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An Electrostatics Problem on the Sphere
Arising from a Nearby Point Charge

Johann S. Brauchart,∗ Peter D. Dragnev†

and Edward B. Saff‡

For a positively charged insulated d-dimensional sphere we investigate
how the distribution of this charge is affected by proximity to a nearby
positive or negative point charge when the system is governed by a Riesz
s-potential 1/rs, s > 0, where r denotes Euclidean distance between point
charges. Of particular interest are those distances from the point charge
to the sphere for which the equilibrium charge distribution is no longer
supported on the whole of the sphere (i.e. spherical caps of negative
charge appear). Arising from this problem attributed to A. A. Gonchar
are sequences of polynomials of a complex variable that have some fasci-
nating properties regarding their zeros.
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1. Introduction

For the insulated unit sphere Sd in Rd+1 of total charge +1 on which par-
ticles interact according to the Riesz-s potential 1/rs, s > 0, where r is the
Euclidean distance between two particles, the equilibrium distribution of charge
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is uniform; that is, given by normalized surface area measure σd on Sd. How-
ever, in the presence of an “external field” due to a nearby point charge the
equilibrium distribution changes. A positive external field repels charge away
from the portion of the sphere near the source and may even clear a spheri-
cal cap of charge, whereas a negative external field attracts charge nearer to
the source, thus ‘thinning out’ a region on Sd opposite to the direction of the
source. In the Coulomb case s = 1 and d = 2 this is a well-studied problem
in electrostatics (cf., e.g., [14]). Here we deviate from this classical setting and
show that new and sometimes surprising phenomena can be observed. The
outline of the paper is as follows.

In Section 2 we introduce and discuss a problem (Gonchar’s problem) con-
cerning the critical distance from a unit point charge to Sd such that the support
of the s-equilibrium measure on the sphere (for Riesz s-potential 1/rs, s > 0) is
no longer all of the sphere when the point charge is at any closer distance. We
shall make this more precise below. Our starting point is the solution to the
“signed equilibrium problem” for a positive charge outside the sphere, which
is intimately connected with the solution of this external field energy problem.
Using similar methods, we are able to extend the results in [5] to external fields
due to a positive/negative point charge inside/outside the sphere. We shall
analyze Gonchar’s problem for different magnitudes and for both positive and
negative charges which, in turn, will provide a more comprehensive picture than
presented in [5] and [7], and will reveal some interesting new phenomena. For
example, in the case when d− s is an even positive integer, a logarithmic term
appears in the formula for the critical distance; and for a negative external field
due to a source inside the sphere, a crucial issue is whether the Riesz kernel is
strictly subharmonic (d−1 < s < d) or strictly superharmonic (0 < s < d−1).

For the logarithmic potential, we are able to provide a complete answer
for Gonchar’s problem. In the classical (harmonic) case s = d − 1 (and more
generally, when d− s is an odd positive integer) the critical distance appears
as a zero of a certain family of polynomials indexed by the dimension d. The
classical case and the associated polynomials are discussed in some detail in [7].
By allowing a negative as well as positive charge q and allowing this charge to
be inside or outside the sphere, we derive a family of polynomials for each of
the four combinations: (i) 0 ≤ R < 1 and q > 0, (ii) R > 1 and q > 0, (iii)
0 ≤ R < 1 and q < 0, and (iv) R > 1 and q < 0. In Section 3, we investigate
these four families of polynomials arising from Gonchar’s problem. Figure 5
illustrates the qualitative patterns of their zeros in the classical case s = d− 1
and illustrates how these families complement each other. The last two displays
of this figure are for s = d − 3. Figure 6 contrasts the cases s = d − 3 and
s = d − 5 for “weak” (q = 1/10), “canonical” (q = 1) and “strong” (q = 10)
external fields.

In [6] we discussed the Riesz external field problem due to a negative point
charge above the South Pole of a positively charged unit sphere (total charge 1)
and we derived the extremal and the signed equilibria on spherical caps for
d − 2 < s < d. In Section 4, we provide the details of this derivation and
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consider also the limiting cases when s → d− 2.
Section 5 contains the remaining proofs. In the Appendix we study the

s-potential of uniform (normalized) surface area measure on the d-sphere in
more detail.

2. Potential Theoretic Setting for Gonchar’s Problem

Let A be a compact subset of Sd. Consider the class M(A) of unit positive
Borel measures supported on A. The Riesz-s potential and Riesz-s energy of a
measure µ ∈M(A) modeling a (positive) charge distribution of total charge 1
on A are defined as

Uµ
s (x) :=

∫
|x− y|−s dµ(y), Is[µ] :=

∫ ∫
|x− y|−s d µ(x) d µ(y).

The Riesz-s energy and the s-capacity of A are given by

Ws(A) := inf
{
Is[µ] : µ ∈M(A)

}
, caps(A) = 1/Ws(A).

It is well-known from potential-theory (cf. Landkof [17]) that if A has positive
s-capacity, then there always exists a unique measure µA,s ∈ M(A), which
is called the s-equilibrium measure on A, such that Ws(A) = Is[µA,s]. For
example, σd is the s-equilibrium measure on Sd for each 0 < s < d. A standard
argument utilizing the uniqueness of the s-equilibrium measure µA,s shows that
it is the limit distribution (in the weak-star sense) of a sequence of minimal
s-energy N -point configurations on A minimizing the discrete s-energy

Es(x1, . . . ,xN ) :=
N∑

j=1

N∑

k=1
j 6=k

1
|xj − xk|s , x1, . . . ,xN ∈ A,

over all N -point sets on A. (For the discrete s-energy problem we refer to [13].)

Weighted energy and external fields. We are concerned with the Riesz
external field generated by a positive or negative point charge of amount q
located at a = (0, R) on the polar axis with 0 ≤ R < 1 or R > 1. Such a field
is given by

Q(x) = QR,q,s(x) :=
q

|x− a|s , x ∈ Rd+1. (1)

The Riesz-s external field on a compact subset A ⊂ Sd with positive s-capacity
is Q restricted to A. (For simplicity, we use the same symbol.) The weighted
s-energy IQ[µ] associated with such a continuous external field and its extremal
value VQ are defined as

IQ[µ] := Is[µ] + 2
∫

Q(x) d µ(x), VQ(A) := inf
{IQ[µ] : µ ∈M(A)

}
.
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A measure µQ ∈ M(A) such that IQ[µ] = VQ(A) is called an s-extremal (or
positive equilibrium) measure on A associated with Q. This measure is unique
and it satisfies the Gauss variational inequalities (cf. [11])∗

UµQ
s (x) + Q(x) ≥ FQ(A) everywhere on A, (2)

UµQ
s (x) + Q(x) ≤ FQ(A) everywhere on support supp(µQ) of µQ, (3)

where

FQ(A) := VQ(A)−
∫

Q(x) d µQ(x).

In fact, once supp(µQ) is known, the equilibrium measure µQ can be recovered
by solving the integral equation

Uµ
s (x) + Q(x) = 1 everywhere on A

for positive measures µ supported on A. In the absence of an external field
(Q ≡ 0) and when caps(A) > 0 the measure µQ coincides with µA,s.

Riesz external fields due to a positive charge on the sphere Sd were instru-
mental in the derivation of separation results for minimum Riesz-s energy points
on Sd for s ∈ (d−2, d) (see [11]). In [5] we studied Riesz external fields due to a
positive charge above Sd which led to a discussion of a fascinating sequence of
polynomials arising from answering Gonchar’s problem for the harmonic case
in [7]. The least separation of minimal energy configurations on Sd subjected
to an external field is investigated in [6]. In [5] we also developed a technique
for finding the extremal measure associated with more general axis-supported
fields.†For external fields in the most general setting we refer the reader to the
work of Zorĭı [31, 32, 33] (also cf. [12]).

