Exact Condition to Generalize Monotonicity in L^{1}-convergence of Sine Series

S. P. Zhou

The present paper finds a more direct and clean version in treating with L^{1}-convergence.

Keywords and Phrases: Trigonometric series, convergence, integrability, monotonicity.

Mathematics Subject Classification 2010: 42A25, 42A50.

1. Introduction

Let $L_{2 \pi}$ be the space of integrable functions of period 2π. Write

$$
g(x):=\sum_{n=1}^{\infty} a_{n} \sin n x, \quad f(x):=\sum_{n=1}^{\infty} a_{n} \cos n x
$$

As usual, let $S_{n}(g, x)$ be the n-th partial sum of the sine series g, i.e.

$$
S_{n}(g, x)=\sum_{k=1}^{n} a_{k} \sin k x
$$

and $\|\cdot\|_{L^{1}}=\int_{0}^{2 \pi}|\cdot| d x$.
In classical Fourier analysis, the integrability of trigonometric series is considered as an interesting but difficult topic. This plays an important role in identifying if a trigonometric series is a Fourier series or not, thus forms a foundation for most later investigations including convergence. For example, in studying L^{1} convergence and approximation problems, people usually require an assumption that $f \in L_{2 \pi}$. From this point of view, it really becomes a question what condition imposed on $\left\{a_{n}\right\}$ can guarantee the integrability for $f(x)$ and $g(x)$.

Quite long ago, Boas [2], Heywood [4] proved the following results:
Theorem BH. Assume that $a_{n} \searrow 0$. Then for $0 \leq \alpha<2$,

$$
\begin{equation*}
g(x) / x^{\alpha} \in L_{2 \pi} \Leftrightarrow \sum_{n=1}^{\infty} n^{\alpha-1} a_{n}<\infty . \tag{1}
\end{equation*}
$$

For $0<\alpha<1$,

$$
\begin{equation*}
f(x) / x^{\alpha} \in L_{2 \pi} \Leftrightarrow \sum_{n=1}^{\infty} n^{\alpha-1} a_{n}<\infty . \tag{2}
\end{equation*}
$$

There have been some generalizations for the weighted integrability cases (i.e. for inequality (2) and (1) under condition $0<\alpha<2$) to various conditions from nonnegative decreasing condition imposed on the coefficient sequence $\left\{a_{n}\right\}$, see, for example, $[1,3,8,9,10,12]$. Actually, the generalizations of (decreasing) monotonicity include various quasi-monotonicity conditions, the rest bounded variation condition, the group bounded variation condition, the non-onesided bounded variation condition and the mean value bounded variation condition etc., interested reader could find useful information in the reference [13], we give definitions of those conditions only related to the contents of this paper here.

Definition 1. A nonnegative sequence $\mathbf{A}=\left\{a_{n}\right\}_{n=1}^{\infty}$ is called a QuasiMonotone Sequence if for some $\alpha \geq 0$, the sequence $\left\{a_{n} / n^{\alpha}\right\}_{n=1}^{\infty}$ is monotone (decreasing), in symbol, $\mathbf{A} \in \mathbf{Q M S}$.

Definition 2. A nonnegative sequence $\mathbf{A}=\left\{a_{n}\right\}_{n=1}^{\infty}$ is called a O-Regularly varying Quasi-Monotone Sequence if for some O-regularly varying sequence $R(n)$, the sequence $\left\{a_{n} / R(n)\right\}_{n=1}^{\infty}$ is monotone (decreasing), in symbol, $\mathbf{A} \in$ RQMS. Here a O-regularly varying sequence $\{R(n)\}$ is an increasing sequence satisfying $\limsup _{n \rightarrow \infty} \frac{R(2 n)}{R(n)}<\infty$.

