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Applications of a Generalized Leibniz Rule

Ulrich Abel

The central point of this short paper is a generalization of the Leib-
niz Rule for the derivative of a product of differentiable functions. As
applications we present several combinatorial identities. Among the con-
sequences are the celebrated Abel identity and the Rothe identity.
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1. Introduction and Main Formula

Let n ∈ N0, r ∈ N, and let h, fi (i = 1, . . . , r) be functions which are
n-times differentiable in x0 ∈ R with h(x0) 6= 0. The main formula considered
in this short note is

∑

|k|=n

(
n

k

) r∏

i=1

(
hkifi

)(ki)(x0)=
(( d

dx

)n hn+r−1(x)
∏r

i=1 fi(x)(
h(x)−h′(x)(x−x0)

)r−1

)∣∣∣∣∣
x=x0

. (1)

Obviously, if h is a constant function, Eq. (1) reduces to the well-known Leibniz
Rule (

r∏

i=1

fi

)(n)

=
∑

|k|=n

(
n

k

) r∏

i=1

f
(ki)
i (n = 0, 1, 2, . . .), (2)

for several n-times differentiable functions fi (i = 1, . . . , r).
Throughout the paper k = (k1, . . . , kr) ∈ Nr

0 denotes a multi-index, |k| =
k1 + · · ·+ kr, and the multinomial coefficient is defined by

(
n

k

)
=

(
n

k1, . . . , kr

)
:=

n!
k1! · · · kr!(n− |k|)! .

A proof of the intriguing formula (1) can be found in [2]. It is essen-
tially based on methods of complex analysis. Therefore, in the derivation h,
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fi (i = 1, . . . , r) are assumed to be functions analytic in a neighborhood of
x0 ∈ C with h(x0) 6= 0. However, the identity (1) is of an algebraic nature
among the derivatives (Taylor coefficients) and hence automatically extends to
non-analytic functions of sufficient smoothness by a general principle. There-
fore, Eq. (1) is valid also for real functions h and fi possessing a continuous
derivative of order n in x0 ∈ R. It would be desirable to find a proof using only
combinatorial methods.

Remark 1. If h is a linear function we have

h(x)− h′(x)(x− x0) = h(x0),

and Eq. (1) simplifies to

hr−1
∑

|k|=n

(
n

k

) r∏

i=1

(
hkifi

)(ki) =
(

hn+r−1
r∏

i=1

fi

)(n)

.

The special case r = 2, h(x) = x, i.e., the amazing identity

x

n∑

k=0

(
n

k

)(
xkf(x)

)(k)(
xn−kg(x)

)(n−k) =
(
xn+1f(x)g(x)

)(n)

was discovered by the author while studying asymptotic expansions for se-
quences of certain approximation operators.

2. Applications

2.1. Abel Identity

As applications, we obtain remarkable identities. The most prominent ex-
ample is the Abel identity

n∑

k=0

(
n

k

)
a(a− kc)k−1(b + kc)n−k = (a + b)n, (3)

published in 1826 [1]. It is valid in commutative rings. A multivariate variant of
this deep generalization of the binomial formula follows as a direct consequence
of Eq. (1). If

h(x) = e−cx,

fi(x) = eaixh−1(x)
(
h(x)− h′(x)(x− x0)

)

= eaix(1 + c(x− x0)), for 1 ≤ i ≤ r − 1,

fr(x) = e(ar+nc)x,

we obtain the following
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Conclusion 1. For n = 0, 1, 2, . . ., r ≥ 2, and all a = (a1, . . . , ar) ∈ Cr,
c ∈ C, it follows that

∑

|k|=n

(
n

k

) [
r−1∏

i=1

(
ai(ai − kic)ki−1

)
]

(
ar + (n− kr)c

)kr = |a|n.

The bivariate specialization with a = (a, b) ∈ C2 is Eq. (3).

2.2. Rothe-Hagen Identity

In 1793 Rothe [10] published the convolution formula

n∑

k=0

a

a− kc

(
a− kc

k

)(
b + kc

n− k

)
=

(
a + b

n

)
, (4)

which is also called Rothe-Hagen identity because it appears in Hagen’s three-
volume 1891 publication [9, Formula 17, pp. 64–68, vol. I]. There are many
proofs of this famous identity in the literature as well as various extensions. It
was rediscovered by Gould [6] in 1956. Recently, Chu [3] gave an elementary
proof. We put

h(x) = x−c,

fi(x) = xaih−1(x)
(
h(x)− h′(x)(x− x0)

)

= xai(1 + c− cx0/x), for 1 ≤ i ≤ r − 1,

fr(x) = xar+nc

and formula (1) implies the following generalization of the Rothe identity.