Signed equilibrium. The Gauss variational inequalities (2) and (3) for
A = Sd imply that the weighted equilibrium potential is constant everywhere
on the support of the measure µQ on Sd. In general, one can not expect that
the support of µQ is all of the sphere. A sufficiently strong external field (large
q > 0 or small R > 1) would thin out the charge distribution around the North
Pole and even clear a spherical cap of charge. (In this “insulated sphere” setting
there is no negative charge that would be attracted to the North Pole.) By
enforcing constant weighted potential everywhere on the sphere, in general, one
has a signed measure as a solution. (This corresponds to a grounded sphere.)
In the classical Coulomb case (d = 2, s = 1) a standard electrostatic problem is
to find the charge density (signed measure) on a charged, insulated, conducting
sphere in the presence of a point charge q off the sphere (see [14, Ch. 2]). This
motivates the following definition (cf. [10]).

∗Note that a continuous negative field can be made into a positive one by adding a fixed
constant.

†The case d = 1, s = 0, where the source is a point on the unit circle, was investigated
in [15].
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Definition. Given a compact subset A ⊂ Rp (p ≥ 3) and an external
field Q on A, we call a signed measure ηQ = ηA,Q,s supported on A and of total
charge ηQ(A) = 1 a signed s-equilibrium on A associated with Q if its weighted
Riesz s-potential is constant on A; i.e.,

UηQ
s (x) + Q(x) = GA,Q,s everywhere on A. (4)

Physicists usually prefer neutral charge ηQ(A) = 0. However, for the appli-
cations here it is more convenient to have the normalization ηQ(A) = 1. It can
be shown that if a signed equilibrium ηQ on A exists, then it is unique (see [11]).
We remark that the determination of signed equilibria is a substantially easier
problem than that of finding non-negative extremal measures. However, the
solution to the former problem is useful in solving the latter problem. In [5]
it is shown for q > 0 and R > 1 that the signed s-equilibrium ηQ on Sd as-
sociated with the Riesz external field (1) is absolutely continuous with respect
to the normalized surface area measure on Sd. Using “Imaginary inversion”
(cf. Landkof [17]), the proof can be extended to hold for the class of fields
considered here. We remark that in the Coulomb case (s = 1 and d = 2) this
result is well-known from elementary physics (cf. [14, p. 61]).

Theorem 1. Let 0 < s < d. The signed s-equilibrium ηQ on Sd associated
with the external field Q of (1) is absolutely continuous with respect to the
normalized surface area measure on Sd; that is, d ηQ(x) = η′R,q,s(x) d σd(x),
and its density is given by

η′R,q,s(x) = 1 +
qUσd

s (a)
Ws(Sd)

− q|R2 − 1|d−s

Ws(Sd)|x− a|2d−s
, x ∈ Sd. (5)

(The charge q can be positive or negative and the distance of the charge to the
sphere center satisfies 0 ≤ R < 1 or R > 1.) Moreover, the weighted s-potential
of ηQ on Sd equals

GSd,Q,s = Ws(Sd) + qUσd
s (a). (6)

In the following we shall use the Pochhammer symbol

(a)0 := 1, (a)n := a(a + 1) · · · (a + n− 1), n ≥ 1,

which can be expressed in terms of the Gamma function Γ by means of (a)n =
Γ(n + a)/ Γ(a) whenever n + a is not an integer ≤ 0, and the Gauss hyper-
geometric function and its regularized form with series expansions

2F1

(
a, b
c ; z

)
:=

∞∑
n=0

(a)n(b)n

(c)n

zn

n!
, 2F̃1

(
a, b
c ; z

)
:=

∞∑
n=0

(a)n(b)n

Γ(n + c)
zn

n!
, |z| < 1.

We shall also use the incomplete Beta function and the Beta function,

B(x; α, β) :=
∫ x

0

vα−1(1− v)β−1 d v, B(α, β) := B(1; α, β),
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and the regularized incomplete Beta function

I(x; a, b) := B(x; a, b)
/

B(a, b).

The density η′R,q,s of (5) is given in terms of the s-energy of Sd ‡,

Ws(Sd) =
∫ ∫

1
|x− y|s dσd(x) d σd(y) =

Γ(d) Γ((d− s)/2)
2s Γ(d/2) Γ(d− s/2)

, (7)

and the Riesz-s potential of the uniform normalized surface area measure σd

evaluated at the location of the source of the external field (cf. [5, Theorem 2]),

Uσd
s (a) = (R + 1)−s

2F1

(
s/2, d/2

d
;

4R

(R + 1)2

)
, R = |a|. (8)

By abuse of notation we shall also write Uσd
s (R). From formula (5) we observe

that the minimum value of η′R,q,s is attained at the North Pole p if q > 0,

η′R,q,s(p) = 1 +
qUσd

s (a)
Ws(Sd)

− q(R + 1)d−s

Ws(Sd)|R− 1|d ,

and at the South Pole −p if q < 0,

η′R,q,s(−p) = 1 +
qUσd

s (a)
Ws(Sd)

− q|R− 1|d−s

Ws(Sd)(R + 1)d
.

Proposition 1. Let 0 < s < d. For the external field Q of (1) with q 6= 0
and 0 < R < 1 or R > 1, the signed s-equilibrium is a positive measure on all
of Sd if and only if

(a) Positive external field (q > 0):

Ws(Sd)
q

≥ (R + 1)d−s

|R− 1|d − Uσd
s (R). (9)

(b) Negative external field (q < 0):

Ws(Sd)
q

≤ |R− 1|d−s

(R + 1)d
− Uσd

s (R). (10)

In such a case, µQ = ηQ.

Proof. The arguments given in [5] for q > 0 and R > 1 apply. We provide
the proof for (10). If supp(µQ) = Sd, then µQ is a signed equilibrium on Sd (the
Gauss variational inequalities (2) and (3) hold everywhere on Sd). By unique-
ness of ηQ, ηQ = µQ; hence, it is non-negative and (10) holds. If (10) holds,
then ηQ is a non-negative measure on Sd whose weighted s-potential is constant
everywhere on Sd; that is, ηQ satisfies the Gauss variational inequalities with
FQ(Sd) = GSd,Q,s. By uniqueness of µQ, µQ = ηQ and supp(µQ) = Sd.

‡Ws(Sd) can be obtained using the Funk-Hecke formula [21]. Also, cf. Landkof [17].
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Note that R = 0 satisfies (9) and (10) with strict inequality for any choice
of q 6= 0. Given a charge q 6= 0, any R ∈ (0, 1) ∪ (1,∞) for which equality
holds in (9) or in (10) is called critical distance. At a critical distance R∗, the
density η′R∗,q,s of (5) assumes the value 0 at one point on Sd (and η′R∗,q,s is
strictly positive away from this unique minimum). Interestingly, in the case of
negative external fields due to a source inside the sphere, there can be more
than one critical distance as discussed below. The critical distance(s) anchor
the subintervals of radii R in (0, 1) ∪ (1,∞) for which η′R,q,s > 0 everywhere
on Sd.

Remark (Positive external fields). For every fixed positive charge q, there
is a unique critical distance Rq such that for R ≥ Rq > 1 (0 ≤ R ≤ Rq < 1)
the signed s-equilibrium is a positive measure on the whole sphere Sd. This
follows from the fact that the right-most part of (9) is a strictly decreasing
(increasing) function of R if R > 1 (0 < R < 1).

The technical details for this and the next remark will be postponed until
Section 5.