Definition 3 (Leindler [7]). If a nonnegative null sequence $\mathbf{A}=\left\{a_{n}\right\}_{n=1}^{\infty}$ satisfies

$$
\sum_{k=n}^{\infty}\left|a_{k}-a_{k+1}\right|=: \sum_{k=n}^{\infty}\left|\Delta a_{k}\right| \leq M(\mathbf{A}) a_{n}
$$

for all natural numbers n, where $M(\mathbf{A})$ is a positive constant depending only upon the sequence A, we call it as a Rest Bounded Variation Sequence, in symbol, $\mathbf{A} \in \mathbf{R B V S}$.

Definition 4 (Le-Zhou [6]). If a nonnegative sequence $\mathbf{A}=\left\{a_{n}\right\}_{n=1}^{\infty}$ satisfies

$$
\sum_{k=n}^{2 n}\left|\Delta a_{k}\right| \leq M(\mathbf{A}) a_{n}
$$

for all natural numbers n, we call it as a Group Bounded Variation Sequence, in symbol, $\mathbf{A} \in \mathbf{G B V S}$.

GBVS was also raised by Tikhonov [10] later as "General Monotone Sequences".

Definition 5 (S. Zhou-P. Zhou-Yu [13]). If a nonnegative sequence $\mathbf{A}=\left\{a_{n}\right\}_{n=1}^{\infty}$ satisfies

$$
\sum_{k=n}^{2 n}\left|\Delta a_{k}\right| \leq \frac{M(\mathbf{A})}{n} \sum_{k=[n / \lambda]}^{[\lambda n]} a_{k}
$$

for all natural numbers n and some $\lambda \geq 2$, we call it as a Mean Value Bounded Variation Sequence, in symbol, A \in MVBVS.

Also we use the symbol MS to indicate the set of all nonnegative (decreasing) Monotone Sequences.

The relationships of these sets can be described as follows:

$$
\begin{gathered}
\text { MS } \varsubsetneqq \text { QMS } \varsubsetneqq \text { RQMS }, \\
\text { MS } \varsubsetneqq \text { RBVS, } \\
\text { QMS } \nsubseteq \mathbf{R B V S}, \quad \text { RBVS } \nsubseteq \mathbf{Q M S} \quad \text { (see Leindler }[8]), \\
\text { RBVS } \cup \text { RQMS } \varsubsetneqq \text { GBVS } \quad \text { (see Le and Zhou }[6]), \\
\text { GBVS } \varsubsetneqq \text { MVBVS } \quad \text { (see Zhou, Zhou, and Yu }[13]),
\end{gathered}
$$

altogether,

$$
\mathbf{M S} \varsubsetneqq \mathbf{R B V S} \cup \mathbf{Q M S} \varsubsetneqq \mathbf{R B V S} \cup \mathbf{R Q M S} \varsubsetneqq \mathbf{G B V S} \varsubsetneqq \text { MVBVS }
$$

MVBVS is one of the largest sets to essentially generalize (decreasing) monotone sequences and is used to generalize many classical results in Fourier analysis (see [13]).

There are some further generalizations of MVBVS (see Tikhonov [9], Korus [5]), however, since they are irrelevant to the contents of this paper, we will not mention them here.

Let us recall a recent result (Wang and Zhou [12]) on the weighted L^{1} integrability.

Theorem WZ1. Assume that $\left\{a_{n}\right\} \in$ MVBVS. Then for $0<\alpha<2$,

$$
g(x) / x^{\alpha} \in L_{2 \pi} \Leftrightarrow \sum_{n=1}^{\infty} n^{\alpha-1} a_{n}<\infty .
$$

For $0<\alpha<1$,

$$
f(x) / x^{\alpha} \in L_{2 \pi} \Leftrightarrow \sum_{n=1}^{\infty} n^{\alpha-1} a_{n}<\infty .
$$

However, the most important real integrability case of (1) for $\alpha=0$ is almost never touched in dozens years. Only very recently, Wang and Zhou [12] gave a try on this, but they indeed told a different story from usual generalizations of the weighted case:

Theorem WZ2. Assume that $\left\{a_{n}\right\} \in$ MVBVS, then if $g(x) \in L_{2 \pi}$ and $\left\{a_{n}\right\}$ are its Fourier coefficients, we have $\sum_{n=1}^{\infty} n^{-1} a_{n}<\infty$. On the other hand, there is a sequence $\left\{a_{n}\right\} \in$ MVBVS such that $\sum_{n=1}^{\infty} n^{-1} a_{n}<\infty$, however the sine series $g(x)=\sum_{n=1}^{\infty} a_{n} \sin n x$ does not belong to $L_{2 \pi}$.

