1] be defined by (5). Then

1A ex — erlleppn < er(k)n™, (6)

where ¢1(k) does not depend on n.
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Proof. It follows from the definition of the operator AEZ]” and (3) that

IAK ex — exllopoy

< — Ly 0 TR S
< fax max Ie[:giﬂ] lex(z) — Le—1ex(z525, -« o, Tjpk—1)]
Ap_ ST Tidk—
< max max  sup STt
0<i<n JE€Zi yew; wipq] det (6i(xs))i:O,’s:j
= — =:c1(k)n~F.
(Dax max sup ) H (x — xs) ca(k)n

velrominl s e

Theorem 1. Let ALU : C0,1] — C0,1] be defined by (5). Then:

-
(a) AYL(AY (o)) € A%(0);

(b) Aflei=rei i=0,....k—1;

(¢) limy, oo HAE;]nek - ekHc[o,l] =0

(d) for every f € C[0,1], lim,_ HAE:]nf - fHC[O,l] =0.

Proof. Part (a) follows from Lemma 1, (b) follows from (4), and (c) follows
from (6). Finally, proposition (d) follows from (a)—(c) and [12]. O

4. Estimations of Linear Relative Shape-Preserving
n-Widths

Denote by II; the subspace of C[0,1], spanned by {eg,e1,...,er}, where
ei(t) = t'/il. Set P := {p € I : ||D*pllcpo,1) < 1}, where D* denotes the
differential operator of order k, D* = d* /dxz*.

Theorem 2. Let A%*(g), k > 2, be the cone defined by (1). Then

(a) 0P 01 A (0), A% (), A% (0)) oy = 0, m =0, k= 1;

(b) ca(k)n™" < 6, (PenA%*(5), A% (o), AO’O(J))C[OJ] < ci(k)n=F, where
c1(k), ca(k) do not depend on n.

Proof. The first claim (a) of Theorem 2 follows from Theorem 1 (b). We
proceed with the proof of the claim (b).
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Denote Ry, := {a = (ag, ...,ar) € R¥*1: |ax| < 1}. We have
0n (P 0 A% (), A% (0), A™(0)) 0

inf sup p— Lupllc
Ln(A%F(0))CA%(0) pepnA0k (o) ” “ [0,1]

= inf sup sup |p(x) — Lyp(x
Ln(A%k(0))CA%O(a) pep,nALK (o) ze[0,1]| (@) @) (7)

k
inf sup sup arller(x) — Lye,.(z
Ln(A%F(0))CA%O(0) 4e[0,1] a€Ry ;' lex () (@)

= inf sup |ex(x) — Lpeg(x)|,
) S lex(z) k()]

i

where L, (o) stands for the set of all linear continuous operators L, of finite
rank n, L, (A% (a)) € A%9(g), with

L’I’Lej:ej? j:O,...,k_l. (8)

The upper inequality in (b) follows from (7) and Lemma 2.
Consider a linear operator L,, € L,(0). Let {v1,...,v,} be a system of
functions generating the linear space {L, f : f € C[0,1]}, i.e.

span{vy,...,v,} ={Lnf: f € C[0,1]}.

. . n ;— .
Consider the matrix A = (vj(zi))j’:Li:l, where z; = 1’1—_11, i =1,...,n.

Observe that the rank of the matrix A is not equal to 0. Indeed, if rank A = 0,
then L, f(z) = >, a;(f)v;(z) =0,i=0,...,n, for all f € C0,1], which is
j=1
impossible in view of (8).
Next, we take a vector § = (&g, ...,5,) € R"*1 such that

n

Z|5i|:17 i:(sivj(zi):(L j=1,...,n.
i=0

i=0
Let a function h € C[0, 1] be such that h(z;) = signd;, ¢ =0, ...,n. Define a
function g € C[0,1] by g(z) = Liyh(x; 2j, ..., zj+k) on [2z;, 2zi41], ¢ = 0,...,n—1,
with j being taken arbitrary from the set Z;. It is easy to verify that the

function g possesses the following properties: ¢(z;) = sign d;, ¢ = 0,...,n;
DFg is continuous and finite on every interval (2iy2i41), 1=0,...,n — 1.