Remark (Negative external fields). The subtleties of the right-hand side of
inequality (10),

f(R) :=
|R− 1|d−s

(R + 1)d
− Uσd

s (R),

gives rise to a multitude of different, even surprising, cases (cf. Theorems 4,
5, 6, and 7). The function f is continuous on [0,∞), negative on (0,∞), and
bounded from below. Therefore, (10) is trivially satisfied for all charges q with
Ws(Sd)/q < minR≥0 f(R); otherwise, at least one critical distance exists. For
an exterior field source (that is, on (1,∞)) the function f has the same qual-
itative behavior for all 0 < s < d in the sense that it is strictly monotonically
increasing with lower bound f(1+) = −Ws(Sd) and a horizontal asymptote at
level 0. Consequently, there is a unique critical distance if q < −1, which is
the least distance R such that ηQ ≥ 0 on Sd, and none if q ≥ −1. For an
interior field source (that is, on (0, 1)) the qualitative behavior of f changes
with the potential-theoretic regime (superharmonic, harmonic, subharmonic s).
Figure 1 illustrates the typical form of f . In particular, one can have more than
one critical value of R for which equality is assumed in (10) as demonstrated
for the case d = 4 and s = 1 when (10) reduces to

Ws(Sd)
q

≤ (1−R)3

(1 + R)4
+

R2

5
− 1, 0 ≤ R < 1. (11)

The right-hand side is convex in (0, 1) with a unique minimum at R≈0.5071 . . . ,
so that equality will hold in above relation at two radii Rq,1 and Rq,2 in (0, 1)
near this minimum and the above relation will hold on [0, Rq,1] and [Rq,2, 1).

We remark that the complementary problem of fixing the distance R and
asking for the critical charge qR is trivial. A simple manipulation yields the
unique qR for which equality holds in (9) or (10) such that for q > qR > 0
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Figure 1. The typical behavior of the function f(R) (right-hand side of (10)) in

the strictly superharmonic, harmonic, and strictly subharmonic case shown here for

d = 3 and s = (d− 1)/2, s = d− 1, and s = d− 1/2.

(positive external field) or for q < min{qR, 0} (negative external field) the
signed s-equilibrium measure is a positive measure on all of Sd.

Gonchar’s problem. A.A. Gonchar asked the following question (cf. [18]):
A positive unit point charge approaching the insulated unit sphere carrying the
total charge +1 will eventually cause a spherical cap free of charge to appear.§

What is the smallest distance from the point charge to the sphere where still all
of the sphere is positively charged?

For the classical harmonic Newtonian potential (s = d − 1) we answer
this question in [5] and discuss it in detail in [7]. In this particular case the
s-energy Ws(Sd) of the d-sphere equals 1 (see (7)), and the mean-value property
for harmonic functions implies that the s-potential of the normalized surface
area measure σd at a simplifies to Uσd

s (R) = R1−d (R ≥ 1), cf. (15) below. So,
when requiring that R > 1 and q > 0, Proposition 1 yields that supp(µQ) = Sd

if and only if the following rational relation is satisfied:

1
q
≥ R + 1

(R− 1)d
− 1

Rd−1
. (12)

The critical distance Rq (from the center of Sd) is assumed when equality holds
in (12). Curiously, for d = 2 (classical Coulomb case) the answer to Gonchar’s
problem is the Golden ratio φ, that is R1−1 (the distance from the unit sphere)
equals (1+

√
5)/2 ¶; and for d = 4, the answer is the Plastic constant P (defined

in Eq. (30) below). For general d ≥ 2, the critical distance Rq = Rq(d) is for
positive exterior external fields a solution of the following algebraic equation

G1(d, q; R) :=
[ (R− 1)d

q
−R− 1

]
Rd−1 + (R− 1)d = 0, (13)

which follows from (12) and gives rise to the family of polynomials studied
in [7]. In fact, it is shown in [7] that Rq is the unique real zero in (1,+∞) of the

§On a grounded sphere a negatively charged spherical cap will appear.
¶An elementary physics argument would also show that R − 1 ≥ φ (for q = 1) implies

supp(µQ) = S2.
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Gonchar polynomial G1(d, q; z). Asymptotical analysis (see [7, Appendix A])
shows that

Rq = 2 +
log(3q)

d
+O(1/d2) as d →∞.

The answer to Gonchar’s problem for the external field of (1) for general
parameters 0 < s < d, R > 1, and q > 0 relies on solving a, in general, highly
non-algebraic equation for the critical distance Rq, namely the characteristic
equation (cf. relation (9))

Ws(Sd)
q

=
(R + 1)d−s

(R− 1)d
− Uσd

s (R). (14)

Figure 2 displays the graphical solution to Gonchar’s problem for d = 2, 4.

Figure 2. Surfaces (equality in (9)) representing the answer to Gonchar’s problem

for d = 2, 4 for the selected ranges for R, q, and s. The dots indicate the solution to

Eq. (13) (Newtonian case, q = 1).

Taking into account that R > 1, we can rewrite (14) as

G1(d, s, q; R) = 0,

where we define the Gonchar function of the first kind

G1(d, s, q; R) :=
(Ws(Sd)

q
(R− 1)d − (R + 1)d−s

)
Rd−1 + Rd−1(R− 1)dUσd

s (R).

Answering Gonchar’s problem for 0 < s < d, q > 0, and R > 1 amounts to
finding the unique (cf. remark after Proposition 1) real zero∗∗ in (1,∞) of the
function G1(d, s, q; R). Moreover, the density η′R,q,s of Theorem 1 evaluated at
the North Pole can be expressed as

η′R,q,s(p) =
q

Ws(Sd)
G1(d, s, q; R)
Rd−1(R− 1)d

, R > 1, q > 0, 0 < s < d.

∗∗Depending on the formula used for U
σd
s (R) (e.g., (8)), G1(d, s, q; R) can be analytically

continued to the complex R-plane.
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The quadratic transformation formula for Gauss hypergeometric functions
[2, Eq. 15.3.17] applied to the formula of Uσd

s (R) of (8) yields

Uσd
s (R) =

1
Rs 2F1

(−(d− 1− s)/2, s/2
(d + 1)/2 ;

1
R2

)
, R > 1. (15)

The hypergeometric function simplifies to 1 if s = d − 1 (harmonic case) and
reduces to a polynomial of degree m in 1/R2 for d− 1− s = 2m. Thus Rq will
be an algebraic number if Ws(Sd)/q is algebraic, which is interesting from a
number-theoretic point of view.

The following result generalizes [7, Theorem 5].

Theorem 2. For the external field Q of (1) with 0 < s < d, q > 0,
and R > 1, the signed s-equilibrium is a positive measure on all of Sd if and
only if R ≥ Rq, where Rq is the unique real zero in (1,∞) of G1(d, s, q; z).
(If s = d− 1− 2m for m a non-negative integer, then G1(d, d− 1− 2m, q; z) is
a polynomial.)

The solution to Gonchar’s problem is given by ρ(d, s) = Rq − 1.

We remark that integer values of s give rise to special forms of G1. Indeed,
for s = d−1, d−3, . . . , the s-potential Uσd

s and hence the Gonchar function G1

reduces to a polynomial. If (d − s)/2 is a positive integer and d is an even
dimension, then successive application of the contiguous function relations in
[8, § 15.5(ii)] to (15) lead to a linear combination of (cf. [8, Eq. 15.4.2, 15.4.6])

2F1

(1/2, 1
3/2 ; z2

)
=

1
2z

log
1 + z

1− z
=

1
z

atanh z, 2F1

(1/2, 1
1/2 ; z2

)
= (1− z2)−1

with unique coefficients that are rational functions of z2, where here z = 1/R.
For the convenience of the reader, we record here that for d = 4 and s = 2, the
s-potential in (15) reduces to (as can be verified by using MATHEMATICA)

Uσ4
2 (R) =

3
8

R2 + 1
R2

+
3
32

(R2 − 1)2

R3
log

(R− 1)2

(R + 1)2

which yields the Gonchar function of the first kind

G1(4, 2, q;R) =
(3/4

q
(R− 1)4 − (R + 1)2

)
R3 +

12
32

(R− 1)4R(R2 + 1)

+
3
32

(R− 1)4(R2 − 1)2 log
(R− 1)2

(R + 1)2
.