If considering the indefinite integral of g, we actually can easily obtain
Proposition 1. If $g(x) \in L_{2 \pi}$ and $\left\{a_{n}\right\}$ are its Fourier coefficients, then $\sum_{n=1}^{\infty} n^{-1} a_{n}$ converges.

The necessity part of Theorem WZ2 is a corollary of Proposition 1.
We may need another point of view now.
Given a sine series $\sum_{n=1}^{\infty} a_{n} \sin n x$, its sum function can be written as $g(x)$ at the point x where it converges. However, it is usually a very hard job to verify if the sum function or the sine series itself belongs to $L_{2 \pi}$ or not. On the other hand, in studying L^{1}-convergence problems, people usually need a requirement that $g \in L_{2 \pi}$, which also becomes a hard condition to check or a prior condition to set in most cases. For instance, the well-known classical results for L^{1}-convergence says (see Zygmund [14]): let the real even (odd) function $f \in L_{2 \pi}$, and its Fourier cosine (sine) coefficients $\left\{a_{n}\right\}_{n=1}^{\infty} \in \mathbf{M S}$, then $\lim _{n \rightarrow \infty}\left\|f-S_{n}(f)\right\|_{L^{1}}=0$ if and only if $\lim _{n \rightarrow \infty} a_{n} \log n=0$. On the other hand, the classical result of uniform convergence of sine series (Chaudy-Jolliffe theorem, see [14]) says: let $\left\{a_{n}\right\}_{n=1}^{\infty} \in \mathbf{M S}$, then the sine series $\sum_{n=1}^{\infty} a_{n} \sin n x$ uniformly converges if and only if $\lim _{n \rightarrow \infty} n a_{n}=0$. The difference between the above two classical theorems is very clear: the first one needs a prior condition $f \in L_{2 \pi}$, while the second one does not require that $f \in C_{2 \pi}$ ($C_{2 \pi}$ is the continuous function space of period 2π). Mathematicians surely prefer the latter to the former in mathematical sense. The reason that the prior condition in L^{1} case cannot be avoided is explained mainly by the much more "computation complexity " in the integrable space than in the continuous space. Furthermore, by setting this prior condition $f \in L_{2 \pi}$, the computation of an integral of the absolute value of a series (it is an infinite process) can be easily transferred into computation of an integral of the absolute value of a finite summation. People also note that the first important problem in the integrable space should be L^{1}-convergence, which may be achieved by the series itself (by coefficients) without mentioning the sum function.

Based upon these reasons, why do we not try to find a more direct and clean version of L^{1}-convergence? Let us recall another version of the classical theorem, equivalent to Theorem BH for sine series in case $\alpha=0$ under monotone (decreasing) condition:

Theorem BH* ${ }^{*}$. Write $g(x)=\sum_{n=1}^{\infty} a_{n} \sin n x$ at those points x where it converges. Assume that $\left\{a_{n}\right\} \in \mathbf{M S}$. Then

$$
\lim _{n \rightarrow \infty}\left\|g-S_{n}(g)\right\|_{L^{1}}=0
$$

if and only if

$$
\sum_{n=1}^{\infty} n^{-1} a_{n}<\infty
$$

Here, we emphasize that, in any case, $\lim _{n \rightarrow \infty}\left\|g-S_{n}(g)\right\|_{L^{1}}=0$ is interpreted as the Cauchy's convergence principle $\left\|S_{n}(g)-S_{m}(g)\right\|_{L^{1}} \rightarrow 0, n, m \rightarrow \infty$ holds, and vice versa.

