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Open Problem

Voronovskaja-type Formula for the Bézier
Variant of the Bernstein Operators

Ulrich Abel

For each function f : [0, 1] → R, n ∈ N and α > 0, the Bernstein operators
of Bézier type Bn,α are defined by

(Bn,αf)(x) =

n∑

k=0

f
(k
n

)(
Jα
n,k(x)− Jα

n,k+1(x)
)
, (1)

where

Jn,k(x) =

n∑

j=k

pn,j(x) (k = 0, . . . , n), Jn,n+1(x) = 0,

and pn,j is the Bernstein basis polynomial

pn,j(x) =

(
n

j

)
xj(1− x)n−j (j = 0, . . . , n).

To my best knowledge the operators (1) were introduced by Chang [1] in
1983. Chang showed that, for f ∈ C[0, 1], limn→∞(Bn,αf)(x) = f(x) uniformly
on [0, 1]. In 1985, Li and Gong [2] estimated the rate of convergence

sup
x∈[0,1]

|(Bn,αf)(x)− f(x)| ≤
{
(1 + α

4 )ω(f ;n
−1/2) (α ≥ 1),

Mω(f ;n−α/2) (0 < α < 1),

where ω(f ; δ) denotes the modulus of continuity of f , and M is a constant
depending only on α and f . In 1986 Liu [3] obtained an inverse theorem in the
case α ≥ 1. Zeng and Piriou [5] studied the rate of convergence for functions
of bounded variation. There are many further papers on the operators (1) and
their variants.
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It is obvious that Bn,α are positive linear operators which preserve constant
functions. In the special case α = 1, the operators Bn,α reduce to the Bernstein
polynomials Bn,1 ≡ Bn given by

(Bnf)(x) =

n∑

k=0

f
(k
n

)
pn,k(x).

The asymptotic behaviour of the sequence of Bernstein polynomials Bn as n
tends to infinity is well known. The classical result by Voronovskaja [4]

lim
n→∞

n
(
(Bnf)(x)− f(x)

)
=

1

2
x(1− x)f ′′(x) (2)

is valid for all bounded functions f being twice differentiable in x ∈ [0, 1]. As
far as we know, nothing is known in this direction for the operators Bn,α when
α 6= 1. Numerical experiments suggest that the limit

lim
n→∞

√
n
(
(Bn,αf)(x)− f(x)

)
(3)

exists at least for sufficiently smooth functions f . The problem is to prove its
existence, for certain functions f , and to find an explicit expression. In the
particular case α = 1 the limit (3) obviously exists, by Eq. (2), with value
equal to 0, provided that f satisfies the conditions of Voronovskaja’s theorem.
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Open Problem

Interpolation of Wiener Amalgam Spaces
and Associated Approximation Theory

Lubomir T. Dechevsky

The concept ofWiener amalgam spaces (WAS) was introduced by Feichtinger
(see, e.g. [9] and the references therein), and a study of their properties
was initiated by Feichtinger and an increasing number of other authors. The
general concept of WAS unites in itself many previous particular constructions
used in different contexts for different purposes without previous connection
among these analogous constructions. One important instance are the spaces
generated by the averaged moduli of smoothness [12], which, as discussed in
[2, 4, 5], are important for numerical analysis particular cases of WAS. The
results on the equivalence between the averaged moduli and K-functionals
obtained in [1, 2, 4] show that it is very important to look for solution of
the following general problem.

Problem A. Extend the theory of K-functionals to the case when the spaces
A, B in the K-functional K(t, · ;A,B) depend on the step t.

In [1] the following relevant conjecture was made.

Conjecture B. The A-spaces induced by the averaged moduli (and, more
generally, space scales obtained via the real interpolation functor applied on a
K-functional between Wiener amalgam spaces with quasi-seminorms depending
on the step of the K-functional) are, in general, not closed with respect to
real or complex interpolation (which is a major difference with the classical
interpolation spaces induced by the integral moduli, i.e., Besov spaces).

Conjecture B has more recently been proved to be correct [10].
In contrast, the interpolation techniques developed in [1, 2, 4] work for both

classical interpolation spaces and WAS. The interpolation techniques presented
in [1, 2, 4] for several special WAS related to the averaged moduli of smoothness
can be extended for general WAS depending on the step t of the K-functional.