For d = 6 and s = 4 or s = 2, one has

Uσ6
4 (R) =

15
32

R4 − 2
3R2 + 1
R4

+
15
128

(R2 + 1)(R2 − 1)2

R5
log

(R− 1)2

(R + 1)2
,

Uσ6
2 (R) = − 15

128
(R2 + 1)(R4 − 14

3 R2 + 1)
R4

− 15
512

(R2 − 1)4

R5
log

(R− 1)2

(R + 1)2
.
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(These representations hold for all R ∈ (0, 1)∪ (1,∞).) Further analysis shows
that for even d and s = d− 2, d− 4, . . . , 2, the Gonchar function G1 reduces to

G1(d, d− 2m, q; R) =
Ws(Sd)

q
(R− 1)dRd−1 + R P (R) + Q(R) log

(R− 1)2

(R + 1)2

for some polynomials P and Q. A curious fact is that for odd dimension d ≥ 3
and (d−s)/2 a positive integer (that is, s = d−2m), the s-potential Uσd

d−2m(R)
is a linear combination of a complete elliptic integral of the first kind,

K(m) :=
∫ π/2

0

d θ√
1−m(sin θ)2

=
π

2 2F1

(
1/2, 1/2

1
; m

)
,

and a complete elliptic integral of the second kind,

E(m) :=
∫ π/2

0

√
1−m(sin θ)2 d θ =

π

2 2F1

(−1/2, 1/2
1

;m
)
,

with m = 1/R2 and with coefficients that are rational functions of 1/R2.††This
follows by applying contiguous function relations for hypergeometric functions
to (15) (cf. [8, § 15.5(ii)]). For example, for d = 3 and s = d− 2 = 1, one has

Uσd
1 (R) =

4
3π

1 + R2

R2
E(R2)− 4

3π

1−R2

R2
K(R2), 0 ≤ R < 1.

If (d− s)/2 is not an integer, then the linear transformation [8, Eq.s 15.8.4]
applied to (8) followed by the linear transformation [8, last in Eq. 15.8.1] gives
the following formula valid for all R ∈ (0, 1) ∪ (1,∞),

Uσd
s (R) = Ws(Sd)R1−d

(R + 1
2

)2d−s−2

2F1

(1− d/2, 1− d + s/2
1− (d− s)/2 ;

(R− 1)2

(R + 1)2
)

+
Γ((d + 1)/2) Γ((s− d)/2)

2
√

π Γ(s/2)
|R− 1|d−sR1−d

(R + 1
2

)d−2

× 2F1

(1− d/2, 1− s/2
1 + (d− s)/2 ;

(R− 1)2

(R + 1)2
)
.

Both hypergeometric functions reduce to a polynomial if d is an even positive
integer. In this case the Gonchar function reduces to

G1(d, s, q; R) =
Ws(Sd)

q
(R− 1)d

Rd−1

+ Ws(Sd) (R + 1)d−s
P (R) + C(d, s) (R− 1)d−s

Q(R)

for some polynomials P and Q.

††A similar relation holds if 0 < R < 1. Then m = R2.
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Gonchar’s problem for interior sources. A positive (unit) point charge
is placed inside the insulated unit sphere with total charge +1. What is the
smallest distance from the point charge to the sphere so that the support of the
extremal measure associated with the external field due to this interior source
is just the entire sphere?

The trivial solution is to put the field source at the center of the sphere.
Then the signed s-equilibrium ηQ on Sd and the s-extremal measure µQ on Sd

associated with the external field Q(x) = q/|x|s coincide with the s-equilibrium
measure σd on Sd. We are interested in non-trivial solutions.

First, we answer this question for the classical Newtonian case (s = d− 1).
The maximum principle for harmonic functions implies that the s-potential
of the s-equilibrium measure σd is constant on Sd and this extends to the
whole unit ball (Faraday cage effect); that is, Uσd

d−1(a) = Wd−1(Sd) = 1 for all
a ∈ Rd+1 with |a| ≤ 1. Assuming 0 < R < 1 and q > 0, by Proposition 1,
supp(µQ) = Sd if and only if

1/q ≥ (1 + R) (1−R)−d − 1.

It follows that for a positive external field (q > 0) induced by an interior source
(0 < R < 1) the critical distance Rq = Rq(d) (to the center of Sd) is a solution
of the following algebraic equation

G2(d, q; R) := [1 + (1/q)] (1−R)d −R− 1 = 0. (16)

For d = 2 (classical Coulomb case) the answer to Gonchar’s problem is

1−Rq =

√
9 + 8/q − 1
2(1 + 1/q)

,

which reduces to (
√

17− 1)/4 for q = 1. This number seems to have no special
meaning.‡‡

The answer to Gonchar’s problem for the external field of (1) for general
parameters 0 < s < d, 0 < R < 1, and q > 0 relies on solving the characteristic
equation (cf. (9))

Ws(Sd)
q

=
(1 + R)d−s

(1−R)d
− Uσd

s (R). (17)

Taking into account that 0 ≤ R < 1, we can rewrite (17) as

G2(d, s, q; R) = 0,

where we define the Gonchar function of the second kind,

G2(d, s, q; R) :=
Ws(Sd)

q
(1−R)d − (1 + R)d−s + (1−R)d

Uσd
s (R).

‡‡Trivia: The digit sequence of 2 − R1 = (3 +
√

17)/4 is sequence A188485 of Sloane’s
OEIS [22]. One feature is the periodic continued fraction expansion [1, 1, 3].
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Answering Gonchar’s problem for 0 < s < d, q > 0, and 0 < R < 1 amounts to
finding the unique (cf. remark after Proposition 1) (real) zero in (0, 1) of the
function G2(d, s, q; R). Moreover, the density η′R,q,s of Theorem 1 evaluated at
the North Pole can be expressed as

η′R,q,s(p) =
q

Ws(Sd)
G2(d, s, q; R)

(1−R)d
, 0 < R < 1, q > 0, 0 < s < d.

The quadratic transformation formula for Gauss hypergeometric functions
[2, Eq. 15.3.17] applied to the formula of Uσd

s (R) of (8) yields

Uσd
s (R) = 2F1

(−(d− 1− s)/2, s/2
(d + 1)/2 ; R2

)
, 0 ≤ R < 1. (18)

The hypergeometric function simplifies to 1 if s = d − 1 (harmonic case) and
reduces to a polynomial of degree m in R2 for d − 1 − s = 2m. Thus Rq will
be an algebraic number if Ws(Sd)/q is algebraic.

Theorem 3. For the external field Q of (1) with 0 < s < d, q > 0,
and 0 < R < 1, the signed s-equilibrium is a positive measure on all of Sd if and
only if 0 ≤ R ≤ Rq, where Rq is the unique real zero in (0, 1) of G2(d, s, q; z).
(If s = d− 1− 2m for m a non-negative integer, then G2(d, d− 1− 2m, q; z) is
a polynomial.)

The solution to Gonchar’s problem is given by ρ(d, s) = 1 − Rq (and the
trivial solution 1).

We remark that in the case of s 6= d − 1 − 2m, m a non-negative integer,
one can use alternative representations of Uσd

s (R) similar to those derived after
Theorem 2.

Connecting interior and exterior external fields. The Riesz-s exter-
nal fields of the form (1) induced by an interior (0 < R′ < 1, q′ > 0) and
an exterior (R > 1, q > 0) point source giving rise to signed s-equilibria ηQ′

and ηQ on Sd with the same weighted s-potential,

U
ηQ′
s (x) + Q′(x) = UηQ

s (x) + Q(x) everywhere on Sd,

are connected by the following necessary and sufficient condition (cf. (6))

q′ Uσd
s (R′) = q Uσd

s (R). (19)

One way to realize this condition is known as the principle of inversion
for Sd. For a fixed s ∈ (0, d), the principle states that to a charge q > 0
at distance R > 1 from the center of the sphere there corresponds a charge
q′ = qR−s at distance R′ = 1/R so that the s-equilibria ηQ and ηQ′ coincide and
thus have the same weighted s-potential on Sd. (Indeed, the hypergeometric
function in (8) is invariant under inversion R 7→ 1/R. The adjustment of the
charge follows from (19). An inspection of (5) shows that ηQ′ = ηQ.)
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Figure 3. The typical behavior of the s-potential U
σd
s (R) (for a formula see (8)) in

the strictly superharmonic, harmonic, and strictly subharmonic case shown here for

d = 3 and s = (d− 1)/2, s = d− 1, and s = d− 1/2.