2. Results

Starting from here, we begin our research.
By C, C_{1}, C_{2} etc. we denote constants which may differ in the different occurrences.

First, we construct a nonnegative sequence which shows that although it is quasi-monotone and the inequality $\sum_{n=1}^{\infty} n^{-1} a_{n}<\infty$ holds, the corresponding sine series does not converge in L^{1}-norm.

Theorem 1. There exists a positive sequence $\left\{a_{n}\right\} \in \mathbf{Q M S}$ such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{a_{n}}{n}<\infty \tag{3}
\end{equation*}
$$

however for the sine series

$$
g(x):=\sum_{n=1}^{\infty} a_{n} \sin n x
$$

we have

$$
\left\|g-S_{n}(g)\right\|_{L^{1}} \nrightarrow 0, \quad n \rightarrow \infty
$$

Proof. We give a sketch of construction here. Set $n_{1}=1, n_{2}=2$, and

$$
m_{j}=2^{j^{2}}, \quad n_{j}=j^{2} 2^{j^{2}}, \quad j=3,4, \ldots
$$

Let a_{1}, a_{2}, a_{3} be any given positive numbers, and for $j \geq 2$, let

$$
a_{n}= \begin{cases}\frac{n}{m_{j+1} \log ^{2} n}, & 2 n_{j} \leq n<m_{j+1} \\ \frac{n}{m_{j+1} \log ^{2} n_{j+1}}, & m_{j+1} \leq n<n_{j+1} \\ \frac{1}{2 \log n_{j+1}}, & n_{j+1} \leq n<2 n_{j+1}\end{cases}
$$

In such a way we define a sine series

$$
g(x):=\sum_{n=1}^{\infty} a_{n} \sin n x
$$

at x where it converges. This series can serve for the purpose of Theorem 1.
Next, we formulate a new condition which can guarantee the condition (3) to be necessary and sufficient for the corresponding sine series to converge in L^{1}-norm.

Theorem 2. Let $\left\{a_{n}\right\}$ be a nonnegative bounded sequence. Write $g(x)=$ $\sum_{n=1}^{\infty} a_{n} \sin n x$ at the points x where it converges. Given an integer $N>0$, we set

$$
R_{n}=\sum_{k=n}^{\infty}\left|\Delta \frac{a_{k}}{\log ^{N} k}\right|
$$

and assume that

$$
\begin{equation*}
R_{n} \leq M(\mathbf{A}) \frac{a_{n}}{\log ^{N} n} \quad \text { for } \quad n=1,2, \ldots \tag{4}
\end{equation*}
$$

Then $g \in L_{2 \pi},\left\{a_{n}\right\}$ are its Fourier coefficients and

$$
\lim _{n \rightarrow \infty}\left\|g-S_{n}(g)\right\|_{L^{1}}=0
$$

if and only if

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n}<\infty
$$

Proof. The necessity part is a direct corollary of Proposition 1.
We give a sketch of proof of the sufficiency. Given arbitrary sufficiently large m, n, say $m>n$, by Abel's transformation we obtain

$$
\begin{aligned}
S_{m}(x)-S_{n}(x)= & \sum_{k=n+1}^{m} a_{k} \sin k x=\sum_{k=n+1}^{m} \frac{a_{k}}{\log ^{N} k} \log ^{N} k \sin k x \\
= & -\frac{a_{n+1}}{\log ^{N}(n+1)} \sum_{j=1}^{n} \log ^{N} j \sin j x+\frac{a_{m}}{\log ^{N} m} \sum_{j=1}^{m} \log ^{N} j \sin j x \\
& +\sum_{k=n+1}^{m-1} \Delta \frac{a_{k}}{\log ^{N} k} \sum_{j=1}^{k} \log ^{N} j \sin j x \\
= & I_{1}(x)+I_{2}(x)+I_{3}(x) .
\end{aligned}
$$

