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The main topic of this paper is approximation by means of linear
shape-preserving operators and estimations of the error of such type of
approximation. The results will be presented in the form of estimations
of relative (shape-preserving) linear widths.
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1. Introduction

In various applications it is necessary to approximate functions preserving
properties like monotonicity, convexity, concavity, etc. The last 25 years have
marked extensive research in the theory of shape-preserving approximation by
means of polynomials and splines. The most significant results were gathered
in [1], [2].

Note that a function f possesses some shape properties in the interval [0, 1]
usually means that the element f belongs to some cone V in C[0, 1].

Let X be a normed linear space, Xn be a n-dimensional subspace of X,
and V be a cone in X. In the theory of shape-preserving approximation the
following classical problems are of interest:

1. the problem of existence, uniqueness, and characterization of the best
shape-preserving approximation g∗ ∈ Xn ∩ V to f ∈ V , where

‖f − g∗‖X = inf
g∈Xn∩V

‖f − g‖X ;

∗This work is supported by RFBR (grant 10-01-00270) and the President of the Russian
Federation (NS-4383.2010.1).
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2. estimation of the deviation of A ∩ V from Xn ∩ V , i.e.

E(A ∩ V ;Xn ∩ V ) = sup
f∈A∩V

inf
g∈Xn∩V

‖f − g‖X ;

3. estimation of the (nonlinear) relative n-widths

dn(A ∩ V, V )X = inf
Xn

sup
f∈A∩V

inf
g∈Xn∩V

‖f − g‖X ,

the leftmost infimum being taken over all n-dimensional subspaces Xn of
X, such that Xn ∩ V 6= ∅;

4. estimation of the linear relative n-widths.

In this paper we obtain some results related to the latter task.
Note that the definition of (nonlinear) relative n-width was first introduced

in 1984 by Konovalov [3]. Though he considered a problem not connected
with preserving shapes, the concept of relative n-width arises in the theory of
shape-preserving approximation naturally. Of course, it is impossible to obtain
dn(A ∩ V, V )X and determine optimal subspaces Xn (if they exist) for all A,
V , X. Nevertheless, some estimations of (nonlinear) relative shape-preserving
n-widths have been obtained in papers [4, 5, 6].

Definition 1. Let L : X → X be a linear operator and V , W be cones in
X, V, W 6= ∅. We say that the operator L has the shape-preserving property
relative to the cones V , W , if L(V ) ⊂ W .

Let X be a linear normed space, and let V , W be some cones in X, W ⊂ V .

Definition 2. Linear relative n-width of a set A ∩ V ⊂ X in X relative to
the cones (V , W ) is defined by

δn(A ∩ V, V,W )X := inf
Ln(V )⊂W

sup
f∈A∩V

‖f − Lnf‖X ,

where the infimum is taken over all linear continuous operators Ln : X → X
of finite rank n and Ln(V ) ⊂ W .

If δn(A, V,W )X = supf∈A ‖(I − Ln)f‖X , where Ln is a linear continuous
operator of rank at most n, such that Ln(V ) ⊂ W , then Ln is said to be an
optimal linear operator for δn(A, V,W )X .

Determination of linear relative n-widths is of interest in the theory of
shape-preserving approximation as, knowing the value of the relative linear
n-width δn(A ∩ V, V,W )X , we can estimate how good or bad (in terms of
optimality) this or that finite-dimensional method with shape-preserving prop-
erty Ln(V ) ⊂ W is.

The estimations of linear relative n-widths of some sets of algebraic polyno-
mials in X = C[0, 1] relative to the cone of all non-negative continuous functions
defined on [0, 1] was considered in [7].
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Based on the ideas of Korovkin [8], Videnskii [9] and Vassiliev [10], the
work [11] presents some estimations of the order of approximation of the r-th
derivative of a function by means of linear operators under different assumptions
related to shape preserving properties. In this paper estimations of the error
of approximation by means of linear shape-preserving rank n operators will be
presented in the form of estimations of linear relative n-widths.

