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Error Bounds for Scattered Data Interpolation

in R
3 by Minimum Norm Networks

Krassimira Vlachkova

We consider the problem of interpolating scattered data in R
3 assuming

that the data are sampled from a smooth bivariate function F = F (x, y).
For a fixed triangulation T associated with the projections of the data
onto the plane Oxy we consider Nielson’s minimum norm interpolation
network S defined in [6] and prove an estimate of the form ‖F−S‖L2(T ) ≤
C(T ) ‖F IV ‖L2(T ). The dependence of the term C(T ) on the triangulation
T is analysed.

1. Introduction

Scattered data interpolation is a fundamental problem in approximation
theory and finds applications in both theory and practice in areas like geology,
meteorology, cartography, medicine, computer graphics, geometric modeling
etc. There exist different methods for solving the problem, excellent surveys
can be found, e.g. in [2, 3, 4, 5].

The problem can be stated as follows: Given a set of points (xi, yi, zi)∈R
3,

i = 1, . . . , n, find a bivariate function F possessing continuous partial derivatives
up to a given order and such that F (xi, yi) = zi. One of the possible approaches
to solving the problem is due to Nielson [6]. The method consists of the
following three steps:

Step 1. Triangulation. Construct a triangulation T of the projection points
Vi = (xi, yi), i = 1, . . . , n, in the plane Oxy.

Step 2. Minimum norm network. The interpolant F and its first order
partial derivatives are defined on the edges of T so as to satisfy an extremal
property. The minimum norm network is a cubic curve network, i.e. on every
edge of T it is a cubic polynomial. Hereafter we denote the minimum norm
network by S.
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Step 3. Blending. The obtained network is extended to F by an appropriate
blending method.

In [1] Andersson et al. pay special attention to the second step of the above
method – the construction of the minimum norm network. By a different
approach, the authors give a new proof of Nielson’s result. They construct a
system of simple linear curve networks called basic curve networks and then
represent the second derivative of the minimum norm network as a linear com-
bination of these basic curve networks.

In this paper we estimate the L2-norm of the error of the interpolation by
the minimum norm network S. We show that when the data are sampled from
a smooth bivariate function F then

‖F − S‖L2(T ) ≤ C(T ) ‖F IV ‖L2(T ), (1)

where the norm is taken over the edges of T . Furthermore we analyse the
constant C(T ) and show that it depends on the geometry of T . Precisely
C(T ) = 2ǫ

5/(
√

3 Λ1) where ǫ is the maximal edge length of T and Λ1 is the
minimal eigenvalue of a matrix related to T .

The paper is organised as follows: In Section 2 we introduce the notation
and present some related results from [1]. In Section 3 we derive error bound
(1) and analyse the term C(T ).

2. Preliminaries

Let n ≥ 3 be an integer and Pi := (xi, yi, zi), i = 1, . . . , n, be different
points in R

3. We call this set of points data. The data are scattered if the
projections Vi := (xi, yi) onto the plane Oxy are different and non-colinear.

A collection of non-overlapping, non-degenerate triangles in R
2 is a tri-

angulation of the points Vi, i = 1, . . . , n, if the set of the vertices of the
triangles coincides with the set of the points Vi, i = 1, . . . , n. Let T be a
given triangulation of the points Vi, i = 1, . . . , n. The union of all triangles in
T is a polygonal domain which we denote by D. In general D is a collection
of polygons with holes. The set of the edges of the triangles in T is denoted
by E. If there is an edge between Vi and Vj in E, it will be referred to by
eij or simply by e if no ambiguity arises. Similarly, eij will denote the vector
corresponding to eij starting at Vi.

Definition 1. A curve network is a collection of real-valued univariate
functions {fe}e∈E defined on the edges in E.

With any real-valued bivariate function F defined on D we naturally associ-
ate the curve network defined as the restriction of F on the edges in E, i.e. for
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e = eij ∈ E,

fe(t) := F
((

1 − t
‖e‖

)

xi + t
‖e‖xj ,

(

1 − t
‖e‖

)

yi + t
‖e‖yj

)

,

where 0 ≤ t ≤ ‖e‖, and ‖e‖ =
√

(xi − xj)2 + (yi − yj)2.
(2)

Furthermore, according to the context F will denote either a real-valued
bivariate function or a curve network defined by (2). We introduce the following
class of functions defined on D:

F := {F (x, y) : F (xi, yi) = zi, i = 1, . . . , n, ∂F/∂x, ∂F/∂y ∈ C(D),

f ′
e ∈ AC[0,‖e‖], f ′′

e ∈ L2
[0,‖e‖], e ∈ E},

and the corresponding class of so-called smooth interpolation curve networks

C(E) := {F|E = {fe}e∈E : F (x, y) ∈ F , e ∈ E}.