In view of the above background of Problem A, we propose a sequence of
several (sub)problems which cover various specific aspects of Problem A.
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New results have been obtained about Marchaud-type inequalities, some of
which involve spaces which are particular Wiener amalgams (see, e.g., [8] and
the references therein). In relevance to this, we suggest the following.

Problem A.1. Derive a new, more general kind of Marchaud-type inequali-
ties in the context of Wiener amalgam spaces and even more general types of
spaces and K-functionals, in which the spaces depend on the step of the K-
functional.

A close relationship was established between the theory of K-functionals
and optimal smoothing techniques based on a small-penalty approach to Tikhon-
ov regularization of ill-posed inverse problems (see [7, 6] and the references
therein). In this case, of interest are only very small and very large values of
the step t: 0 < t < ∞, i. e., only values of t and 1/t close to 0. We note
that, while intermediate values of t (i.e., t: ε < t < 1/ε for any ε > 0) are
“responsible” for the bulk of the norm of a real interpolation space, it is only
the range of values of t and 1/t close to 0 that determines whether a function
is, or is not, element of the space in the set-theoretic sense. In view of this
observation, we propose the following concretization of Problem A.

Problem A.2. Develop a new approach to the computation of K-functionals
between spaces which depend on the step t of the K-functional (and for Wiener
amalgam spaces, in particular), based on the following propositions:

(a) Instead of trying to obtain embedding results (quantitative theory of
interpolation spaces), try to obtain only set-theoretic inclusions (qualitative
theory of interpolation spaces).

(b) The advantage of pursuing the more modest objective of qualitative
theory is that the K-functionals have to be computed only for values of t and/or
1/t close to 0.

(c) As a main general new tool for computation of general classes of K-
functionals

K(t, ·) = K(t)(t, ·) = K(t, · ;A(t), B(t)) (1)

between spaces A(t), B(t) which may depend on the step t of the K-functional,
we propose to use standard perturbation expansion techniques, starting from the
known “unperturbed” cases corresponding to t = 0 or t = ∞.

(In formula (1) we have used the same notation for the K-functional as in
[1, 4, 5].)

Another modification of this idea is to use as “unperturbed” starting point
of the perturbation expansion K-functionals which have already been success-
fully computed. For example, the solution of the following problem is of
considerable heuristic interest.

Problem A.3. Making use of the isometric quasilinearization of K-func-
tionals between Hilbert spaces (see [3]), obtain (regular or singular) perturbation
expansions of the K-functionals between Banach spaces which are “nearly”
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Hilbert. While in the formulation of Problem A.2 the expansion is in powers of
t or 1/t, in the present case the expansion is in powers of the small parameter
measuring the proximity between the target (perturbed) Banach space and the
original (unperturbed) Hilbert space (e.g., the parameter 1/p−1/2 for p near 2).

The potential of the use of small perturbation techniques for computation of
K-functionals extends beyond the range covered in Problems A.1–3, including,
for example, problems related to interpolation of Banach algebrae of operators,
spaces with (quasi-)norm dependent on the step of the K-functional which are
not WAS, etc. We summarize these complementary cases, as follows.

Problem A.4. Under the assumptions in items (a) and (b) in the formula-
tion of Problem A.2, investigate also other prospective ways to use the “method
of small parameter” for computing K-functionals.

Taking in consideration the connections existing between real interpolation
spaces and respective best-approximation rates (see, e.g., [11]), the solution of
Problem A can be expected to provide an important extension of approximation-
theoretic results available for Besov, Triebel-Lizorkin and other space scales to
their Wiener amalgam analogues, as well as in the even more general context
of (possibly non-Wiener amalgam) metrizable spaces depending on the step(s)
of a respective approximation process.
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Open Problem

Some Problems Posed by Borislav Bojanov

Nikola Naidenov∗

Extremal problems is an area that was of great interest to Prof. Bojanov,
and where he had obtained significant results. Here we formulate four open
problems, due to Bojanov.