2. The Cone

A function f : [0, 1] → R is said to be p-monotone on [0, 1], p ≥ 1, if and
only if for all choices of p + 1 distinct points t0, . . . , tp in [0, 1] the inequality

[t0, . . . , tp]f ≥ 0

holds, where [t0, . . . , tp]f =
∑p

j=0 f(tj)/w′(tj) denotes the p-th divided differ-

ence of f at 0 ≤ t0 < t1 < · · · < tp ≤ 1, and w(t) =
∏p

j=0(t − tj).
Note that 2-monotone functions are just convex functions. The class of all

p-monotone functions on [0, 1] is denoted by ∆p[0, 1]. If f ∈ Cp[0, 1], then
f ∈ ∆p[0, 1] if and only if f (p)(t) ≥ 0, t ∈ [0, 1]. We set for completeness
∆0[0, 1] := {f ∈ C[0, 1] : f(t) ≥ 0, t ∈ [0, 1]}.

Let σ = (σ0, . . . , σk) ∈ R
k+1, σi ∈ {−1, 0, 1}, and σk 6= 0.

Following ideas of [12], we denote

∆0,k(σ) := {f ∈ C[0, 1] : σpf ∈ ∆p[0, 1], 0 ≤ p ≤ k}. (1)

Without loss of generality we will assume that σ0 = 1. By ∆0,0(σ) we
denote the cone of all non-negative continuous functions, defined on [0,1]:

∆0,0(σ) := {f ∈ C[0, 1] : f ≥ 0 in [0, 1]}.

3. Examples of Linear Shape-Preserving Operators

Let Lk−1f( · ; y0, y1, . . . , yk−1) ∈ span{e0, . . . , ek−1}, ei(t) = ti, denote the
Lagrange interpolating polynomial, which coincides with the function f at the
points 0 ≤ y0 < y1 < . . . < yk−1 < 1:

Lk−1f(yi; y0, y1, . . . , yk−1) = f(yi), i = 0, . . . , k − 1.

Set y−1 = −∞, yk = ∞.

Lemma 1. Let f ∈ ∆0,k(σ).

(a) If σ0σk > 0, then for all x ∈ ∪
[(k−1)/2]
i=0 [yk−1−(2i+1), yk−1−2i]

σ0Lk−1f(x; y0, . . . , yk−1) ≥ 0. (2)



S. P. Sidorov 357

(b) If σ0σk < 0, then for all x ∈ ∪
[(k−2)/2]
i=−1 [yk−1−(2i+2), yk−1−(2i+1)] the

inequality (2) holds.

Proof. Suppose that x ∈ (yl−1, yl), l = 0, . . . , k. It follows from f ∈ ∆0,k(σ)
that σk∆k−1f(x; y0, . . . , yk−1) ≥ 0, where

∆k−1f(x; y0, . . . , yk−1) = (−1)l

∣

∣

∣

∣

∣

∣

∣

∣

e0(x) e0(y0) . . . e0(yk−1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ek−1(x) ek−1(y0) . . . ek−1(yk−1)

f(x) f(y0) . . . f(yk−1)

∣

∣

∣

∣

∣

∣

∣

∣

.

It follows from

∆k−1f(x; y0, . . . , yk−1)

= (−1)k−1+l[Lk−1f(x; y0, . . . , yk−1) − f(x)] det
(

ei(yj)
)k−1, k−1

i=0, j=0
, (3)

that σk(−1)k−1+lLk−1f(x; y0, . . . , yk−1) ≥ σk(−1)k−1+lf(x). Since σ0f ≥ 0,
the inequality (2) holds for appropriate x. �

It is obvious from (3) that

Lk−1ei( · ; y0, . . . , yk−1) = ei, i = 0, . . . , k − 1. (4)

Let k, n ∈ N, 2 ≤ k < n. We set xi = i−1
n−1 , i = 1, . . . , n, and denote

Zi := {j : 0 ≤ j < n and i − k + 2 ≤ j ≤ i}.