Since DFej, = 1, the value of D¥g is equal to the leading coefficient of the
polynomial Lyh(-;z2;,...,2j4%). Then for & € (z;, z;41) there is j € Z;, such
that

eo(z)  eo(zj+1) €o(Zj+k)
er-1(25) er-1(zj+1) .- er-1(2jtk)
sign 6 sign d; ... signd;
Dkg(l') _ gn o, gNn 0541 g 0j+k

det (ei(zs))k gtk

;
i=0, s=j
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Then for all z € [0,1]\ {z0,...,2n}

j+k A
Zp:j det (ei(ZS))i:O, 5=j, s#£p

|D¥g(z)| < max max

SIS det (ei(m) 2,
itk
~ max  max =2 I <icm<jtr, tmzp (Bm — 21)
0<i<n—-1 j€Z; Hj§l<m§j+k (Zm - Zl)

(9)

j1cicmejrn Gm —21)

IN

k+1) max max
( )0§i<n—1 JEZ; Hj§l<m§j+k) (Zm - Zl)

1
(k+1) max max
o<i<n—1 jeZi [[;1<mejin (Zm — %)

= co(k)n".

It follows from L,,g € span{vo,...,v,} that > 8;L,g(2;) = 0. Then

1= 161 = 6ig(z) =D 6i(9(zi) — Lng(zi))
0 i=0 i=0 (10)

From (8) it follows that for z € [0, 1]

|Lng(2) = 9(2)| = |Ln(g — e0g(2))(2)]- (11)

Let us denote g. = g — egg(z). According to a result from [12], there exist
Pz, € span {607 o '7616}7 .] = 1727 such that Pz,j + (_1)]9z € AO,k(a.)’ .] = 1a2a
and

2,5 € A (o) \ A% (0);
©.,i(2) =0 < ¢, () for all x € [0,1] \ {z};

D*¢. ; = oy||D"gl|, where |[D¥g| := sup |D*g(z)].
2€[0,1\{z0,-.-,2n }

Then L, (¢, + (—=1)7g.) € A%%(o) for j = 1,2, and consequently,
[Ln(g — €09(2))(2)| < max{|Lnp-,1(2)], [Lnepz2(2)[}- (12)
From ¢, ;j(2) =0, j = 1,2, and (8) we deduce that
|Ln¢z,j(2)| = |Lng:,i(2) — ¢2,5(2)]
<N Ln; — ¢2jllcoa) < ID%gll - | Lnex — exllcpo,)-
From (9), (10), (11), (12) and (13) we get

1
1Dk gl

[ Lner — ekl =
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We conclude by (7) that

1
inf su - L, > .
b0 (e o) S P = Lnplicpo, TDeg]
Now the left-hand side inequality in Theorem 2(b) follows from (9). O

5. Conclusion

Let X be a normed linear space, and V, W be some cones in X, W C V. It
is obvious that

S(ANV,V,W)x > 6,(ANV)x, (14)

where 0, (A N V)x denotes the linear n-width of ANV in X. Note that if
V = X, then the relative n-width of A in X is equal to the linear n-width of
Ain X for all A.

As it has been shown in the preceding section,

0, m=0,...,k—1,
5n(Pma AO’k(U% AO,O(O-))C'[OJ] = Cnika m= ka
0, m=k+1,...,n—1.

Thus, if a linear operator with finite rank n has the shape-preserving property
relative to the cone A%*(¢), then the degree of approximation of continuous
functions by this operator cannot be better than n=*.

It is known that

5n(P'm N Ao’k(U))C[OJ] = 5n(Pm)C[O,1] = 0, m = 0, ]., e, = 1.

Thus, if A= P, m=k,....,n—1,V =A%(g), W =A%), X = C[0,1],
we have strong inequality in (14).

If we compare the value of linear n-width 0, (P,)cpo,1] with the value of
the relative linear n-width &, (P,,, A% (c), A%%(0)) (0,1, we can see that the
shape-preserving property relative to the cone Ao’k(a) is negative in a sense
that the error of approximation by such operators does not decrease with the
increase of the smoothness of the approximated functions.

It is worth noting that there is a connection between Korovkin theory and
the theory of shape-preserving approximation. It turns out that if we have
Korovkin-type theorem for a sequence of shape-preserving linear operators [12],
then the degree of approximation of continuous functions by linear shape-
preserving finite-dimensional operator is low [11].
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