Let πn be the set of algebraic polynomials with real coefficients of degree not
exceeding n and let π◦

n := {P ∈ πn : ‖P‖C[−1,1] ≤ 1}. By Φ we denote the class
of all strictly increasing convex functions on [0,∞). Then, see [3], the following
extremal property of the Chebyshev polynomial Tn(x) = cos(n arccosx) is of
interest:

Problem 1. Prove or disprove the inequality

∫ 1

−1

ϕ(|P (k)(x)|) dx <

∫ 1

−1

ϕ(|T (k)
n (x)|) dx, (1)

for every ϕ ∈ Φ, P ∈ π◦
n \ {±Tn} and k ∈ {2, . . . , n− 1}.

Note that for k = n inequality (1) is a consequence of a well-known property
of Tn. For k = 1 inequality (1) was proved in [4], while the important particular
cases ϕ(x) =

√
1 + x2 and ϕ(x) = xp, p ≥ 1, were obtained in [2] and [3],

correspondingly. The first case gives an affirmative answer to a problem posed
by Erdős in 1939 (see [9]) and the second choice leads to the following Markov
type inequality ‖P ′‖Lp[−1,1] ≤ ‖T ′

n‖Lp[−1,1] · ‖P‖C[−1,1].
Notice that Problem 1 was solved in [8] for the subclass P◦

n of π◦
n which

consists of polynomials having all their zeros in [−1, 1]. The particular case
k = 2 was confirmed in [1] in an intermediate class between P◦

n and π◦
n.

In [10], Erdős extended his question asking about the “longest” polynomial
in π◦

n, but on a subinterval [a, b] of [−1, 1]. Prof. Bojanov ([5]) solved this
problem when [−εn, εn] ⊂ [a, b], with εn = cos π

2n , under the additional restric-
tion P (−εn) = P (εn) = 0. The extremal is again the Chebyshev polynomial
of the first kind. He liked very much the following related problem.

∗Supported by the National Science Fund of the Bulgarian Ministry of Education, Youth
and Science under Grant DDVU-02/30.
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Problem 2. Let ηk = cos (n−k)π
n , k = 0, . . . , n, be the extremal points of

Tn in [−1, 1]. Prove or disprove the inequality

∫ ηk

ηk−1

ϕ(|P ′(x)|) dx <

∫ ηk

ηk−1

ϕ(|T ′
n(x)|) dx,

for every ϕ ∈ Φ, P ∈ π◦
n \ {±Tn} and k ∈ {1, . . . , n}.

Let us note that not for every subinterval of [−1, 1] the extremal element
is Tn. Indeed, if the interval [a, b] tends to a point, then we arrive at the
extremal problem |P ′(a)| → max for P ∈ π◦

n whose solution, depending on a,
can be Tn or some Zolotorev polynomial.

Prof. Bojanov was interested in a deeper understanding of the mechanism
that makes the Chebyshev polynomial Tn extremal in so many optimization
problems. This is not an end in itself, but would lead to a deeper understanding
of many extremal properties of polynomials and other polynomial-like functions.
For instance, the technique developed in connection with Problem 1 fits perfectly
for establishing of Turán type inequalities (see [5]). The following problem can
be considered as a good starting point for studying Karlin’s hypothesis ([12]):

Problem 3 ([6]). Prove or disprove that for every ϕ∈Φ and f ∈Wn
∞[−1, 1]

satisfying ‖f‖C[−1,1] ≤ 1 and ‖f (n)‖L∞[−1,1] ≤ 2n−1 n! ,

∫ 1

−1

ϕ(|f (k)(x)|) dx ≤
∫ 1

−1

ϕ(|T (k)
n (x)|) dx, k ∈ {1, . . . , n− 1}.

Are the Chebyshev polynomials ±Tn(x) the only extremal functions?

(The corresponding problem for maximizing ‖f (k)‖C[−1,1] was solved in [11],
while the particular cases n = 2 and n = 3 were obtained in [7].)

Several times in our personal communication Professor Bojanov mentioned
the following integral extension of the Markov and Remez type inequalities.

