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Applications of a Generalized Leibniz Rule

ULRICH ABEL

The central point of this short paper is a generalization of the Leib-
niz Rule for the derivative of a product of differentiable functions. As
applications we present several combinatorial identities. Among the con-
sequences are the celebrated Abel identity and the Rothe identity.
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1. Introduction and Main Formula

Let n € Ng, » € N, and let h, f; (i = 1,...,r) be functions which are
n-times differentiable in 2o € R with h(zg) # 0. The main formula considered
in this short note is

> (ﬁ)f[(h’“fi)““”(xo): ((di)” Bt (@) Ty filw) >

o N (h(x)— W (z)(x—=0))

(1)

T=xq

Obviously, if & is a constant function, Eq. (1) reduces to the well-known Leibniz

Rule -
- , _ n\ T (ki) —
(Hfl) - Z (k)Hfz (n_071’27"')7 (2)
i=1 k|=n i=1
for several n-times differentiable functions f; (1 =1,...,7).

Throughout the paper k = (k1,...,k,) € Nj denotes a multi-index, k| =
k1 + -+ k;, and the multinomial coefficient is defined by

n\ n o n!
k) \ki, ... .k '_k1!-~-krl(n—|k|)!’

A proof of the intriguing formula (1) can be found in [2]. It is essen-
tially based on methods of complex analysis. Therefore, in the derivation h,
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fi (i = 1,...,r) are assumed to be functions analytic in a neighborhood of
xo € C with h(zg) # 0. However, the identity (1) is of an algebraic nature
among the derivatives (Taylor coefficients) and hence automatically extends to
non-analytic functions of sufficient smoothness by a general principle. There-
fore, Eq. (1) is valid also for real functions h and f; possessing a continuous
derivative of order n in zy € R. It would be desirable to find a proof using only
combinatorial methods.

Remark 1. If h is a linear function we have
h(z) — B (z)(z — xo) = h(zo),
and Eq. (1) simplifies to
r r (n)
r—1 n ki £, (ks) — n+r—1 .
3 () 0™ = (e )

The special case r = 2, h(z) = z, i.e., the amazing identity

xZ <Z> (2* (@)™ (@ () "7 = (@ () (@)™
k=0

was discovered by the author while studying asymptotic expansions for se-
quences of certain approximation operators.

2. Applications

2.1. Abel Identity

As applications, we obtain remarkable identities. The most prominent ex-
ample is the Abel identity

n

Z (Z)a(a kc)kil(bJrkc)"*k = (a+b)", (3)

k=0

published in 1826 [1]. It is valid in commutative rings. A multivariate variant of

this deep generalization of the binomial formula follows as a direct consequence
of Eq. (1). If

h(z) =e ",
fi(z) = e"*h™ (@) (h(x) = I (z)(z — 0))
= e (14 c(z — x9)), for1<i<r-—1,

fr (l’) _ e(aTJrnc):r’

we obtain the following
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Conclusion 1. Forn =0,1,2,..., r > 2, and all a = (ay,...,a,) € C",
c € C, it follows that

Z (ﬁ) [ﬁ(ai(ai — k)" )| (ar + (n— k:r)c)kr = |a|™.
k|=n i=1

The bivariate specialization with a = (a,b) € C? is Eq. (3).

2.2. Rothe-Hagen Identity
In 1793 Rothe [10] published the convolution formula

Zn: a <akc)<b+kc>_<a+b> (1)
—a—ke k n—k n )’
which is also called Rothe-Hagen identity because it appears in Hagen’s three-
volume 1891 publication [9, Formula 17, pp. 64-68, vol. I]. There are many
proofs of this famous identity in the literature as well as various extensions. It

was rediscovered by Gould [6] in 1956. Recently, Chu [3] gave an elementary
proof. We put

h(z) =x~¢,

fi(w) = 2% @) (h(w) — W () (& — 20))
=21+ c¢—cxo/x), for1<i<r—1,

f7($) — xarJrnc

and formula (1) implies the following generalization of the Rothe identity.

Conclusion 2. Forn =0,1,2,..., 7 > 2, and all a = (ay,...,a,) € C",
c € C, it follows that

S WIEECe )=

The special case r = 2 with a = (a,b) € C? is the Rothe identity (4).

2.3. A Binomial Identity
If h(z) =z and f;(z) =% (i =1,...,r) we obtain the following
Conclusion 3. Forn =0,1,... and all a = (a1,...,a,) € C", it follows

that
Z ﬁ (kll—:laz) _ <n+ |a|n+r— 1)

[k|=n i=1
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The bivariate specialization is given by
z”: k+a\(n—k+b\ (n+a+b+1
P n—k ) n '

2.4. A First Problem by Graham, Knuth and Patashnik

In their textbook [8, Ex. 5.47, p. 246] Graham, Knuth and Patashnik pose
the following problem: Show that the sum

P ) é (ak ]:r b) (a(nn—_ki - b>7

which is a polynomial in the both variables a and b, is independent of b. The
sum is similar to the left-hand side of the Rothe identity (4). A direct conse-
quence is the formula

g;(wﬁ4><mi;fi—i):§;<ﬁ><%j;:»,

We put h(z) = 2%, fi(z) = 2%, fo(x) = 2% and apply identity (1) with r = 2.
We have

n

n!x(a—l)npn<a’ b) — Z (Z) (xak—&-b)(k) (xa(n—k)—b)(n—k)
k=0

=3 (1) (@) 0 @),
k=0

Because of fi(x)f2(x) = 1 the right-hand side of Eq. (1) is equal to

(5&)” h" (L)
dt/ h(t)—h ()t —x)
which is independent of b.