Now, if we require (19) but do not assume that ηQ′ = ηQ, then new phe-
nomena emerge. The potential-theoretic regime (superharmonic, harmonic,
subharmonic) determines for what ratios q′/q, radii R′ and R exist so that (19)
can be satisfied; cf. Figure 3. Basic calculus§§ shows that in the strictly
superharmonic case (0 < s < d − 1) the continuous s-potential Uσd

s (R) is
strictly monotonically decreasing on (0,∞). This implies that for any posi-
tive charges q′ and q with 0 < q′/q < 1, each R′ ∈ (0, 1) uniquely determines
an R > 1 such that (19) holds. In the harmonic case (s = d− 1), (19) reduces
to q′ = q R1−d, since Uσd

d−1(R
′) = 1 on [0, 1] (cf. (18)), each R′ ∈ (0, 1) is

mapped to R = (q′/q)1/(1−d) provided q′ < q. In the strictly subharmonic case
(d − 1 < s < d) the s-potential Uσd

s (R) is strictly monotonically increasing
on (0, 1) and strictly monotonically decreasing on (1,∞). This implies that for
any positive charges q′ and q with 0 < q′/q < Ws(Sd), each R′ ∈ (0, 1) uniquely
determines an R > 1 such that (19) holds.

As an example we consider the case d = 2, s = 3/2, and assume that q′= q.
Then each R′ ∈ (0, 1) determines a unique R > 1 satisfying Uσ2

3/2(R
′)= Uσ2

3/2(R),
or equivalently,

2√
1 + R′ +

√
1−R′

=
√

R + 1−√R− 1
R

.

Curiously, a positive charge at the center of the sphere (that is, R′ = 0 in above
relation) would require that R satisfies the equation (

√
R + 1−√R− 1)/R= 1;

that is, one can show that R is the smaller of the two positive zeros of the
minimal polynomial x4 − 4x3 + 4.

Remark. The equations (13) and (16) characterizing the corresponding crit-
ical distance Rq are related by the principle of inversion; that is, application of
the transformations R 7→ 1/R and q 7→ qR1−d to either of the two reproduces
the other one.

§§Using in (18) (if 0 ≤ R < 1) and (8) (if R > 1).
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Negative external fields. A Gonchar type question can also be asked
for Riesz external fields Q of the form (1) induced by a negative point source.
The density η′R,q,s of the signed equilibrium on Sd associated with Q, given in
(5), assumes its minimum value at the South Pole provided R ∈ (0, 1)∪ (1,∞).
Thus, Gonchar’s problem concerns the distance from the North Pole such that
η′R,q,s is zero at the South Pole. Answering this question for negative Riesz
external fields is more subtle than for positive external fields. As discussed in
the second remark after Proposition 1, a solution of the characteristic equation
(cf. (10))

Ws(Sd)
q

= f(R) :=
|R− 1|d−s

(R + 1)d
− Uσd

s (R) (20)

exists for q satisfying Ws(Sd)/q ≥ minR≥0 f(R) (cf. Figure 1).
For exterior negative point sources (R > 1, 0 < s < d), we have f(R) >

f(1) = −Ws(Sd) on (1,∞). Thus, a critical distance Rq (and therefore an
answer to Gonchar’s problem) exists if and only if q < −1. (If Rq exists, then
it is unique.) Defining the Gonchar function of the third kind,

G3(d, s, q; R) :=
(Ws(Sd)

q
(R + 1)d−(R− 1)d−s

)
Rd−1+Rd−1 (R + 1)d

Uσd
s (R),

we can rewrite (20) as
G3(d, s, q; R) = 0.

Given q < −1, the critical distance Rq is the unique (real) zero of G3(d, s, q; R)
in (1,∞). Moreover, the density η′R,q,s of Theorem 1 evaluated at the South
Pole can be expressed as

η′R,q,s(−p) =
q

Ws(Sd)
G3(d, s, q; R)

Rd−1 (R + 1)d
, R > 1, q < 0, 0 < s < d.

The following result generalizes [7, Theorem 5] to exterior negative Riesz
external fields.

Theorem 4. For the external field Q of (1) with 0 < s < d, q < 0,
and R > 1, the signed s-equilibrium is a positive measure on all of Sd if and
only if one of the following conditions holds:

(i) q ∈ [−1, 0) and R > 1. Gonchar’s problem has no solution (no critical
distance).

(ii) q < −1 and R ≥ Rq, where Rq is the unique (real) zero in (1,∞) of
the Gonchar function G3(d, s, q; z). The solution to Gonchar’s problem is
Rq − 1.

If s = d− 1− 2m for m a non-negative integer, then G3(d, d− 1− 2m, q; z) is
a polynomial.
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For an external field with negative point source inside the sphere (0 <R<1),
one needs to differentiate between the (i) strictly superharmonic (0 < s < d−1),
(ii) harmonic (s = d − 1), or (iii) strictly subharmonic (d − 1 < s < d) case;
cf. Figure 1. We define the Gonchar function of the fourth kind,

G4(d, s, q; R) :=
Ws(Sd)

q
(1 + R)d − (1−R)d−s + (1 + R)d

Uσd
s (R)

and have

η′R,q,s(−p) =
q

Ws(Sd)
G4(d, s, q; R)

(R + 1)d
, 0 < R < 1, q < 0, 0 < s < d.

In case (i), the function f(R) in (20) has a single minimum in (0, 1), say,
at R∗ with f(R∗) < −Ws(Sd). Set q∗ := Ws(Sd)/f(R∗). Then (20) has no
solution in (0, 1) if q ∈ (q∗, 0), two solutions in (0, 1) if q ∈ (−1, q∗) (as demon-
strated for the special case d = 4 and s = 1 in (11)) which degenerate to one
as q → q∗, and one solution in (0, 1) if q ≤ −1.

Theorem 5. For the external field Q of (1) with 0 < s < d − 1, q < 0,
and 0 < R < 1, the signed s-equilibrium is a positive measure on all of Sd if
and only if one of the following conditions holds:

(i) q ∈ (q∗, 0) and R ∈ (0, 1). Gonchar’s problem has no solution as there
exists no critical distance.

(ii) q = q∗ and R ∈ (0, 1). The solution to Gonchar’s problem is 1 − R∗ as
η′R,q,s(−p) = 0 at R = R∗ but η′R,q,s(−p) > 0 for R ∈ (0, R∗) ∪ (R∗, 1).

(iii) q ∈ (−1, q∗) and R ∈ (0, Rq,1)∪ (Rq,2, 1), where Rq,1 and Rq,2 are the two
only (real) zeros in (0, 1) of the Gonchar function G4(d, s, q; z). Gonchar’s
problem has two solutions 1−Rq,1 and 1−Rq,2.

(iv) q ≤ −1 and R ∈ (0, Rq], where Rq is the unique (real) zero in (0, 1) of
the Gonchar function G4(d, s, q; z). The solution to Gonchar’s problem is
1−Rq.

(v) q < 0 and R = 0 (trivial solution). Gonchar’s problem has no solution.

If s = d− 1− 2m for m a non-negative integer, then G4(d, d− 1− 2m, q; z) is
a polynomial.

In case (ii) the function f(R) is strictly monotonically decreasing and convex
in (0, 1) with −1 = −Wd−1(Sd) ≤ f(R) ≤ 0. Hence, (20) has no solution
in (0, 1) if q ∈ [−1, 0) and one solution in (0, 1) if q < −1.
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Theorem 6. For the external field Q of (1) with s = d − 1, q < 0,
and 0 < R < 1, the signed s-equilibrium is a positive measure on all of Sd if
and only if one of the following conditions holds:

(i) q ∈ [−1, 0) and R ∈ (0, 1). Gonchar’s problem has no solution (no critical
distance).