Problem 4. Prove or disprove that, for each δ > 0,

∫ 1+δ

−1

ϕ(|P ′(x)|) dx <

∫ 1+δ

−1

ϕ(|T ′
n(x)|) dx,

for every ϕ ∈ Φ and P ∈ πn \ {±Tn} such that ‖P‖L∞(E) ≤ 1 for some subset
E ⊂ [−1, 1 + δ] with measure µ(E) = 2.
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Open Problem

V. A. Markov’s Inequality for the Coefficients
of Bounded Multivariate Polynomials

Heinz-Joachim Rack

Consider multivariate polynomials P r
m in r ≥ 1 variables of total degree

≤ m, i.e. P r
m ∈ Φr

m = span {xk : |k| ≤ m} with

P r
m(x) =

∑

|k|≤m

Akx
k,

where k = (k1, k2, . . . , kr) is a multiindex with integer components ki ≥ 0,
|k| = k1 + k2 + · · · + kr is a (total) degree, Ak ∈ R is a coefficient,

x = (x1, x2, . . . , xr) ∈ Rr is a variable, and xk = xk1
1 xk2

2 . . . xkr
r is a monomial.

Let Br
m denote the unit ball in Φr

m with respect to the unit cube
Ir = [−1, 1]r = {x : |xi| ≤ 1, for i = 1, 2, . . . , r} ⊂ Rr and with uniform
norm ‖P r

m‖ = supx∈Ir |P r
m(x)|, i.e.,

Br
m = {P r

m ∈ Φr
m : ‖P r

m‖ ≤ 1}.

For r = 1 the m-th Chebyshev polynomial of the first kind with respect to
I1 = [−1, 1], Tm, belongs to B1

m since Tm(x1) = cos(m arccosx1) if x1 ∈ I1.

Tm with Tm(x1) =
m∑

k1=0

tm,k1
xk1
1 satisfies the three-term recurrence relation

Tm(x1) = 2x1Tm−1(x1)− Tm−2(x1), m ≥ 2,

with T0(x1) = 1 and T1(x1) = x1, and is hence an even resp. odd polynomial,
according to the parity of m, so that tm,k1

= 0, if m − k1 is odd, whereas, if
m − k1 is even, the coefficients tm,k1

are nonzero integers given in descending
order by:

tm,m−2j = (−1)m
m2m−2j−1

m− j

(
m− j

j

)
, 0 ≤ j ≤

⌊m
2

⌋
.

V. A. Markov in his celebrated paper of 1892 [3, pp. 80–81], [4, p. 248]
(see also [1, p. 248], [5, p. 423], [6, p. 56], [9, pp. 672–673], [11, p. 147], [12,
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p. 167]) has provided exact estimates for all the m+1 coefficients of P 1
m ∈ B1

m,
in terms of the nonzero coefficients of Tm and Tm−1:

V. A. Markov’s Univariate Coefficient Inequality. If P 1
m ∈ B1

m with

P 1
m(x1) =

m∑
k1=0

Ak1
xk1
1 , then

|Ak1
| ≤ |tm,k1

| = m2k1−1 (m+k1−2
2 )!

k1! (
m−k1

2 )!
, if m− k1 even, (1)

|Ak1
| ≤ |tm−1,k1

| = (m− 1)2k1−1 (m+k1−3
2 )!

k1! (
m−k1−1

2 )!
, if m− k1 odd, (2)

with equality if P 1
m = ±Tm resp. P 1

m = ±Tm−1.

It is well known that determining the optimal upper bound for a certain
coefficient of a bounded polynomial is equivalent to solving a dual problem of
best approximation to the corresponding monomial, see [12, Satz 1.2] or [13,
Exercise 2.13.1].

We pose the following:

Problem. Find an analogue to V. A. Markov’s univariate coefficient ine-
quality in the multivariate setting P r

m ∈ Br
m with r > 1.

This problem has already been touched upon in [2, Remark 1] and [7, p.
131]. Alternative extensions of V. A. Markov’s univariate two-staged coefficient
inequality (as well as of the related G. Szegő’s coefficient inequality) to multi-
variate polynomials, on the unit cube and on the unit ball, are discussed in [8].

