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Product Cubature Formulae

with Finite-Differences Error Bound
∗

Milko Takev

Product cubature formulae are the usual tool for approximation of
double integrals over rectangular domain. The aim of this note is to
show how the error of a product cubature formula with equally spaced
nodes can be estimated in terms of finite differences of the integrand.
The result is based on a theorem from [4].
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1. Introduction

Let m,n ≥ 1 be fixed integers. By B2 we denote the rectangular region

B2 :=
{

(x, y) ∈ R
2 : 0 ≤ x ≤ n + 1, 0 ≤ y ≤ m + 1

}

.

For a measurable subset M of R or of R
2, L(M) stands for the space of

bounded and Lebesgue integrable functions on M , equipped with the uniform
norm ‖ · ‖.

The set of real-valued bivariate polynomials P (x, y) of degree at most n

with respect to x and of degree at most m with respect to y we denote by
Hn,m, i.e.,

Hn,m :=
{

n
∑

i=0

m
∑

j=0

Cijx
iyj , Cij ∈ R

}

.

For any function f bounded on B2, the best uniform approximation to f

in B2 by polynomials from Hn,m is denoted by En,m(f ;B2),

En,m(f ;B2) := inf{‖ f − P ‖: P ∈ Hn,m}.
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In [4] we proved two-sided estimates for En,m(f ;B2). There we have used the
modulus

ωn,m(f ;B2) := sup{|∆n,m
ξ,η f(x, y)| : (x, y), (x + nξ, y + mη) ∈ B2},

where

∆n,m
ξ,η f(x, y) =

n
∑

i=0

m
∑

j=0

(−1)n+m+i+j

(

n

i

)(

m

j

)

f(x + iξ, y + jη).

The moduli ωn,0(f ;B2) and ω0,m(f ;B2) are defined in a similar way by taking

supremum of |∆n,0
ξ,η f(x, y)| and |∆0,m

ξ,η f(x, y)|, respectively, where

∆n,0
ξ,η f(x, y) =

n
∑

i=0

(−1)n+i

(

n

i

)

f(x + iξ, y),

∆0,m
ξ,η f(x, y) =

m
∑

j=0

(−1)m+j

(

m

j

)

f(x, y + jη).

Further, we defined

ω̄n,m(f ;B2) := max{ωn,m(f ;B2), ωn,0(f ;B2), ω0,m(f ;B2)}.

With this notation, the result obtained in [4] reads as

Theorem 1. For every bounded on B2 function f , the inequalities

2−n−m ω̄n,m(f ;B2) ≤ En−1,m−1(f ;B2) ≤ 56 ω̄n,m(f ;B2) (1)

hold. Moreover, the lower bound in (1) is exact.

Notice that in view of properties of finite differences we have

f ∈ Hn−1,m−1 =⇒ ω̄n,m(f ;B2) = 0,

hence (1) reproduces the fact that En−1,m−1(f ;B2) = 0 when f ∈ Hn−1,m−1.
The upper bound in (1) was established by showing that

∥

∥

∥
f(x, y) −

n
∑

i=1

m
∑

j=1

ℓn−1,i−1(x−1)ℓm−1,j−1(y−1)f(i, j)
∥

∥

∥
≤ 56 ω̄n,m(f ;B2). (2)

Here,

ℓn,i(x) =

n
∏

j=0

j 6=i

x − j

i − j
, i = 0, . . . , n

and

ℓm,j(y) =

m
∏

i=0

i6=j

y − i

j − i
, j = 0, . . . ,m
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are the Lagrange basis polynomials for interpolation at xi = i, i = 0, 1, . . . , n

and at yj = j, j = 0, 1, . . . ,m, respectively. The key ingredient of the proof
of (2) is an integral representation of a univariate function f(x), found by
Sendov [1] (see also [2], and exploited to prove the uniform (with respect to n)
boundedness of the Whitney constants Wn (for the story of Whitney constants
see [1] and the references therein). For the reader convenience, we quote below
this integral representation. If x ∈ [µ, µ + 1) for some µ ∈ {0, . . . , n}, we may
write x = µ + σ, 0 ≤ σ < 1. For such a x, Sendov defined the operator

ϕn(x) = ϕ(µ + σ) =
(−1)n−µ

(

n
µ

)

∫ 1

0

∆n
t f(x − µt)dt.

Then the aforementioned integral representation of f(x) is

f(x) = f(µ + σ)

=
n

∑

i=0

ℓ′n,i(x)

∫ i

0

f(u)du + φn(f ;µ + σ)

+

∫ σ

0

n
∑

i=0

φn(f ;µ + u)ℓ′n,i(µ + σ − u)du, µ = 0, . . . , n.

2. An Error Bound of a Product Cubature Formula

Product cubature formulae are the usual tool for approximation of a double
integral on a rectangular region (see, e.g., [8]). For practice, it is important
to know estimates for the error of the cubature formulae in terms of certain
(easily accessible) characteristics of the integrand.

Here we would like to point out that (2) furnishes a cubature formula with
a useful error bound. Indeed, by integrating (2) over B2 we obtain

∣

∣

∣

∫∫

B2

f(x, y) dxdy − Q[f ]
∣

∣

∣
≤ 56(n + 1)(m + 1) ω̄n,m(f ;B2) , (3)

where

Q[f ] =
n

∑

i=1

m
∑

j=1

Ci,jf(i, j) (4)

is a product cubature formula with coefficients {Ci,j}
n m

i=1,j=1 given by

Cij = ci dj , ci =

n+1
∫

0

ℓn−1,i(x − 1)dx, dj =

m+1
∫

0

ℓm−1,j(y − 1)dy .
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In view of the definition of the modulus ω̄n,m(f ;B2), we have

ω̄n,m(f ;B2) ≤ max
{

∥

∥

∥

∂m+nf

∂xn∂ym

∥

∥

∥
,
∥

∥

∥

∂nf

∂xn

∥

∥

∥
,
∥

∥

∥

∂mf

∂ym

∥

∥

∥

}

provided the derivatives ∂m+nf
∂xn∂ym , ∂nf

∂xn and ∂mf
∂ym exist and are continuous on B2.

Hence, for such integrands f the inequality (3) becomes

∣

∣

∣

∫∫

B2

f(x, y) dxdy − Q[f ]
∣

∣

∣
≤ c max

{∥

∥

∥

∂m+nf

∂xn∂ym

∥

∥

∥
,
∥

∥

∥

∂nf

∂xn

∥

∥

∥
,
∥

∥

∥

∂mf

∂ym

∥

∥

∥

}

,

with c = 56(n + 1)(m + 1). Thus, the error of the product cubature formula
Q[f ] is estimated by the uniform norms on B2 of only three partial derivatives
of the integrand.

Similar estimates for the error of generalized product cubature formulae
(using both function evaluations and line integrals) in the Sobolev classes of
functions have been obtained recently in [5], [6], by means of the Peano kernel
theory. Notice that our error estimate (3) of the product cubature formula
(4) applies to the wider class of functions bounded and integrable on B2.
Unfortunately, this approach seems not applicable to other product cubature
formulae.
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