By standard methods, we have

$$
\begin{aligned}
\int_{0}^{\pi}\left|\sum_{j=1}^{k} \log ^{N} j \sin j x\right| d x & \leq \sum_{j=1}^{k-1}\left|\Delta \log ^{N} j\right| \int_{0}^{\pi}\left|\sum_{l=1}^{j} \sin l x\right| d x+\log ^{N} k \int_{0}^{\pi}\left|\sum_{l=1}^{k} \sin l x\right| d x \\
& \leq C \log ^{N+1} k
\end{aligned}
$$

and consequently

$$
\int_{0}^{\pi}\left|I_{1}(x)\right| d x \leq C \frac{a_{n+1}}{\log ^{N}(n+1)} \log ^{N+1} n \leq C a_{n+1} \log n
$$

and

$$
\int_{0}^{\pi}\left|I_{2}(x)\right| d x \leq C a_{m} \log m
$$

For the third term we have

$$
\begin{aligned}
\int_{0}^{\pi}\left|I_{3}(x)\right| d x & \leq \sum_{k=n+1}^{m-1}\left|\Delta \frac{a_{k}}{\log ^{N} k}\right| \int_{0}^{\pi}\left|\sum_{j=1}^{k} \log ^{N} j \sin j x\right| d x \\
& \leq \sum_{k=n+1}^{m-1}\left|\Delta \frac{a_{k}}{\log ^{N} k}\right| \log ^{N+1} k=: J
\end{aligned}
$$

Further investigation shows that, by condition (4),

$$
\begin{aligned}
J & =\sum_{k=n+1}^{m-1}\left(R_{k}-R_{k+1}\right) \log ^{N+1} k \\
& =\left|R_{n+1} \log ^{N+1}(n+1)-R_{m} \log ^{N+1} m+\sum_{j=n+1}^{m-1} R_{j+1}\left(\log ^{N+1}(j+1)-\log ^{N+1} j\right)\right| \\
& \leq C_{N}\left(a_{n+1} \log (n+1)+a_{m} \log (m+1)+\sum_{j=n+1}^{m-1} \frac{a_{j+1}}{j+1}\right),
\end{aligned}
$$

where we have applied Abel's transformation again. On using (4) we see that, for $[\sqrt{n}] \leq j \leq n$,

$$
\frac{a_{n}}{\log ^{N} n}=-\sum_{k=j}^{n-1} \Delta \frac{a_{k}}{\log ^{N} j}+\frac{a_{j}}{\log ^{N} j} \leq \sum_{k=j}^{\infty}\left|\Delta \frac{a_{k}}{\log ^{N} j}\right|+\frac{a_{j}}{\log ^{N} j} \leq(M(\mathbf{A})+1) \frac{a_{j}}{\log ^{N} j}
$$

Therefore, $a_{n} \leq C a_{j}$ for all $[\sqrt{n}] \leq j \leq n$. Hence,

$$
a_{n+1} \log n \leq C a_{n} \sum_{j=[\sqrt{n}]}^{n} \frac{1}{j} \leq C \sum_{j=[\sqrt{n}]}^{n} \frac{a_{j}}{j}, \quad a_{m} \log m \leq C \sum_{j=[\sqrt{m}]}^{m} \frac{a_{j}}{j}
$$

Combining all the above estimates with Cauchy's criterion, we finally achieve the required result.

If a nonnegative bounded sequence $\left\{a_{n}\right\}$ satisfies condition (4), we can call it as a Logarithm Rest Bounded Variation Sequence, indicated by $\left\{a_{n}\right\} \in$ LRBVS $_{N}$.

Similarly, a nonnegative sequence $\left\{a_{n}\right\}$ is called as a Logarithm QuasiMonotone Sequence, if $\left\{a_{n} / \log ^{N} n\right\}$ is decreasing for some integer N, then it is indicated by $\left\{a_{n}\right\} \in \mathbf{L} \mathbf{Q M S} \mathbf{S}_{N}$.

The following theorem shows relationships among the related sets including that RBVS is a real subset of $\mathbf{L R B V S}_{N}$.