Concerning the posed problem, the following is known, compare with The-
orem I in [8]:

Sharp Estimates for the Coefficients Ak of P r
m ∈ Br

m. If P r
m ∈ Br

m

(r ≥ 2,m ≥ 3) with P r
m(x) =

∑
|k|≤m

Akx
k, and ř denotes the number of non-

vanishing components of k, then,

|Ak| ≤ 2m−ř, if |k| = m, (3)

with equality if P r
m(x) =

r∏
i=1

Tki
(xi) ∈ Br

m (see [10]),

|Ak| ≤ 2m−ř−1, if |k| = m− 1, (4)

with equality if P r
m(x) =

r∏
i=1

Tki
(xi) ∈ Br

m−1 (see [7]),

|Ak| ≤
{
m, if |k| = 1 and m odd,

m− 1, if |k| = 1 and m even,
(5)
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with equality if P r
m(x) = Tm(xi) resp. P r

m(x) = Tm−1(xi), i = 1, 2, . . . , r, see
[2],

|Ak| ≤ 1, if |k| = 0, (6)

with equality if P r
m(x) = T0(xi), i = 1, 2, . . . , r (trivial, since P r

m ∈ Br
m).

Example 1. For r = 2 and m = 3 the foregoing sharp estimates yield a
complete analogue to (1) and (2) with the aid of (products of) coefficients of
univariate Chebyshev polynomials:

|A(3,0)| ≤ 4 = t3,3t0,0, |A(2,1)| ≤ 2 = t2,2t1,1,

|A(1,2)| ≤ 2 = t1,1t2,2, |A(0,3)| ≤ 4 = t0,0t3,3,

|A(2,0)| ≤ 2 = t2,2t0,0, |A(1,1)| ≤ 1 = t1,1t1,1,

|A(0,2)| ≤ 2 = t0,0t2,2, |A(1,0)| ≤ 3 = |t3,1|,
|A(0,1)| ≤ 3 = |t3,1|, |A(0,0)| ≤ 1 = t0,0.

Example 2. However, for r = 2 and m = 4, neither products nor any
rational functions of coefficients of univariate Chebyshev polynomials are enough
to sharply majorize all coefficients of P 2

4 ∈ B2
4 . A solution to the posed problem

for the special case r = 2 and m = 4 reads as follows:

|A(4,0)| ≤ 8 = t4,4t0,0, |A(3,1)| ≤ 4 = t3,3t1,1,

|A(2,2)| ≤ 4 = t2,2t2,2, |A(1,3)| ≤ 4 = t1,1t3,3,

|A(0,4)| ≤ 8 = t0,0t4,4, |A(3,0)| ≤ 4 = t3,3t0,0,

|A(2,1)| ≤ 2 = t2,2t1,1, |A(1,2)| ≤ 2 = t1,1t2,2,

|A(0,3)| ≤ 4 = t0,0t3,3, |A(1,0)| ≤ 3 = |t3,1|,
|A(0,1)| ≤ 3 = |t3,1|, |A(0,0)| ≤ 1 = t0,0.

These estimates follow from inequalities (3) to (6).

|A(1,1)| ≤ 2(1 +
√
2) = 4.82842 . . .

with equality if P 2
4 (x1, x2) = 2(1 +

√
2)x1x2 + (−3

2 −
√
2)(x3

1x2 + x1x
3
2). This

estimate is deduced in [7, Example], see also [8, Example 3].

|A(2,0)| ≤ 8 = |t4,2|, |A(0,2)| ≤ 8 = |t4,2|.

These estimates are obtained as follows: P 2
4 ∈ B2

4 implies that |P 2
4 (0, x2)| ≤ 1

resp. |P 2
4 (x1, 0)| ≤ 1 holds, and hence (1) may be applied to the univariate

polynomials P 2
4 (0, x2) and P 2

4 (x1, 0), yielding |A(2,0)| ≤ 8 and |A(0,2)| ≤ 8.

Thus, for r = 2 the problem remains open for m ≥ 5, and in general, for
r ≥ 3 and m ≥ 4.
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Open Problem

The Longest Polynomial in the Unit Disk

Heinz-Joachim Rack

In 1939 Erdös [4] conjectured that the m-th Chebyshev polynomial Tm of
the first kind (with Tm(x) = 2xTm−1(x)− Tm−2(x) for m ≥ 2, and T0(x) = 1,
T1(x) = T−1(x) = x) is the extremizer for the arc-length functional on I =
[−1, 1] ⊂ R among all real m-th degree polynomials Pm ∈ Φm = span {xk :
0 ≤ k ≤ m} whose graph on I is assumed to lie entirely in the unit square, i.e.
among all Pm ∈ Bm = {Pm ∈ Φm : |Pm(x)| ≤ 1 for x ∈ I}. This conjecture
was proved by B. Bojanov in 1982, see [1], [2], [3, p. 31], [5, p. 600], [8, p. 149].