Conclusion 2. For n = 0, 1, 2, . . ., r ≥ 2, and all a = (a1, . . . , ar) ∈ Cr,
c ∈ C, it follows that

∑

|k|=n

(
n

k

) [
r−1∏

i=1

(
ai

ai − kic

(
ai − kic

ki

))] (
ar + (n− kr)c

kr

)
=

(|a|
n

)
.

The special case r = 2 with a = (a, b) ∈ C2 is the Rothe identity (4).

2.3. A Binomial Identity

If h(x) = x and fi(x) = xai (i = 1, . . . , r) we obtain the following

Conclusion 3. For n = 0, 1, . . . and all a = (a1, . . . , ar) ∈ Cr, it follows
that ∑

|k|=n

r∏

i=1

(
ki + ai

ki

)
=

(
n + |a|+ r − 1

n

)
.
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The bivariate specialization is given by
n∑

k=0

(
k + a

k

)(
n− k + b

n− k

)
=

(
n + a + b + 1

n

)
.

2.4. A First Problem by Graham, Knuth and Patashnik

In their textbook [8, Ex. 5.47, p. 246] Graham, Knuth and Patashnik pose
the following problem: Show that the sum

Pn(a, b) :=
n∑

k=0

(
ak + b

k

)(
a(n− k)− b

n− k

)
,

which is a polynomial in the both variables a and b, is independent of b. The
sum is similar to the left-hand side of the Rothe identity (4). A direct conse-
quence is the formula

n∑

k=0

(
ak + b

k

)(
a(n− k)− b

n− k

)
=

n∑

k=0

(
ak

k

)(
a(n− k)
n− k

)
.

We put h(x) = xa, f1(x) = xb, f2(x) = x−b and apply identity (1) with r = 2.
We have

n!x(a−1)nPn(a, b) =
n∑

k=0

(
n

k

)
(xak+b)(k)(xa(n−k)−b)(n−k)

=
n∑

k=0

(
n

k

)(
hk(x)f1(x)

)(k)(
hn−k(x)f2(x)

)(n−k)
.

Because of f1(x)f2(x) = 1 the right-hand side of Eq. (1) is equal to
(( d

dt

)n hn+1(t)
h(t)− h′(t)(t− x)

)∣∣∣∣
t=x

,

which is independent of b.
Moreover, one can proceed with calculating the latter expression. Denote

R(x) :=
(( d

dt

)n hn+1(t)
h(t)− h′(t)(t− x)

)∣∣∣∣
t=x

=
(( d

dt

)n tan+1

(1− a)t + ax

)∣∣∣∣
t=x

.

We distinguish two cases.
Case |(a− 1)/a| < 1: We have

R(x) =
1
ax

(( d

dt

)n
[
tan+1

∞∑

k=0

(a− 1
a

t

x

)k
])∣∣∣∣

t=x

=
n!
a

x(a−1)n
∞∑

k=0

(
an + k + 1

n

)(a− 1
a

)k
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and thus

Pn(a, b) = a−1
∞∑

k=0

(
an + k + 1

n

)(a− 1
a

)k

, if
∣∣∣a− 1

a

∣∣∣ < 1.

Case |(a− 1)/a| > 1: We have

R(x) =
−1

a− 1

(( d

dt

)n
[
tan

∞∑

k=0

( a

a− 1
x

t

)k
]) ∣∣∣∣

t=x

=
−n!
a− 1

x(a−1)n
∞∑

k=0

(
an− k

n

)( a

a− 1

)k

and thus

Pn(a, b) =
−1

a− 1

∞∑

k=0

(
an + k + 1

n

)(a− 1
a

)k

, if
∣∣∣a− 1

a

∣∣∣ > 1.