We define the linear operator Λ
[σ]
k,n : C[0, 1] → C[0, 1] by

Λ
[σ]
k,nf(x) = Lk−1f(x;xj(i), . . . , xj(i)+k), x ∈ [xi, xi+1], i = 0, . . . , n − 1, (5)

where j(i) ∈ Zi satisfies

Lk−1f(x;xj(i), . . . , xj(i)+k) ≥ 0 for all f ∈ ∆0,k(σ) and x ∈ [xi−1, xi].

It is obvious that Λ
[σ]
k,n is of finite rank n.

Lemma 2. Let Λ
[σ]
k,n : C[0, 1] → C[0, 1] be defined by (5). Then

‖Λ
[σ]
k,nek − ek‖C[0,1] ≤ c1(k)n−k, (6)

where c1(k) does not depend on n.
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Proof. It follows from the definition of the operator Λ
[σ]
k,n and (3) that

‖Λ
[σ]
k,nek − ek‖C[0,1]

≤ max
0≤i<n

max
j∈Zi

sup
x∈[xi,xi+1]

|ek(x) − Lk−1ek(x;xj , . . . , xj+k−1)|

≤ max
0≤i<n

max
j∈Zi

sup
x∈[xi,xi+1]

|∆k−1f(x;xj , . . . , xj+k−1)|

det
(

ei(xs)
)k−1, j+k−1

i=0, s=j

= max
0≤i<n

max
j∈Zi

sup
x∈[xi,xi+1]

∣

∣

∣

∏

j≤s≤j+k−1

(x − xs)
∣

∣

∣
=: c1(k)n−k.

�

Theorem 1. Let Λ
[σ]
k,n : C[0, 1] → C[0, 1] be defined by (5). Then:

(a) Λ
[σ]
k,n(∆0,k(σ)) ⊂ ∆0,0(σ);

(b) Λ
[σ]
k,nei = ei, i = 0, . . . , k − 1;

(c) limn→∞

∥

∥Λ
[σ]
k,nek − ek

∥

∥

C[0,1]
= 0;

(d) for every f ∈ C[0, 1], limn→∞

∥

∥Λ
[σ]
k,nf − f

∥

∥

C[0,1]
= 0.

Proof. Part (a) follows from Lemma 1, (b) follows from (4), and (c) follows
from (6). Finally, proposition (d) follows from (a)–(c) and [12]. �

4. Estimations of Linear Relative Shape-Preserving

n-Widths

Denote by Πk the subspace of C[0, 1], spanned by {e0, e1, . . . , ek}, where
ei(t) = ti/i!. Set Pk := {p ∈ Πk : ‖Dkp‖C[0,1] ≤ 1}, where Dk denotes the

differential operator of order k, Dk = dk/dxk.

Theorem 2. Let ∆0,k(σ), k ≥ 2, be the cone defined by (1). Then

(a) δn

(

Pm ∩ ∆0,k(σ),∆0,k(σ),∆0,0(σ)
)

C[0,1]
= 0, m = 0, . . . , k − 1;

(b) c2(k)n−k ≤ δn

(

Pk∩∆0,k(σ),∆0,k(σ),∆0,0(σ)
)

C[0,1]
≤ c1(k)n−k, where

c1(k), c2(k) do not depend on n.