Moreover, one can proceed with calculating the latter expression. Denote

wo) = () s - (@) e
UE\\a) e -t -o))|,_,  \\at) Q—at+az
We distinguish two cases.
Case [(a —1)/a| < 1:  We have

me= o (@) T (D)L
= Q!x(a—l)nf: (Cm+k+ 1) (a— 1)k

k=0

)
t=x

t=x
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and thus

Pn(a,b)a1i<‘m+k+l>(a_1)k’ if‘a;1’<1.

n a
k=0

Case |(a —1)/a] > 1:  We have

mo -2 () [ )

k=0 t=x
—n! = fan —k a \F
— " (a=1)n ( )
aflx Z( n ) a—1
k=0
and thus
—1 X fan+k+1\ a—1\k a—1
Po(a,b) = ( ) 'f’ ‘ 1.
n(,0) a—lkzo( n ) a ' a ”

Alternatively, we can apply the Leibniz Rule to R(z) in order to obtain

i) =30 () g
k=0

n—=k ) ((1-a)t+ax)kt?

= plgla-bn Z (an +k1> (a—1)~.
n—

k=0

t=x

As conclusion we obtain

Rt = (" a1

k=0
which is valid for all values a € C.
When it happens that a is an integer greater than 1 an elementary calcula-
tion leads to the representation

(a—1)n (a=Dn
a an+1 k+n
Pn ,b = -1 —1 k —k ,
(a,5) (a—l)(a—l)n-irl{ + k;( ) (k+n+1>( n )a }
which is a finite sum.

In the trivial cases a € {0,1} we obtain

Pn(l,b)i<kzb>(”nl_€kb> S

k=0

Po2.b) = z”: (Qk]: b) (2(nn—_k?€— b) o

k=0

A proof of the latter formula can be found in [5] (see also [4]). I am grateful
to Dr. V. Kushnirevych for pointing out that the sequences (P, (a, b)), for

a=3,...,7, are listed in The On-Line Encyclopedia of Integer Sequences [11]
as Sequence A006256, A078995, A079678, A079679, A079563, respectively.
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2.5. A Second Problem by Graham, Knuth and Patashnik

As an example for the Gosper-Zeilberger algorithm Graham, Knuth and
Patashnik [8, Ex. 5.104, p. 255] present the equation

i(_”k( I [ P e W P e T

which they call a “remarkable identity”. With »r = b and s = a + b and using

upper negation
—a—k a+2k—1
_E(TY =

the identity can be rewritten in the form
i a—1+2k b— 2k 1 _[a+b 1
ps n—k)b—-n—k+1 \n Jb—2n+1’

which reveals Eq. (5) to be a variant of the Rothe identity (4). Nevertheless,
the original representation can be deduced as a direct consequence of Eq. (1)
if we put

r

h(z)
fi(x)
)

fo(z

|
aaaw

roans 1<h($) — W (z)(z — x0)) = 2" > (2zmy — 27).

Then we have

(hk($)f1(x))(k) = (@2FFsr1y(B) — <2k: + Sk— r— 1) -

— (—1)Fk! <’" T k) hterl,

and

(" @) () "
_ (x72k:+r71(21,x0 _ xQ))(nfk)

— — n—k
= (2mox 2ktr 2k+r+1)( )

— (n— k) {2 (% *;f) A (2’“ o 1);5”““} .
n — n —
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Thus, one can calculate the left-hand side of Eq. (1)

n

LHS = (Z) (R* f1) ) (o) (R f2) ) ()

k=0

—— —s—k\/—2k+r\ r—2n+1
—plps"n _1k r 8 L
%o kZ:O( )< k n—k Jr—n—k+1

where we used that
9 —2k+r\ (2k+r+1\ _ r—2n+1 (2k+r
n—k n—k r—n—k+1\ n—k )
The right-hand side of (1) is equal to RHS = ((d/dz)"z*) ‘m:zo =n!(D)zy ™"
Equating both sides proves Eq. (5).

3. Deduction of the Main Identity from a Simplified
Special Case

In this section we show that the main identity (1) can be deduced from a
simplified variant depending only on the function h. It is sufficient to prove
Eq. (1) in the special case that all functions f; (i =1,...,r) are powers of the
function h with non-negative integer exponents. The statement is as follows:
For all &« = (o, ..., a,) € N satisfying |a| < n, and for all m < n — |a|,

3 (1;{1) ﬁ(hkﬂrai)(ki)(xo) _ ((i)m (h(x)hmﬂawl(:c) _1)

|k|=m i=1 =W (z)(z — xo))r

T=I0

Proof. We start with the left-hand side of Eq. (1), where we neglect, for
the moment, the variable xy. Application of the Leibniz Rule yields

= EHE e

|k|=n i=1 Lo;=0
T
-5 ({16) S o]
la]<n \i=1 lkj=n, =1 v ‘

> (I1%7) £ [

k|=n—|a] =1

e (IAT) () Tee

€=0 || =¢ |k|=n—¢ i=1

(Rt (k )}

Z'
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where k > « means k; > «; (i = 1,...,r). On the other hand, application of
the Leibniz Rule to the right-hand side of Eq. (1)

rus = ()" [Q@)ilf[lfi(z)],

where, for fixed n,r, zg,

yields

¢

S0z 0 )
£=0 la|=¢ i=1

_ - n! . fz( : (n—20)

- ; (n—0)! || =¢ (i—l a! ) ¢

Comparison of both sides leads to

3 (n —klal) TT(h* )5 (o) = Q1D ().

[k|=n—la] i=1
Putting m = n — || we obtain the desired result. O
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