Let F ∈ C(E) and G := {ge}e∈E ∈ C(E). We define inner product for F and
G and norm for F as

〈F,G〉 :=

∫

E

FG =
∑

e∈E

∫ ‖e‖

0

fe(t)ge(t) dt,

‖F‖L2(T ) := ‖F‖2 =
(

∑

e∈E

∫ ‖e‖

0

|fe(t)|2dt
)1/2

.

For i = 1, . . . , n, let mi denote the degree of the vertex Vi, i.e. the number
of the edges in E incident to Vi. Furthermore, let {eii1 , . . . , eiimi

} be the edges
incident to Vi listed in clockwise order around Vi. The first edge eii1 is chosen

so that the coefficient λ
(s)
1,i defined below is non-zero – this is always possible.

A basic curve network Bis is defined on E for any pair of indices i, s such that
i = 1, . . . , n and s = 1, . . . ,mi − 2. The support of the basic curve network Bis

consists of the three consecutive edges eiis
, eiis+1

, eiis+2
where Bis is linear.

More precisely, Bis is defined by

Bis(t) :=

{

λ
(s)
r,i

(

1 − t
‖eiis+r−1

‖

)

on eiis+r−1
, r = 1, 2, 3, 0 ≤ t ≤ ‖eiis+r−1

‖,
0 on the other edges of E.

The coefficients λ
(s)
r,i , r = 1, 2, 3, form a zero linear combination of the three

unit vectors along the edges eiis+r−1
starting at Vi. It is shown in [7] that they

can be determined in the following way. Let αiis+r−1
denote the angle between

the vectors eiis+r−1
and eiis+r

, r = 1, 2. Then

λ
(s)
1,i := sinαiis+1

, λ
(s)
2,i := − sin(αiis

+ αiis+1
), λ

(s)
3,i := sin αiis

.

Hence |λ(s)
r,i | ≤ 1, r = 1, 2, 3.
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Note that basic curve networks are associated with points that have at least
three edges incident to them. Thus, if a point is incident to two edges only (this
might happen on the boundary of D) then no basic curve network is associated
with that point. We denote by NB the set of pairs of indices i, s for which a
basic curve network is defined, i.e.,

NB := {is : mi ≥ 3, i = 1, . . . , n, s = 1, . . . ,mi − 2}.

With each basic curve network Bis for is ∈ NB we associate a number dis

defined by

dis =
λ

(s)
1,i

‖eiis
‖ (zis

− zi) +
λ

(s)
2,i

‖eiis+1
‖ (zis+1

− zi) +
λ

(s)
3,i

‖eiis+2
‖ (zis+2

− zi),

which reflects the position of the data in the supporting set of Bis. The
numbers dis, is ∈ NB , possess interesting properties and can be viewed as
a generalization of the second-order divided differences in the univariate case.

For F ∈ C(E) we denote the networks of the first and the second derivatives
of F by F ′ := {f ′

e}e∈E and F ′′ := {f ′′
e }e∈E , respectively. The following state-

ments are proved in [1].

Lemma 1. F ∈C(E) ⇔ λ
(s)
1,if

′
iis

(0)+λ
(s)
2,if

′
iis+1

(0)+λ
(s)
3,if

′
iis+2

(0)=0, is∈NB.

Theorem 1. For the second derivative of the minimum norm network S :=
{se}e∈E we have S′′ =

∑

is∈NB
αisBis. The coefficients αis are obtained as the

unique solution of the following linear system of equations

∑

kl∈NB

αkl〈Bkl, Bis〉 = dis, is ∈ NB . (3)

The matrix of the system is symmetric and positive definite.

The system (3) is denoted by Aα = d, where A := 〈Bkl, Bis〉kl,is and
d := (dis), is, kl ∈ NB .

3. Error Bounds

In this section we evaluate the norms ‖F − S‖2, ‖F ′ − S′‖2, ‖F ′′ − S′′‖2

and analyse the term C(T ) in (1).