Theorem 3. For any integer $N \geq 2$, we have

$$
\mathbf{R B V S} \cup \mathbf{L Q M S} \varsubsetneqq \mathbf{L R B V S}_{1} \varsubsetneqq \mathbf{L R B V S}_{2} \varsubsetneqq \cdots \varsubsetneqq \mathbf{L R B V S}_{N}
$$

Proof. The relationships

$$
\mathbf{R B V S} \subset \mathbf{L R B V S}_{1}, \quad \mathbf{L Q M S} \varsubsetneqq \mathbf{L R B V S}_{1}
$$

are clear. By the following example, we can show that $\mathbf{R B V S} \neq \mathbf{L R B V S}_{1}$. Set $n_{1}=1$, and $n_{j}=2^{2^{j^{2}}}$ for $j \geq 2$. Choose $a_{1}, a_{2}, \ldots, a_{n_{2}-1}$ as arbitrary positive numbers, and define

$$
a_{n}=\frac{\log n}{\log ^{3} n_{j+1}}, \quad n_{j} \leq n<n_{j+1}, j=2,3, \ldots
$$

The other inclusions $\mathbf{L R B V S}_{1} \varsubsetneqq \mathbf{L R B V S}_{2} \varsubsetneqq \cdots \varsubsetneqq \mathbf{L R B V S}_{N}$ for $N \geq 2$ can be treated similarly.

Corollary 1. Let $\left\{a_{n}\right\} \in \mathbf{L Q M S}_{N}$ for some integer $N>0$, and $g(x)$ be defined as in Theorem 2. Then $g \in L_{2 \pi},\left\{a_{n}\right\}$ are its Fourier coefficients and $\left\|g-S_{n}(g)\right\|_{L^{1}}=0$ if and only if

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n}<\infty
$$

Corollary 2. Let $\left\{a_{n}\right\} \in \mathbf{R B V S}$ and $g(x)$ be defined as in Theorem 2. Then $g \in L_{2 \pi}$ and $\left\|g-S_{n}(g)\right\|_{L^{1}}=0$ if and only if

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n}<\infty
$$

Remark 1. In all the above results, L^{1}-convergence conclusions cannot be directed by using ordinary L^{1}-convergence theorems, because there is no a prior requirement that $g \in L_{2 \pi}$.

In the classical case when $\left\{a_{n}\right\} \in \mathbf{M S}$, it is known that the conditions

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n}<\infty
$$

and

$$
\sum_{n=1}^{\infty}\left|\Delta a_{n}\right| \log n<\infty
$$

are equivalent. It can be shown that in the case $\left\{a_{n}\right\} \in \mathbf{L R B V S}_{N}$ they are equivalent, too.

Theorem 4. Let $\left\{a_{n}\right\} \in \mathbf{L R B V S}_{N}$, then the conditions

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n}<\infty
$$

and

$$
\sum_{n=1}^{\infty}\left|\Delta a_{n}\right| \log n<\infty
$$

are equivalent.
Finally, we prove that the newly raised condition cannot be weakened further in some sense.

Theorem 5. Let $R(n)$ is an increasing sequence satisfying $\lim _{n \rightarrow \infty} R(n)=\infty$ and $\limsup _{n \rightarrow \infty} \frac{R(2 n)}{R(n)}<\infty$. If

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{R(k)}{k} \leq C R(n), \quad n=1,2, \ldots \tag{5}
\end{equation*}
$$

then there exists a positive sequence $\left\{a_{n}\right\}$ such that $\left\{a_{n} / R(n)\right\}$ is decreasing and satisfies further

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n}<\infty
$$

however for the sine series

$$
g(x)=\sum_{n=1}^{\infty} a_{n} \sin n x
$$

we have $\left\|g-S_{n}(g)\right\|_{L^{1}} \nrightarrow 0$ as $n \rightarrow \infty$.