Alternatively, we can apply the Leibniz Rule to R(x) in order to obtain

R(x) = n!
n∑

k=0

(−1)k

(
an + 1
n− k

)
(1− a)k

((1− a)t + ax)k+1
tan+1−(n−k)

∣∣∣∣
t=x

= n!x(a−1)n
n∑

k=0

(
an + 1
n− k

)
(a− 1)k.

As conclusion we obtain

Pn(a, b) =
n∑

k=0

(
an + 1

k

)
(a− 1)n−k

which is valid for all values a ∈ C.
When it happens that a is an integer greater than 1 an elementary calcula-

tion leads to the representation

Pn(a, b) =
a(a−1)n

(a− 1)(a−1)n+1

[
−1 +

(a−1)n∑

k=0

(−1)k

(
an + 1

k + n + 1

)(
k + n

n

)
a−k

]
,

which is a finite sum.
In the trivial cases a ∈ {0, 1} we obtain

Pn(1, b) =
n∑

k=0

(
k + b

k

)(
n− k − b

n− k

)
= n + 1,

Pn(2, b) =
n∑

k=0

(
2k + b

k

)(
2(n− k)− b

n− k

)
= 4n.

A proof of the latter formula can be found in [5] (see also [4]). I am grateful
to Dr. V. Kushnirevych for pointing out that the sequences (Pn(a, b))∞n=0, for
a = 3, . . . , 7, are listed in The On-Line Encyclopedia of Integer Sequences [11]
as Sequence A006256, A078995, A079678, A079679, A079563, respectively.
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2.5. A Second Problem by Graham, Knuth and Patashnik

As an example for the Gosper-Zeilberger algorithm Graham, Knuth and
Patashnik [8, Ex. 5.104, p. 255] present the equation

n∑

k=0

(−1)k

(
r − s− k

k

)(
r − 2k

n− k

)
1

r − n− k + 1
=

(
s

n

)
1

r − 2n + 1
, (5)

which they call a “remarkable identity”. With r = b and s = a + b and using
upper negation

(−1)k

(−a− k

k

)
=

(
a + 2k − 1

k

)
,

the identity can be rewritten in the form

n∑

k=0

(
a− 1 + 2k

k

)(
b− 2k

n− k

)
1

b− n− k + 1
=

(
a + b

n

)
1

b− 2n + 1
,

which reveals Eq. (5) to be a variant of the Rothe identity (4). Nevertheless,
the original representation can be deduced as a direct consequence of Eq. (1)
if we put

r = 2,

h(x) = x2,

f1(x) = xs−r−1,

f2(x) = xr−2n−1
(
h(x)− h′(x)(x− x0)

)
= xr−2n−1(2xx0 − x2).

Then we have

(
hk(x)f1(x)

)(k) = (x2k+s−r−1)(k) = k!
(

2k + s− r − 1
k

)
xk+s−r−1

= (−1)kk!
(

r − s− k

k

)
xk+s−r−1,

and

(
hn−k(x)f2(x)

)(n−k)

=
(
x−2k+r−1(2xx0 − x2)

)(n−k)

=
(
2x0x

−2k+r − x−2k+r+1
)(n−k)

= (n− k)!
[
2
(−2k + r

n− k

)
x0x

−n−k+r −
(−2k + r + 1

n− k

)
x−n−k+r+1

]
.
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Thus, one can calculate the left-hand side of Eq. (1)

LHS =
n∑

k=0

(
n

k

)
(hkf1)(k)(x0)(hn−kf2)(n−k)(x0)

= n!xs−n
0

n∑

k=0

(−1)k

(
r − s− k

k

)(−2k + r

n− k

)
r − 2n + 1

r − n− k + 1
,

where we used that

2
(−2k + r

n− k

)
−

(−2k + r + 1
n− k

)
=

r − 2n + 1
r − n− k + 1

(−2k + r

n− k

)
.

The right-hand side of (1) is equal to RHS =
(
(d/dx)nxs

)∣∣
x=x0

= n!
(

s
n

)
xs−n

0 .
Equating both sides proves Eq. (5).

3. Deduction of the Main Identity from a Simplified
Special Case

In this section we show that the main identity (1) can be deduced from a
simplified variant depending only on the function h. It is sufficient to prove
Eq. (1) in the special case that all functions fi (i = 1, . . . , r) are powers of the
function h with non-negative integer exponents. The statement is as follows:
For all α = (α1, . . . , αr) ∈ Nr

0 satisfying |α| ≤ n, and for all m ≤ n− |α|,
∑

|k|=m

(
m

k

) r∏

i=1

(hki+αi)(ki)(x0) =
(( d

dx

)m hm+|α|+r−1(x)(
h(x)− h′(x)(x− x0)

)r−1

)∣∣∣∣
x=x0

.