Let N := dimA and ‖x‖2 :=
( N

∑

i=1

x2
i

)1/2

, ‖A‖2 := supx6=0
‖Ax‖2

‖x‖2
be the

standard 2-norm for vectors and matrices respectively. We prove the following
theorem.
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Theorem 2. Let F ∈ C(E) and ǫ := maxe∈E ‖e‖. Then

‖F − S‖2 ≤ ǫ ‖F ′ − S′‖2 ≤ ǫ
2‖F ′′ − S′′‖2. (4)

Furthermore, if in addition F IV := {f IV
e }e∈E is such that f IV

e ∈ L2[0, ‖e‖],
e ∈ E, then

‖F ′′ − S′′‖2 ≤ 2√
3
ǫ

3 ‖A−1‖2 ‖F IV ‖2. (5)

Proof. First, we prove (4). Since F and S are interpolating networks we
have (fe − se)(0) = (fe − se)(‖e‖) = 0. Then for every e ∈ E there exists ξe,
0 < ξe < ‖e‖ such that (f ′

e − s′e)(ξe) = 0. Hence

f ′
e(t) − s′e(t) =

∫ t

ξe

(f ′′
e (τ) − s′′e (τ)) dτ. (6)

Using (6) we obtain consecutively

‖F ′ − S′‖2
2 =

∑

e∈E

∫ ‖e‖

0

|f ′
e(t) − s′e(t)|2 dt

=
∑

e∈E

∫ ‖e‖

0

∣

∣

∣

∫ t

ξe

(f ′′
e (τ) − s′′e (τ)) dτ

∣

∣

∣

2

dt

≤
∑

e∈E

∫ ‖e‖

0

(

(t − ξe)

∫ t

ξe

|f ′′
e (τ) − s′′e (τ)|2 dτ

)

dt

(by Cauchy-Schwarz inequality)

≤
∑

e∈E

‖e‖2

∫ ‖e‖

0

|f ′′
e (τ) − s′′e (τ)|2 dτ

≤ ǫ
2
∑

e∈E

∫ ‖e‖

0

|f ′′
e (τ) − s′′e (τ)|2 dτ = ǫ

2‖F ′′ − S′′‖2
2 .

Therefore ‖F ′ − S′‖2 ≤ ǫ ‖F ′′ − S′′‖2.

In a similar way and using that (fe−se)(t) =
∫ t

0
(f ′

e(τ)−s′e(τ))dτ we obtain

‖F − S‖2
2 =

∑

e∈E

∫ ‖e‖

0

|fe(t) − se(t)|2 dt

=
∑

e∈E

∫ ‖e‖

0

∣

∣

∣

∫ t

0

(f ′
e(τ) − s′e(τ)) dτ

∣

∣

∣

2

dt

≤
∑

e∈E

∫ ‖e‖

0

(

t

∫ t

0

|f ′
e(τ) − s′e(τ)|2 dτ

)

dt

≤
∑

e∈E

‖e‖2

∫ ‖e‖

0

|f ′
e(τ) − s′e(τ)|2 dτ ≤ ǫ

2‖F ′ − S′‖2
2 .
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Therefore ‖F − S‖2 ≤ ǫ ‖F ′ − S′‖2 and (4) is established.

Further on for the sake of simplicity we shall also use the notation λr := λ
(s)
r,i ,

er := eiis+r−1
and fr := fiis+r−1

. Now we define a set of curve networks
{Gis}is∈NB

by







supp Gis ≡ supp Bis, is ∈ NB ,

Gis(t)
∣

∣

er

= λr‖er‖2 t

‖er‖
(

1 − t

‖er‖
)( t

‖er‖
− 2

)

, r = 1, 2, 3.

Since

G′
is(t)

∣

∣

er

= λr‖er‖
(

− 3t2

‖er‖2
+

6t

‖er‖
− 2

)

,

G′′
is(t)

∣

∣

er

= 6λr

(

1 − t

‖er‖
)

,

it is easy to see that

max
er

|Gis| = |Gis((1 − 1/
√

3)‖er‖)|

= |λr| ‖er‖2(1 − 1/
√

3)(1/
√

3)(1 + 1/
√

3) =
2
√

3

9
|λr| ‖er‖2. (7)