(ii) q < −1 and R ∈ (0, Rq], where Rq is the unique (real) zero in (0, 1) of
the Gonchar function G4(d, s, q; z). The solution to Gonchar’s problem is
1−Rq.

(iii) q < 0 and R = 0 (trivial solution). Gonchar’s problem has no solution.

If s = d− 1− 2m for m a non-negative integer, then G4(d, d− 1− 2m, q; z) is
a polynomial.

In case (iii) the function f(R) is strictly monotonically decreasing on (0, 1)
with −Ws(Sd) ≤ f(R) ≤ 0 like in case (ii) but neither convex nor concave on
all of (0, 1), since f ′′(0+) > 0 and f ′′(R) → −∞ as R → 1−. Equation (20)
has a solution in (0, 1) if and only if q < −1.

Theorem 7. For the external field Q of (1) with d − 1 < s < d, q < 0,
and 0 < R < 1, the signed s-equilibrium is a positive measure on all of Sd if
and only if one of the following conditions holds:

(i) q ∈ [−1, 0) and R ∈ (0, 1). Gonchar’s problem has no solution (no critical
distance).

(ii) q < −1 and R ∈ (0, Rq], where Rq is the unique (real) zero in (0, 1) of
the Gonchar function G4(d, s, q; z). The solution to Gonchar’s problem is
1−Rq.

(iii) q < 0 and R = 0 (trivial solution). Gonchar’s problem has no solution.

If s = d− 1− 2m for m a non-negative integer, then G4(d, d− 1− 2m, q; z) is
a polynomial.

We remark that in the harmonic case, the analogues of the algebraic equa-
tions (13) and (16) characterizing the critical distance(s) either in (0, 1) or
(1,∞) are given by

G3(d, q′; R) :=
[ (R + 1)d

q′
−R + 1

]
Rd−1+ (R + 1)d = 0, R > 1, q′ < 0, (21)

G4(d, q′; R) :=
[
1 +

1
q′

](
1 + R

)d

+ R− 1 = 0, 0 ≤ R < 1, q′ < 0. (22)

Both equations are related by the principle of inversion: simultaneous applica-
tion of the transformations R 7→ 1/R and q′ 7→ q′R1−d changes one equation
into the other.
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Gonchar’s problem for the logarithmic potential. The logarithmic
potential log(1/r) follows from the Riesz s-potential 1/rs (s 6= 0) by means of
a limit process:

log(1/r) =
d r−s

d s

∣∣∣
s→0

= lim
s→0

r−s − 1
s

, r > 0.

This connection allows us to completely answer Gonchar’s problem for the
logarithmic potential and the logarithmic external field

Qlog,a,q(x) := − q log |x− a|, x ∈ Rd+1, (23)

where a 6∈ Sd. We remark that the logarithmic potential with external field in
the plane is treated in [26] and [5, 6] deal with the logarithmic case on S2 which
can be reduced to an external field problem in the plane using stereographic
projection as demonstrated in [9, 27]. The general case for higher-dimensional
spheres seems to have not been considered yet.

Theorem 8. The signed logarithmic equilibrium ηQlog on Sd associated
with the external field Qlog = Qlog,a,q of (23) is absolutely continuous with
respect to the (normalized) surface area measure on Sd; that is, d ηQlog(x) =
η′log(x) d σd(x), and its density is given by

η′log(x) = 1 + q − q

∣∣R2 − 1
∣∣d

|x− a|2d
, x ∈ Sd.

Proof. Differentiating the signed equilibrium relation (4) for A = Sd with
respect to s, i.e.
∫

d
d s

{η′R,q,s(y)
|x− y|s

}
dσd(y)+

d
d s

{ q

|x− a|s
}

=
dU

ηQ
s (x)
d s

+
dQ(x)

d s
=

dGSd,Q,s

d s
,

and letting s go to zero yields
∫

log
1

|x− y|
[
η′R,q,s(y)

]
s→0

dσd(y) + q log
1

|x− a|

=
dGSd,Q,s

d s
−

∫ [d η′R,q,s(y)
d s

]

s→0

d σd(y).
(24)

Using (7) and (8), one can easily verify that η′log(y) = lims→0 η′R,q,s(y). As the
right-hand side above does not depend on x ∈ Sd, the measure µ with d µ(y) =
η′log(y) d σd(y) has constant weighted logarithmic potential on Sd; that is, by
the uniqueness of the signed equilibrium (cf. [5, Lemma 23]), the measure µ is
the signed logarithmic equilibrium on Sd associated with Qlog = Qlog,a,q.

From (24) and (6) it follows that the weighted logarithmic potential of ηQlog

equals everywhere on Sd the constant

GSd,Qlog,log = Wlog(Sd) + qUσd

log(a)−
∫ [d η′R,q,s(y)

d s

]

s→0

dσd(y),
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where the logarithmic energy of Sd is given by (cf., e.g., [3, Eq.s (2.24), (2.26)])

Wlog(Sd) := {Ilog[µ] : µ ∈M(Sd)} = − log 2 + [ψ(d)− ψ(d/2)] /2 (25)

(here ψ(s) := Γ′(s)/ Γ(s) denotes the digamma function), and the logarithmic
potential of σd can be represented as

Uσd

log(a) = log
1

R + 1
+

1
2

∞∑

k=1

(d/2)k

(d)k k

(4R)k

(R + 1)2k
. (26)

On the other hand, direct computation of the weighted logarithmic potential
at the North Pole gives

GSd,Qlog,log = (1+q)Wlog(Sd)−q

∫ |R2 − 1|d
|x− a|2d

log
1

|x− p| dσd(x)+q log
1

|R− 1| .

The density η′log assumes its minimum value at the North (South) Pole
if q > 0 (q < 0),

η′log(p) = 1 + q − q
(R + 1)d

|R− 1|d , η′log(−p) = 1 + q − q
|R− 1|d
(R + 1)d

.

Hence one can obtain necessary and sufficient conditions if supp(µQlog) = Sd.

Theorem 9. Let a∈Rd+1 with R= |a| 6=1 and q 6=0. Set α := [(1 + q)/q]1/d.
Then supp(µQlog) = Sd (and thus µQ = ηQ) if and only if

(i) for positive fields (q > 0)

1 + q

q
≥ (R + 1)d

|R− 1|d , i.e.





R ≥ α + 1
α− 1

for R > 1, q > 0,

R ≤ α− 1
α + 1

for 0 < R < 1, q > 0,
(27)

(ii) or for negative fields (q < 0)

1 + q

q
≤ |R− 1|d

(R + 1)d
, i.e.





R ≥ 1 + α

1− α
for R > 1, q < −1,

R ≤ 1− α

1 + α
for 0 < R < 1, q < −1,

(28)

whereas the first inequality is trivially satisfied for all R 6= 1 if −1≤q < 0.

Remark. While the critical distance Rq,log is given by equality in above
relations for q < −1 or q > 0, in a weak negative logarithmic field (−1 ≤ q < 0)
there exists no critical distance. Observe that for fixed charge q 6= 0, the
sequence of critical distances {Rq,log}d≥2 goes to +∞ (0) monotonically as
d →∞ for q > 0 (q < 0).
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Proof of Theorem 9. By differentiating the expressions in (7) and (8) with
respect to s and letting s → 0, we arrive at (25) and (26). The equivalence
in Theorem 9 (and µQlog = ηQlog) follows in a similar way as in the proof of
Proposition 1. The relations in (27) and (28) are obtained by simple algebraic
manipulations.