In 1970 Turán [5, p. 546], [8, p. 145], [10] proposed to investigate extremal
problems not only for polynomials from Bm, but also for polynomials whose
graph lies entirely in the unit disc, i.e., for

Pm ∈ Gm = {Pm ∈ Φm : |Pm(x)| ≤
√

1− x2 for x ∈ I},

see also [9, pp. 110–111]; more generally, one may consider polynomials bounded
on I by some non-negative “curved majorant”. The function ϕ(x) =

√
1− x2

is called the “circular majorant” and we will denote the unit disk centered at
the origin by C2. We pose the problem to carry over the extremal arc-length
property of ±Tm from the unit square to the unit disc, and ask:

Problem 1. Is it true that among all Pm ∈ Gm the polynomial Mm =
(Tm − Tm−2)/2 ∈ Gm is (up to the sign) the longest in C2, i.e.,

L(Pm) =

∫ 1

−1

√
1 + (P ′

m(x))2 dx ≤
∫ 1

−1

√
1 + (M ′

m(x))2 dx = L(Mm) (1)

for all Pm ∈ Gm?

Note that Mm alternately touches ±ϕ(x) at the m+ 1 points

xm,0 = −1, xm,i = − cos
(2i− 1)π

2m− 2
, 1 ≤ i ≤ m− 1, xm,m = 1.

For m = 1 we get M1(x) = 0, and trivially the horizontal diameter is a
longest straight line segment in C2, with L(M1) = 2.
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For m = 2 we get M2(x) = −1+x2. An arbitrary second-degree polynomial
(with positive leading coefficient) from class G2 is necessarily of the form
P2,γ(x) = −γ + γx2 where 0 < γ ≤ 1. It follows from calculus that

L(P2,γ) =

∫ 1

−1

√
1 + (P ′

2,γ(x))
2 dx =

√
1 + 4γ2 +

1

2γ
arcsinh 2γ,

and this parameterized value will be maximized if we choose γ = 1, yielding
L(M2) = 2.95788 . . . . Thus (1) holds for m = 2, too. Is (1) true for m ≥ 3?

Problem 2. More generally, is it true that among all Pm ∈ Φm satisfying

|Pm(x)| ≤
√
1 + (α2 − 1)x2 for x ∈ I

(“Videnskii majorant”, see also [7]), the polynomial Pm = Mm,α is the longest
on I, i.e. has maximal arc-length on I, for every α ∈ [0, 1] and every m ≥ 2?
Here,

Mm,α =
(α+ 1)Tm + (α− 1)Tm−2

2
.

The case α = 0 takes us back to C2 and the case α = 1 comes down to the
already solved P. Erdös / B. Bojanov constellation in the unit square.

The problem of determining the longest polynomial within C2 is meaningful
even if the condition Pm ∈ Gm is violated: Consider the diameters of C2. Their
arc-length is 2 and they are longer than any straight line segment (secant)
within C2 which does not pass through the midpoint (0, 0) of C2. In generalizing
this basic extremal property from plane Euclidean geometry, we interpret the
diameters and the straight line segments (except the vertical ones) as traces
of first-degree polynomials passing through C2 and correspondingly we ask, in
a first step, for the longest traces of second-degree polynomials traversing C2.
Due to the symmetries of C2 we confine ourselves to parabolas P2(x) = a0+a2x

2

with a2 > 0.
It might be suspected that the longest parabolic segment within C2 will be

an improper one which degenerates into the vertical diameter traversed twice,
and hence would have arc-length = 4. But this is not the case since we have
found that the longest parabola P ∗

2 belonging to C2 has arc-length 4.00267 . . .
there. It is given by P ∗

2 (x) = −1 + 94.09128 . . . x2, satisfies |P ∗
2 (x)| ≤ ϕ(x)

for x ∈ [−A∗(2), A∗(2)], where A∗(2) = 0.14540 . . . , and alternates at the
endpoints and at the midpoint of that subinterval of I, see [6]. It is also shown
in [6] that P ∗

2 transforms into T2 if we continuously transform the unit disc

into the unit square by considering ∂Cq = ±(1− |x|q) 1
q and letting q ≥ 1 tend

to infinity.