Proof. The first claim (a) of Theorem 2 follows from Theorem 1 (b). We
proceed with the proof of the claim (b).
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Denote Rk := {a = (a0, . . . , ak) ∈ R
k+1 : |ak| ≤ 1}. We have

δn

(

Pk ∩ ∆0,k(σ),∆0,k(σ),∆0,0(σ)
)

C[0,1]

= inf
Ln(∆0,k(σ))⊂∆0,0(σ)

sup
p∈Pk∩∆0,k(σ)

‖p − Lnp‖C[0,1]

= inf
Ln(∆0,k(σ))⊂∆0,0(σ)

sup
p∈Pk∩∆0,k(σ)

sup
x∈[0,1]

|p(x) − Lnp(x)|

= inf
Ln(∆0,k(σ))⊂∆0,0(σ)

sup
x∈[0,1]

sup
a∈Rk

k
∑

r=0

|ar||er(x) − Lner(x)|

= inf
Ln∈Ln(σ)

sup
x∈[0,1]

|ek(x) − Lnek(x)|,

(7)

where Ln(σ) stands for the set of all linear continuous operators Ln of finite
rank n, Ln(∆0,k(σ)) ⊂ ∆0,0(σ), with

Lnej = ej , j = 0, . . . , k − 1. (8)

The upper inequality in (b) follows from (7) and Lemma 2.
Consider a linear operator Ln ∈ Ln(σ). Let {v1, . . . , vn} be a system of

functions generating the linear space {Lnf : f ∈ C[0, 1]}, i.e.

span {v1, . . . , vn} = {Lnf : f ∈ C[0, 1]}.

Consider the matrix A =
(

vj(zi)
)n, n

j=1, i=1
, where zi = i−1

n−1 , i = 1, . . . , n.

Observe that the rank of the matrix A is not equal to 0. Indeed, if rankA = 0,

then Lnf(zi) =
n
∑

j=1

aj(f)vj(zi) = 0, i = 0, . . . , n, for all f ∈ C[0, 1], which is

impossible in view of (8).
Next, we take a vector δ = (δ0, . . . , δn) ∈ R

n+1, such that

n
∑

i=0

|δi| = 1,

n
∑

i=0

δivj(zi) = 0, j = 1, . . . , n.

Let a function h ∈ C[0, 1] be such that h(zi) = signδi, i = 0, . . . , n. Define a
function g ∈ C[0, 1] by g(x) = Lkh(x; zj , . . . , zj+k) on [zi, zi+1], i = 0, . . . , n−1,
with j being taken arbitrary from the set Zi. It is easy to verify that the
function g possesses the following properties: g(zi) = sign δi, i = 0, . . . , n;
Dkg is continuous and finite on every interval (zi, zi+1), i = 0, . . . , n − 1.

Since Dkek = 1, the value of Dkg is equal to the leading coefficient of the
polynomial Lkh( · ; zj , . . . , zj+k). Then for x ∈ (zi, zi+1) there is j ∈ Zi, such
that

Dkg(x) =

∣

∣

∣

∣

∣

∣

∣

∣

e0(zj) e0(zj+1) . . . e0(zj+k)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ek−1(zj) ek−1(zj+1) . . . ek−1(zj+k)
sign δj sign δj+1 . . . sign δj+k

∣

∣

∣

∣

∣

∣

∣

∣

det
(

ei(zs)
)k, j+k

i=0, s=j

.
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Then for all x ∈ [0, 1] \ {z0, . . . , zn}

|Dkg(x)| ≤ max
0≤i<n−1

max
j∈Zi

∑j+k
p=j det

(

ei(zs)
)k, j+k

i=0, s=j, s 6=p

det
(

ei(zs)
)k, j+k

i=0, s=j

= max
0≤i<n−1

max
j∈Zi

∑j+k
p=j

∏

j≤l<m≤j+k, l,m 6=p (zm − zl)
∏

j≤l<m≤j+k (zm − zl)

≤ (k + 1) max
0≤i<n−1

max
j∈Zi

∏

j+1≤l<m≤j+k (zm − zl)
∏

j≤l<m≤j+k (zm − zl)

= (k + 1) max
0≤i<n−1

max
j∈Zi

1
∏

j+1≤m≤j+k (zm − zj)

=: c2(k)n−k .