Let F ∈ C(E) be such that f IV
e ∈ L2[0, ‖e‖], e ∈ E. Using that

Gis

∣

∣

er

(0) = Gis

∣

∣

er

(‖er‖) = 0, G′
is

∣

∣

er

(0) = −2λr‖er‖, G′
is

∣

∣

er

(‖er‖) = λr‖er‖

we obtain

∫

E

GisF
IV =

∫

E

Gis dF ′′′ =

3
∑

r=1

GisF
′′′

∣

∣

‖er‖

0
−

∫

E

F ′′′ dGis

= −
∫

E

G′
is dF ′′ = −

3
∑

r=1

G′
isF

′′
∣

∣

‖er‖

0
+

∫

E

F ′′dG′
is

= −
3

∑

r=1

λr‖er‖f ′′
r (‖er‖) − 2

3
∑

r=1

λr‖er‖f ′′
r (0) +

∫

E

F ′′dG′
is . (8)

For the last term in (8) we have

∫

E

F ′′ dG′
is =

∫

E

G′′
is dF ′ =

3
∑

r=1

G′′
isF

′
∣

∣

‖er‖

0
−

∫

E

F ′dG′′
is

= −6

3
∑

r=1

λrf
′
r(0) −

∫

E

F ′G′′′
is . (9)
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Since F ∈ C(E), Lemma 1 implies λ1f
′
1(0)+λ2f

′
2(0)+λ3f

′
3(0) = 0. Further on

we have

−
∫

E

F ′G′′′
is = 6

3
∑

r=1

λr

‖er‖

∫ ‖er‖

0

F ′ dt = 6

3
∑

r=1

λr

‖er‖
(zis+r−1

− zi) = 6dis. (10)

From (8), (9) and (10) we obtain

∫

E

GisF
IV = −

3
∑

r=1

λr‖er‖ f ′′
r (‖er‖) − 2

3
∑

r=1

λr‖er‖ f ′′
r (0) + 6dis. (11)

The equality (11) holds true for any curve network F ∈ C(E) such that
f IV

e ∈ L2[0, ‖e‖], e ∈ E. In the case F ≡ S we have SIV ≡ 0 and hence

0 = −
3

∑

r=1

λr‖er‖ s′′r (‖er‖) − 2

3
∑

r=1

λr‖er‖ s′′r (0) + 6dis, is ∈ NB . (12)

By subtracting (12) from (11) we obtain

∫

E

GisF
IV = −

3
∑

r=1

λr‖er‖
[

f ′′
r (‖er‖) − s′′r (‖er‖)

]

− 2

3
∑

r=1

λr‖er‖
[

f ′′
r (0) − s′′r (0)

]

, is ∈ NB . (13)

Note that the linear systems (12) and (13) have the same matrix. They differ
only in their left-hand sides which are −6dis for the system (12) and

∫

E
GisF

IV

for the system (13), is ∈ NB .
According to Theorem 1, S′′ =

∑

is∈NB
αisBis, where α = {αis}is∈NB

is
the unique solution of the system (3), i. e. Aα = d. The matrix A is invertible
(as a positive definite matrix), and we have

‖α‖2 ≤ ‖A−1‖2 ‖d‖2. (14)

Now we shall obtain an upper bound for ‖S′′‖2 in terms of ‖α‖2. For a
fixed is ∈ NB we have

s′′ii1(0) = αii1λ
(1)
1,i

s′′ii2(0) = αii1λ
(1)
2,i + αii2λ

(2)
1,i

s′′ii3(0) = αii1λ
(1)
3,i + αii2λ

(2)
2,i + αii3λ

(3)
1,i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s′′iis
(0) = αiis−2

λ
(s−2)
3,i + αiis−1

λ
(s−1)
2,i + αiis

λ
(s)
1,i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Since |λ(s)
r,i | ≤ 1 it follows that

|s′′ii1(0)| ≤ |αii1 |
|s′′ii2(0)| ≤ |αii1 | + |αii2 |
|s′′ii3(0)| ≤ |αii1 | + |αii2 | + |αii3 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

|s′′iis
(0)| ≤ |αiis−2

| + |αiis−1
| + |αiis

|
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the above estimate for s′′iis
(0) at most three α’s participate and every α is

present in exactly three inequalities. We have from Jensen inequality

|siis
(0)|2 ≤ 3

(

|αiis−2
|2 + |αiis−1

|2 + |αiis
|2

)

.