Proof. The proof follows the basic idea of Theorem 1. Set $n_{1}=1, n_{2}=2$, and select n_{j} inductively. If, for $j \geq 2, n_{j}$ is selected, we choose

$$
m_{j+1}=2^{n_{j}^{2}}
$$

From (5) we see that

$$
C R(n) \geq \sum_{k=[\sqrt{n}]}^{n} \frac{R(k)}{k} \geq C_{1} R([\sqrt{n}]) \log n
$$

whence

$$
\frac{R(n)}{\log n} \geq C_{2} R([\sqrt{n}]) \rightarrow \infty, \quad n \rightarrow \infty
$$

Thus let

$$
n_{k+1}=\min \left\{n \geq m_{k+1}: \frac{R(n)}{\log n} \geq R\left(m_{k+1}\right)\right\}
$$

By definition, $n_{k+1}>m_{k+1}$ and

$$
\frac{R\left(n_{k+1}-1\right)}{\log \left(n_{k+1}-1\right)} \leq R\left(m_{k+1}\right)
$$

Now define

$$
a_{n}= \begin{cases}\frac{R(n)}{R\left(m_{j+1}\right) \log ^{2} n}, & 2 n_{j} \leq n<m_{j+1} \\ \frac{R(n)}{R\left(m_{j+1}\right) \log ^{2} n_{j+1}}, & m_{j+1} \leq n<n_{j+1} \\ \frac{1}{\log n_{j+1}}, & n_{j+1} \leq n<2 n_{j+1}\end{cases}
$$

This example can serve for the purpose of Theorem 5.
Remark 2. Except those "too slowly increasing" sequences like $\left\{\log ^{N} n\right\}$, the other "not too slowly increasing" sequences like $\left\{n^{\alpha}\right\}, \alpha>0$, etc. evidently satisfy condition (5). Therefore, in a sense, Theorem 5 shows that LRBV condition cannot weakened further in L^{1}-convergence for sine series.

References

[1] R. Askey and S. Wainger, Integrability theorems for Fourier series, Duke Math. J. 33 (1966), 223-228.
[2] R. P. Boas, Jr., Integrability of trigonometric series (III), Quart. J. Math. 3 (1952), 217-221.
[3] R. P. Boas, "Integrability Theorems for Trigonometric Transforms", Springer, New York, 1967.
[4] P. Heywood, On the integrability of functions defined by trigonometric series, Quart. J. Math. 5 (1954), 71-76.
[5] P. Korus, Remarks on the uniform and L^{1}-convergence of trigonometric series, Acta Math. Hungar. 128 (2010), 369-380.
[6] R. J. Le and S. P. Zhou, A new condition for the uniform convergence of certain trigonometric series, Acta Math. Hungar. 108 (2005), 161-169.
[7] L. Leindler, On the uniform convergence and boundedness of a certain class of sine series, Anal. Math. 27 (2001), 279-285.
[8] L. Leindler, A new class of numerical sequences and its applications to sine and cosine series, Anal. Math. 28 (2002), 279-286.
[9] S. Tikhonov, On the integrability of trigonometric series, Math. Notes 78 (2005), no.3, 437-442.
[10] S. Tikhonov, Trigonometric series with general monotone coefficients, J. Math. Anal. Appl. 326 (2007), 721-735.
[11] S. Tikhonov, On L^{1}-convergence of Fourier series, J. Math. Math. Appl. 347 (2008), 416-427.
[12] M. Z. Wang and S.P. Zhou, Applications of MVBV condition in L^{1} integrability, Acta Math. Hungar. 129 (2010), 70-80.
[13] S. P. Zhou, P. Zhou and D. S. Yu, Ultimate generalization for monotonicity for uniform convergence of trigonometric series, Sci. China Math. 53 (2010), 1853-1862; arXiv: math.CA/0611805 v1 November 27, 2006, preprint.
[14] A. Zygmund, "Trigonometric Series", Cambridge Univ. Press, Cambridge, 1977.
S. P. Zhou

Institute of Mathematics
Zhejiang Sci-Tech University
Hangzhou, Zhejiang 310018
CHINA
E-mail: songping.zhou@163.com