Beyond Gonchar’s problem. This problem arises in a natural way when
studying the external field problem on the d-sphere in the presence of a sin-
gle positive point source above Sd exerting the external field. The answer to
Gonchar’s problem pinpoints the critical distance Rq of a charge q > 0 from the
center of Sd such that the support of the s-extremal measure µQ associated with
Q is all of Sd for R ≥ Rq but supp(µQ) is a proper subset of Sd for 1 < R < Rq.
Finding the s-extremal measure µQ when supp(µQ) ( Sd turns out to be much
more difficult. Given d−2 ≤ s < d, a convexity argument (cf. [5, Theorem 10])
shows that SQ := supp(µQ) is connected and forms a spherical cap centered at
the pole opposite to the charge q; in fact, SQ minimizes the Fs-functional¶¶

Fs(A) := Ws(A) +
∫

QdµA, A ⊂ Sd compact with caps(A) > 0, (29)

where Ws(A) is the s-energy of A and µA is the s-extremal measure on A.
Remarkably, if the signed s-equilibrium on a compact set A ⊂ Sd associated
with Q exists, then Fs(A) = GA,Q,s (cf. (4)). This connection to signed equi-
libria is exploited in [5] when determining the support SQ and, subsequently,
the s-extremal measure µQ on Sd associated with Q as the signed equilib-
rium ηQ on a spherical cap Σt := {(√1− u2x, u) : −1 ≤ u ≤ t,x ∈ Sd−1} with
critical “size” t = t0. We remark that either the variational inequality (2)
would be violated on Sd \ Σt in case of a too small Σt (t < t0) or the density
of ηQ would be negative near the boundary of Σt in case of a too large Σt

(t > t0). Somewhat surprisingly it turns out that for s = d − 2 the signed
equilibrium ηQ on Σt has a component that is uniformly distributed on the
boundary of Σt which vanishes if t = t0. It should be noted that ηQ on Σt

can be expressed in terms of the s-balayage measures (onto Σt) Bals(σd, Σt)
and Bals(δa, Σt) by means of ηQ = c Bals(σd,Σt) − q Bals(δa, Σt), where c is
chosen such that ηQ has total charge 1.∗∗∗ In fact, the balayage method and
the (restricted if d− 2 ≤ s < d− 1) principle of domination play a crucial role
in the derivation of these results (cf. [5]). Those techniques break down when
0 < s < d− 2 (d ≥ 3). For this gap new ideas are needed.

¶¶It is the Riesz analog of the Mhaskar-Saff functional from classical logarithmic potential
theory in the plane (see [20] and [26, Ch. IV, p. 194]).
∗∗∗Given a measure ν and a compact set A ⊂ Sd, the s-balayage measure ν̂ := Bals(ν, A)

preserves the Riesz s-potential of ν onto the set A and diminishes it elsewhere (on the
sphere Sd).
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Padovan sequence and the plastic number. The Padovan sequence 1,
1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, . . . (sequence A000931 in Sloane’s OEIS [22]) is
named after architect Richard Padovan (cf. [28]). These numbers satisfy the re-
currence relation Pn = Pn−2 +Pn−3 with initial values P0 = P1 = P2 = 1. The
ratio Pn+1/Pn of two consecutive Padovan numbers approximates the Plastic
constant P ††† as N →∞:

P := lim
n→∞

Pn+1

Pn
=

(9−√69)1/3 + (9 +
√

69)1/3

21/332/3
= 1.3247179572 . . . . (30)

Padovan attributed [24] its discovery to Dutch architect Hans van der Laan,
who introduced in [30] the number P as the ideal ratio of the geometric scale
for spatial objects. The Plastic number is one of only two numbers x for which
there exist integers k,m > 0 such that x + 1 = xk and x − 1 = x−m (see [1]).
The other number is the Golden ratio φ. Figure 4 shows one way to visualize
the Padovan sequence as cuboid spirals, where the dimensions of each cuboid
made up by the previous ones are given by three consecutive numbers in the
sequence. Further discussion of this sequence appears in [25].

Figure 4. Cuboid spiral visualizing the Padovan sequence.

3. The Polynomials Arising from Gonchar’s Problem

The discussion of Gonchar’s problem for positive/negative Riesz-s external
fields with interior/exterior point source leads to the introduction of four kinds
of functions. These functions reduce to polynomials if the Riesz-s parameter is
given by s = d−1−2m for m a non-negative integers. The last two displays in
Figure 5 and Figure 6 illustrate zero patterns of the four families of polynomials
when m = 1, 2 which already indicate intriguing features. For example, one

†††One origin of the name is Dutch: “plastische getal”.
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notices that the Gonchar polynomials of the second kind have an isolated group
of m zeros (indicated by • in Figures 5 and 6) inside of the left crescent-shaped
region, whereas the other zeros are gathered near the right circle. Numerics
indicate that the m zeros coalesce at −1 as d increases and the other zeros go
to the right circle. In general, fixing m, the zeros of all four polynomials seem
to approach the three circles and the two vertical line segments connecting the
intersection points of the circles as d increasing (cf. Figure 5 versus Figure 6).

In the following we investigate the four families of Gonchar polynomials
G1(d, q; z), G2(d, q; z), G3(d, q′; z), and G4(d, q′; z) given in (13), (16), (21),
and (22). We shall assume that q + q′ = 0 and q > 0. Aside from the solution
to Gonchar’s problem, these polynomials are interesting in themselves and
their distinctive properties merit further studies. We studied the family of
polynomials G1(d, q; z) for q = 1 in [7]. Two of the conjectures raised there
have been answered in [16].

Interrelations and self-reciprocity. The four kinds of Gonchar polyno-
mials are connected. The Gonchar polynomials of the first and second kind are
related through

zd G1(d, q (1/z)d−1 ; 1/z) = G2(d, q; z),

zd G2(d, q (1/z)d−1 ; 1/z) = G1(d, q; z).

The Gonchar polynomials of the third and fourth kind are related through

zd G3(d, q′ (1/z)d−1 ; 1/z) = G4(d, q′; z),

zd G4(d, q′ (1/z)d−1 ; 1/z) = G3(d, q′; z).

The Gonchar polynomials of the second and fourth kind have in common that
for q 6= 1,

G2(d,−q;−z) =
(
1 +

1
−q

)
(1 + z)d + z − 1 = G4(d, q′; z).

For even dimension d and canonical charges q = 1 and q′ = −1, the Gonchar
polynomials of first and third kind are connected by means of

(−z)2d−1 G1(d, 1;−1/z) = (−1)d−1
[
(1 + z)d + z − 1

]
zd−1 + (1 + z)d

= G3(d,−1; z),
(31)

whereas for odd dimension d and conical charges one has

(−z)2d−1 G1(d, 1;−1/z) + G3(d,−1; z) = 2 (1 + z)d
.

A polynomial P with real coefficients is called self-reciprocal if its reciprocal
polynomial P ∗(z) := zdeg P P (1/z) coincides with P and it is called reciprocal if
P ∗(z) = ±P (z). That means, that the coefficients of zk and of zdeg P−k in P (z)
are the same. The polynomial G1(d, 1; z) is self-reciprocal for even d, since

z2d−1 G1(d, 1; 1/z) =
[
(1− z)d − z − 1

]
zd−1 + (1− z)d

.
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h (z−1)d

q
−z−1

i
zd−1+(z−1)d =0 (+)

h
1+

1

q

i
(1−z)d− z − 1=0 (•)

h (z+1)d

q′
− z+1

i
zd−1+ (z+1)d =0 (×)

h
1+

1

q′

i
(1+z)d+ z−1=0 (¨)

Figure 5. Roots of the given polynomial equations for selected d and q (q′ = −q).

The bottom row shows the roots for the case s = d− 3.
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Figure 6. Zeros of the polynomials analogue to the one given in Figure 5 but for

the case s = d−1−2m; that is, s = d−3 (left column) and s = d−4 (right column).
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The Gonchar polynomial of third kind is reciprocal for every dimension d; i.e.,

z2d−1 G3(d,−1; 1/z) = − (1 + z)d − zd−1 + zd + zd (1 + z)d = −G3(d,−1; z).

Consequently, if ζ is a zero of G3(d,−1; z), then so is 1/ζ for any d.

The Gonchar polynomials of the first kind. We refer the interested
reader to [7].

The Gonchar polynomials of the third kind. The connecting formula
(31) implies that for even dimension d, the number ζ is a zero of G3(d,−1;z) if
and only if −1/ζ is a zero of G1(d, 1; z).