Therefore
∑

e∈E

[

|s′′e (0)|2 + |s′′e (‖e‖)|2
]

≤ 9
∑

is∈NB

|αis|2

and so
(

∑

e∈E

[

|s′′e (0)|2 + |s′′e (‖e‖)|2
]

)1/2

≤ 3
(

∑

is∈NB

|αis|2
)1/2

= 3‖α‖2. (15)

On the other hand, se(t) is a cubic polynomial, whence

s′′e (t) =
(

1 − t

‖e‖
)

s′′e (0) +
t

‖e‖ s′′e (‖e‖)

and it follows that

|s′′e (t)|2 ≤
[

|s′′e (0)| + |s′′e (‖e‖)|
]2 ≤ 2

[

|s′′e (0)|2 + |s′′e (‖e‖)|2
]

. (16)

From (16) and (15) we obtain

‖S′′‖2 =
(

∑

e∈E

∫ ‖e‖

0

|s′′e (t)|2 dt
)1/2

≤
(

∑

e∈E

2‖e‖
[

|s′′e (0)|2 + |s′′e (e)|2
]

)1/2

≤
√

2ǫ
1/2

(

∑

e∈E

[

|s′′e (0)|2 + |s′′e (e)|2
]

)1/2

≤ 3
√

2ǫ
1/2‖α‖2. (17)

Now from (17) and (14) we obtain

‖S′′‖2 ≤ 3
√

2ǫ
1/2 ‖A−1‖2 ‖d‖2. (18)

Since the linear systems (12) and (13) have the same matrix, we deduce from
(18) that

‖F ′′ − S′′‖2 ≤ 1√
2
ǫ

1/2‖A−1‖2

(

∑

is∈NB

∣

∣

∣

∫

E

GisF
IV

∣

∣

∣

2)1/2

. (19)
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Now we shall estimate the right hand side of the inequality (19). Let
gr := Gis

∣

∣

eiis+r−1

, r = 1, 2, 3. We obtain consecutively

∣

∣

∣

∫

supp Bis

GisF
IV

∣

∣

∣

2

=
∣

∣

∣

3
∑

r=1

∫

er

grf
IV
r

∣

∣

∣

2

≤ 3

3
∑

r=1

∣

∣

∣

∫

er

grf
IV
r

∣

∣

∣

2

. (20)

By applying Cauchy-Schwarz inequality to the terms in (20) we obtain

∣

∣

∣

∫

er

grf
IV
r

∣

∣

∣

2

≤
∫

er

|gr|2 ·
∫

er

|f IV
r |2, r = 1, 2, 3. (21)

From (21), (7) and |λr| ≤ 1, r = 1, 2, 3, it follows that

∣

∣

∣

∫

er

grf
IV
r

∣

∣

∣

2

≤ ‖er‖
(2

√
3

9
‖er‖2

)2
∫

er

|f IV
r |2 ≤ 4

27
ǫ

5

∫

er

|f IV
r |2. (22)

From (22) and (20) we have

(

∑

is∈NB

∣

∣

∣

∫

supp Bis

Gis F IV
∣

∣

∣

2)1/2

≤
(

3 · 4

27
ǫ

5 · 3 · 2
∑

is∈NB

∫

|f IV
is |2

)1/2

=
2
√

2√
3

ǫ
5/2 ‖F IV ‖2. (23)

From (23) and (19) we obtain

‖F ′′ − S′′‖2 ≤ 2√
3
ǫ

3 ‖A−1‖2 ‖F IV‖2.

Thus we established (5) and Theorem 2 is proved. �

Corollary 1. If F ∈ C(E) is such that f IV
e ∈ L2[0, ‖e‖], e ∈ E then

‖F − S‖2 ≤ 2√
3
ǫ

5 ‖A−1‖2 ‖F IV ‖2.

At the end of this section let us say a few words about the evaluation of
‖A−1‖2. By AT we denote the transpose matrix of A, then it is known that

‖A‖2 := sup
x6=0

‖Ax‖2

‖x‖2
= max

1≤i≤N
{
√

Λi : Λi is an eigenvalue of AT A}.

In our case A is symmetric and positive definite, hence its eigenvalues Λ1,. . . ,ΛN ,
are real and positive. Assuming that 0 < Λ1 ≤ Λ2 ≤ · · · ≤ ΛN , then ‖A‖2 =
ΛN , and since the eigenvalues of the inverse matrix A−1 are 1/ΛN , . . . , 1/Λ1

then ‖A−1‖2 = 1/Λ1.
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Corollary 2. Let Λ1 be the minimal eigenvalue of matrix A. Then

‖F − S‖2 ≤ 2ǫ
5

√
3 Λ1

‖F IV ‖2. (24)

The estimate (24) can be used to evaluate the error of interpolation by
minimum norm networks a priori for a specific triangulation by applying some
numerical method for finding the minimal eigenvalue of A.
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