Proof. We start with the left-hand side of Eq. (1), where we neglect, for
the moment, the variable x0. Application of the Leibniz Rule yields

LHS =
∑

|k|=n

(
n

k

) r∏

i=1

[
ki∑

αi=0

(
ki

αi

)
f

(αi)
i (hki)(ki−αi)

]

=
∑

|α|≤n

(
r∏

i=1

f
(αi)
i

) ∑

|k|=n,
k≥α

n!
r∏

i=1

[
1

αi!(ki − αi)!
(hki)(ki−αi)

]

=
n∑

`=0

∑

|α|=`

(
r∏

i=1

f
(αi)
i

αi!

) ∑

|k|=n−|α|
n!

r∏

i=1

[
1
ki!

(hki+αi)(ki)

]

=
n∑

`=0

n!
(n− `)!

∑

|α|=`

(
r∏

i=1

f
(αi)
i

αi!

) ∑

|k|=n−`

(
n− `

k

) r∏

i=1

(hki+αi)(ki),
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where k ≥ α means ki ≥ αi (i = 1, . . . , r). On the other hand, application of
the Leibniz Rule to the right-hand side of Eq. (1)

RHS =
( d

dx

)n
[
Q(x)

r∏

i=1

fi(x)
]
,

where, for fixed n, r, x0,

Q(x) :=
hn+r−1(x)(

h(x)− h′(x)(x− x0)
)r−1 ,

yields

RHS =
n∑

`=0

(
n

`

) (
r∏

i=1

fi

)(`)

Q(n−`)

=
n∑

`=0

(
n

`

) ∑

|α|=`

(
`

α

) (
r∏

i=1

f
(αi)
i

)
Q(n−`)

=
n∑

`=0

n!
(n− `)!

∑

|α|=`

(
r∏

i=1

f
(αi)
i

αi!

)
Q(n−`).

Comparison of both sides leads to

∑

|k|=n−|α|

(
n− |α|

k

) r∏

i=1

(hki+αi)(ki)(x0) = Q(n−|α|)(x0).

Putting m = n− |α| we obtain the desired result. ¤

Bibliography

[1] N.H. Abel, Beweis eines Ausdruckes, von welchem die Binomial-Formel ein
einzelner Fall ist, J. Reine Angew. Math. 1 (1826), 159–160.

[2] U. Abel, A generalization of the Leibniz Rule, Amer. Math. Monthly 120 (2013),
no. 10, 924–928.

[3] W. Chu, Elementary proofs for convolution identities of Abel and Hagen-Rothe,
Electron. J. Combin. 17 (2010), no. 1, Research Paper N24, 5 p.

[4] R. Duarte and A. Guedes de Oliveira, Note on the convolution of binomial
coefficients, J. Integer Seq. 16 (2013), Article 13.7.6.

[5] R. Duarte and A. Guedes de Oliveira, A short proof of a famous combina-
torial identity, preprint, http://arxiv.org/abs/1307.6693.

[6] H.W. Gould, Some generalizations of Vandermonde’s convolution, Amer.
Math. Monthly 63 (1956), no. 1, 84–91.



U. Abel 9

[7] V. J.W. Guo, Bijective proofs of Gould’s and Rothe’s identities, Discrete Math.
308 (2008), no. 9, 1756–1759.

[8] R.L. Graham, D.E. Knuth and O. Patashnik, “Concrete Mathematics: a
Foundation for Computer Science”, Second Edition, Addison-Wesley, 1994.

[9] J.G. Hagen, “Synopsis der Höheren Mathematik”, Berlin, 1891.

[10] H.A. Rothe, “Formulae de serierum reversione demonstratio universalis signis
localibus combinatorio analyticorum vicariis exhibita”, Leipzig, 1793.

[11] N. J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, published
electronically at http://oeis.org, 2013.

[12] V. Strehl, Identities of Rothe-Abel-Schläfli-Hurwitz-type, Discrete Math. 99
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