Problem 3. We pose the additional problem to determine the longest poly-
nomial segment within C2, i.e., the longest trace of an m-th degree polynomial
(m ≥ 3) traversing C2, if it exists.
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Hint for m = 3: Consider P3(x) = Dx+Cx3 on the interval [−A(3), A(3)],
where A = A(3) ∈ (0, 1) is given. The coefficient C is the largest solution of
the quartic equation

C4 +
4A2 − 3

A3
√
1−A2

C3 +
15− 16A4

4A6(A2 − 1)
C2 +

−1− 4A2

A9
√
1−A2

C +
1

A10(A2 − 1)
= 0,

and the coefficient D is given by D =
√
1−A2

A − CA2. Then evaluate the arc-
length of P3 on [−A(3), A(3)], and continue by letting A vary in (0, 1).
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Open Problem

Norm of Extension from a Circle to a Triangle

Szilárd Gy. Révész

This problem I posed at an approximation theory conference first in Bommer-
holz, Germany in 2005. In 2007 it was also incorporated into the collection of
open problems [1], but this is the first time it also gets printed.

In recent years we have seen a number of quite good estimates on derivatives
of multivariate polynomials P under condition of controlling the maximum
norm of P on say a convex, or a symmetric convex body of RN . For details
we refer to [4] and to our survey [9] in this very volume. The problem, if the
otherwise converging estimates are really sharp, seem to be the next question to
answer. The following simple-looking question is related to lower estimations,
that is, sharpness questions of the Bernstein problem.

Problem. Let ∆ ⊂ R2 be any triangle, with its inscribed circle denoted
by C. Determine (at least asymptotically, when n → ∞)

Mn(∆) := sup
P∈Pn

‖P |C‖=1

{
inf ‖Q(x, y)‖C(∆) : Q|C = P |C , Q ∈ Pn

}
.

Equivalently, determine (at least asymptotically)

Mn(∆) = sup
T∈Tn

‖T‖T=1

{
inf ‖Q(x, y)‖C(∆) : Q(cos t, sin t) = T (t)

}
.

Clearly, knowing the minimax type quantityMn(∆), we can then determine,
by suitable affine transformations, the same quantities for any pair of triangles
and inscribed ellipses E : we just have to consider the affine transformation
which takes E to a circle.

The strongest possible hypothesis would beMn(∆) = 1+o(1), when n → ∞,
for all triangles. However, not even the question ifMn(∆) ∼ Mn(∆0) (n → ∞),
if ∆0 is say the standard triangle, seems to be simple. It may well be, in
particular when these quantities do not converge to 1, that they are indeed
different for different triangles. A warning sign may be the following. Naidenov
found [6] – also using computer search – several counterexamples to a conjecture
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of mine with Sarantopoulos. The conjecture was to say that gradients of
polynomials may be subject to an estimate with the so-called generalized
Minkowski functional in place of GK(x, y) below. Now what happened is
that the counterexamples showed varying degree of failure, with constants
from something like one percent in case of ∆0 to “rather large” (say 10–20%)
deficiencies when ∆ is a rather elongated, flat triangle. As may be seen from
what follows, this phenomenon may suggest a problem with the above extension
constants.

As already noted, my interest in the question comes from the multivariate
Bernstein problem, that is, estimates from above the directional derivative of a
polynomial P , say of norm 1 on a convex body on K ⊂ Rd, at a point x ∈ Ko

and in a direction y. The known estimates have the form

|DyP (x)| ≤ degP
√

‖P‖2C(K) − P (x)2 GK(x, y),

where this GK(x, y) are constants only depending on the geometry, i.e. the
body K and the points x, y, but independent from P . That is, the estimation
separates the effects of geometry and analysis, giving the degree and the so-
called “Bernstein-Szegő factor” (the square root term) as the result of the
“analysis inputs”, plus another factor, which is a purely geometry-related
quantity.