(9)

It follows from Lng ∈ span {v0, . . . , vn} that
∑n

i=0 δiLng(zi) = 0. Then

1 =

n
∑

i=0

|δi| =

n
∑

i=0

δig(zi) =

n
∑

i=0

δi(g(zi) − Lng(zi))

≤
n

∑

i=0

|δi| |Lng(zi) − g(zi)| ≤ ‖Lng − g‖C[0,1].

(10)

From (8) it follows that for z ∈ [0, 1]

|Lng(z) − g(z)| = |Ln(g − e0g(z))(z)|. (11)

Let us denote gz = g − e0g(z). According to a result from [12], there exist
ϕz,j ∈ span {e0, . . . , ek}, j = 1, 2, such that ϕz,j + (−1)jgz ∈ ∆0,k(σ), j = 1, 2,
and

ϕz,j ∈ ∆0,k(σ) \ ∆0,0(σ);

ϕz,j(z) = 0 < ϕz,j(x) for all x ∈ [0, 1] \ {z};

Dkϕz,j = σk‖D
kg‖, where ‖Dkg‖ := sup

x∈[0,1]\{z0,...,zn}

|Dkg(x)|.

Then Ln(ϕz,j + (−1)jgz) ∈ ∆0,0(σ) for j = 1, 2, and consequently,

|Ln(g − e0g(z))(z)| ≤ max{|Lnϕz,1(z)|, |Lnϕz,2(z)|}. (12)

From ϕz,j(z) = 0, j = 1, 2, and (8) we deduce that

|Lnϕz,j(z)| = |Lnϕz,j(z) − ϕz,j(z)|

≤ ‖Lnϕz,j − ϕz,j‖C[0,1] ≤ ‖Dkg‖ · ‖Lnek − ek‖C[0,1].
(13)

From (9), (10), (11), (12) and (13) we get

‖Lnek − ek‖C[0,1] ≥
1

‖Dkg‖
.
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We conclude by (7) that

inf
Ln(∆0,k(σ))⊂∆0,0(σ)

sup
p∈Pk

‖p − Lnp‖C[0,1] ≥
1

‖Dkg‖
.

Now the left-hand side inequality in Theorem 2(b) follows from (9). �

5. Conclusion

Let X be a normed linear space, and V,W be some cones in X, W ⊂ V . It
is obvious that

δn(A ∩ V, V,W )X ≥ δn(A ∩ V )X , (14)

where δn(A ∩ V )X denotes the linear n-width of A ∩ V in X. Note that if
V = X, then the relative n-width of A in X is equal to the linear n-width of
A in X for all A.

As it has been shown in the preceding section,

δn(Pm,∆0,k(σ),∆0,0(σ))C[0,1] =











0, m = 0, . . . , k − 1,

c n−k, m = k,

∞, m = k + 1, . . . , n − 1.

Thus, if a linear operator with finite rank n has the shape-preserving property
relative to the cone ∆0,k(σ), then the degree of approximation of continuous
functions by this operator cannot be better than n−k.

It is known that

δn(Pm ∩ ∆0,k(σ))C[0,1] = δn(Pm)C[0,1] = 0, m = 0, 1, . . . , n − 1.

Thus, if A = Pm, m = k, . . . , n − 1, V = ∆0,k(σ), W = ∆0,0(σ), X = C[0, 1],
we have strong inequality in (14).

If we compare the value of linear n-width δn(Pm)C[0,1] with the value of

the relative linear n-width δn(Pm,∆0,k(σ),∆0,0(σ))C[0,1], we can see that the

shape-preserving property relative to the cone ∆0,k(σ) is negative in a sense
that the error of approximation by such operators does not decrease with the
increase of the smoothness of the approximated functions.

It is worth noting that there is a connection between Korovkin theory and
the theory of shape-preserving approximation. It turns out that if we have
Korovkin-type theorem for a sequence of shape-preserving linear operators [12],
then the degree of approximation of continuous functions by linear shape-
preserving finite-dimensional operator is low [11].
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