In fact, we have basically two types of quantities for GK(x, y), one being
the semiderivative (VK)′y(x) := limt→0+ VK(x+ ity)/t of the Siciak-Zaharjuta
extremal function, and the other the reciprocal of the (tangentially) best in-
scribed ellipse constant EK(x, y). For details see [9]. Now these quantities are
rarely known precisely – a nice exception being when K is a simplex, see [5] –
but one of the astonishing recent findings was that they are equal in case of
any convex body K, interior point x and directional vector y [4]. This of
course strengthened the expectation that these estimates then may as well be
“the right ones”, that is, sharp. In fact, in the form of the Siciak-Zaharjuta
extremal function semiderivative this was already conjectured by Baran [2].

So these Bernstein-type estimates are conjecturally best possible, at least
when the degrees are not restricted, but we consider all polynomials of all
degrees. To arrive at this, one approach would be to show that the estimates
in the course of proofs are sharp. So let us have a closer look at the method of
the inscribed ellipses, which yields GK(x, y) = 1/EK(x, y). Here we consider an
inscribed ellipse E ⊂ K, and estimate the derivative by considering T := P |E ,
which then has a derivative along the curve. This is then used to estimate
|DyP (x)|. For getting the best estimate, we choose the inscribed ellipse E (in
a certain well-specified sense) maximal.

So now we are to see that once restricting to E or C, we do not loose anything.
In the course of proof we always estimate sharply, except when the yield of the

trigonometrical Bernstein inequality, which is of the form n
√

‖T‖2C(E) − T 2(t0),

where T = P |E is estimated by n
√

‖P‖2C(K) − P 2(x). That is, in the Bernstein-
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Szegő factor we substituted ‖P‖C(K) for ‖T‖C(E). Now this is put in the focus
by the above extension problem, at least when K is a triangle. But, although
the question seems to be rather particular, as for the choice ofK = ∆, note that
it is already shown that sharpness of the above Bernstein type inequalities for
this particular case already entail sharpness for all convex bodies of dimension 2,
see the closing remark of [4]. One may then pose the analogous question to ∆
being a simplex and the inscribed ellipse E , or circle C being maximal in the
appropriate sense.

Of course, it may well happen that for some polynomials P or T the
extension increases the norm, while for others it does not. So if M(∆) is
large, it still may happen that in the case when the trigonometrical Bernstein
inequality is sharp – when T (t) = cos(n(t− t0)) – then the extension has small
norm. That also means that the question in its general form requires more,
than is necessary for the affirmative answer in question of sharpness of the
currently known Bernstein type inequalities.

Let us note one more related thing, which, however well-known to some,
seems to cause surprise to others. That observation is that if we now denote by
D the disk, encircled by the circle C, then defining M(D) as the corresponding
extension quantity toD, we always have M(D) = 1. So extending a polynomial
into C does not increase its norm at all. This comes from the fact that we always
have some harmonic polynomial extensions, which then satisfy the maximum
principle and thus maxC |Q| = maxD |Q|. This fact is hard to look up in the
literature, so D. Burns at al. describes an elegant proof – which they attribute
to D. Khavinson – on [3, page 101].

The argument runs as follows. Fix C to be the unit circle together with
a polynomial P ∈ Pn = Pn(R2) to be extended, and consider the mapping
T : p → ∆(pq), ∆ being the Laplace operator, and q(x, y) := (1 − x2 − y2).
This mapping is now clearly a linear mapping from Pm → Pm, for any m ∈ N,
and it is injective; for if T (p) = 0, then pq satisfies the Laplace equation, i.e.
harmonic, but as it vanishes on the boundary C (for there q(x, y) ≡ 0), by the
maximum principle the harmonic function pq vanishes everywhere and is thus
also p ≡ 0. But as Pm is a finite dimensional vector space, kerT = 0 means that
T is also surjective. We take now m = n−2, and R := ∆P ∈ Pn−2. Because T
is surjective, there is r ∈ Pn−2 such that Tr = R, that is, ∆(qr) = ∆P . Clearly
Q := P − qr is then the right polynomial to pick, for ∆Q ≡ 0 and Q|C = P |C .

For another discussion of extensions, and harmonic extensions in particular,
see also [7], where the rather similar question of finding sharp norm estimates
for extensions from C to a concentric circle Cr of radius r is solved. (This
work also settles the above existence question of a harmonic extension, even
if in a more involved way.) I would like to thank this reference to Professor
V.V. Arestov.

I would say that the minimax problem of determining Mn(∆) is certainly
of some degree of difficulty and of independent interest, too.
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