Conjecture 1. Let Γ be the set consisting of the boundary of the union of
the two unit disks centered at −1 and 0 and the line-segment connecting the
intersection points. Then, as d → ∞, all the zeros of G3(d, q′; z) tend to Γ,
and every point of Γ attracts zeros of these polynomials.

The Gonchar polynomials of the second and fourth kind. Both
polynomials can be derived from the trinomial

Pd(q;w) :=
(
1 +

1
q

)
wd + w − 2

by means of a linear transformation of the argument; that is,

G2(d, q; z) = Pd(q; 1− z), G4(d, q′; z) = Pd(q′; 1 + z).

Applying results of the Hungarian mathematician Egerváry on the distribution
of zeros of trinomials (delightfully summarized in [29] and otherwise difficult
to come by in the English speaking literature), we derive several results for the
Gonchar polynomials of the second and fourth kind. An interesting observation
central to Egerváry’s work is that the zeros of a trinomial polynomial can
be characterized as the equilibrium points of an external field problem in the
complex plane of unit point charges that are located at the vertices of two regular
concentric polygons centered at the origin.

Proposition 2. Let d ≥ 1 and q 6= −1. Then Pd(q; w) has simple zeros.

Proof. This is clear for d = 1. Let d ≥ 2. Then, according to [29, Comment
after Theorem 1], the polynomial equation Azn+m + Bzm + C = 0 has a root
with higher multiplicity if and only if

(−1)n+m AmCn

Bn+m
=

mmnn

(n + m)n+m .

Taking n = d− 1, m = 1, A = 1 + 1/q, B = 1, and C = −2, it follows that the
left-hand side is negative and the right-hand side positive. Hence Pd(q; w) has
no zero with higher multiplicity.
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Theorem 10. All the zeros of the Gonchar polynomials of the second and
fourth kind are simple.

Proposition 3. Let d ≥ 2 and q 6= −1. Assuming that the force is inversely
proportional to the distance, the zeros of Pd(q; w) are the equilibrium points of
the force field of (positive) unit point charges at the vertices of two concentric
polygons in the complex plane. The vertices are given by

ζ1,k :=

[(
2− 1

d

) 1∣∣1 + 1
q

∣∣

]1/(d−1)

ei (−α+(2k+1)π)/(d−1), k = 1, . . . , d− 1,

and

ζ2,k :=

[(
2 +

1
d− 1

) 2∣∣1 + 1
q

∣∣

]1/d

ei (π−α+(2k+1)π)/d, k = 1, . . . , d,

where α = 0 if q ∈ (−∞,−1) ∪ (0,∞) and α = π if q ∈ (−1, 0).

Proof. This follows from [29, Theorem 2].

Theorem 11. Let d ≥ 2. If q > 0, then the zeros of G2(d, q; z) are the
equilibrium points of the force field of positive unit point charges at the vertices
1 − ζ1,k (k = 1, . . . , d − 1) and 1 − ζ2,k (k = 1, . . . , d). If q′ < 0 (q′ 6= −1),
then the zeros of G4(d, q′; z) are the equilibrium points of the force field of
positive unit point charges at the vertices ζ1,k−1 (k = 1, . . . , d−1) and ζ2,k−1
(k = 1, . . . , d).

The paper [29] and the more recent [19] discuss annular sectors as zero
inclusion regions.

Proposition 4. Let d ≥ 3. Suppose s and t are the unique positive roots of
xd− 1

2 x−1 = 0 and xd + 1
2 x−1 = 0, respectively. Choose radii ρ1 and ρ2 with

2/3 ≤ ρ1 ≤ t < 1 < s ≤ ρ2 ≤ (3/2)1/(d−1). Then each of the annular sectors

{
z ∈ C : ρ1 ≤ |z| ≤ ρ2,

∣∣∣arg(z)− 2πk

d

∣∣∣ ≤ (3/2)1/(d−1)

2d

}
, (32)

k = 0, . . . , d− 1, contains exactly one of the d zeros of Pd(1; w) = 2wd +w− 2.

Proof. The substitution w = (−C
A )1/dζ for any d-th root of −C

A transforms
the equation Awd + Bw + C = 0 into ζd − aζ − 1 = 0, where a = B

C (−C
A )1/d.

Hence Pd(q;w) = 0 if and only if

ζd − aζ − 1 = 0, where a = −1
2

(
2

1 + 1
q

)1/d

and w =
(

2
1 + 1

q

)1/d

ζ. (33)
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Let s and t, with 0 < t < 1 < s, be the unique positive roots of xd−|a|x−1 = 0
and xd + |a|x − 1 = 0, respectively. Then, by [19, Thm. 3.1], every root
of (33) lies in the annulus {ζ ∈ C : t ≤ |ζ| ≤ s}. It can be readily seen that
|a|(1 + |a|)1/(d−1) < 1 for d ≥ 3 and q > 0. Let d ≥ 3 and q > 0. Then each of
the disjunct sectors

{
ζ ∈ C :

∣∣∣arg(ζ)− 2πk

d

∣∣∣ ≤ θ

d

}
, k = 0, . . . , d− 1,

where sin θ = |a|(1 + |a|)1/(d−1), contains exactly one root of (32) by [19,
Thm. 5.3]. For q = 1, the coefficient a reduces to −1/2 and both Pd(1; w) =
2wd + w − 2 and ζd − aζ − 1 have the same zeros. The result follows. The
bounds for ρ1 and ρ2 follow from [19, Lem. 2.6].

Proposition 4 can be obtained for Pd(q; w) with general q. Figure 7 illus-
trates the force field setting and the zero inclusion regions for the canonical
case q = 1 (and d = 6).

Figure 7. The zeros (×) of P6(1; w) = 2w6 + w − 2, lying in the annular sectors

of (32) with ρ1 = t and ρ2 = s, are equilibrium points of the force field due to the

vertices of the concentric pentagon and hexagon (cf. Prop. 3). The resultant of the

force (stream plot) is
P5

k=1(z − ζ1,k)−1 +
P6

k=1(z − ζ2,k)−1.
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Theorem 3 and Theorem 6, respectively, imply the following properties of
the Gonchar polynomials of the second and fourth kind.

Proposition 5. If q > 0, then G2(d, q; z) has a unique real zero in the
interval (0, 1).

Proposition 6. If q′ ∈ (−1, 0), then G4(d, q′; z) has no zero in (0, 1).
If q′ = −1, then G4(d, q′; z) = z − 1. If q′ < −1, then G4(d, q′; z) has a unique
real zero in the interval (0, 1).

From the fact that Pd(q; ζ) = 0 implies

|2− ζ| =
∣∣∣1 +

1
q

∣∣∣ |ζ|d ,

where the right-hand side is changing exponentially fast as d → ∞ when the
zeros avoid an ε-neighborhood of the unit circle, we get that the zeros of
Pd(q; w) approach the unit circle as d → ∞. This in turn implies that the
zeros of G2(d, q; z) (for q > 0) approach the circle Γ1 := {z ∈ C : |z − 1| = 1}
and the zeros of G4(d, q′; z) (for q′ < 0 and q′ 6= −1) approach the circle
Γ−1 := {z ∈ C : |z + 1| = 1} as d →∞.

4. Negatively Charged External Fields – Signed
Equilibrium on Spherical Caps

We are interested in the external field due to a negative charge below the
South Pole,

Qb,s(x) =
q

|x− b|s , x ∈ Sd, b = −Rp, R > 1, q < 0, (34)

that is sufficiently strong to give rise to an s-extremal measure on Sd that is
not supported on all of the sphere. In [6] we outline how to derive the signed
equilibrium on spherical caps centered at the South Pole and, ultimately, the
s-extremal (positive) measure on Sd associated with the external field (34).
Here we present the details.

For the statement of the results we need to recall the following instrumen-
tal facts: We assume throughout this section that s ≥ d − 2.‡‡‡ The signed
s-equilibrium on a spherical cap Σt := {x ∈ Sd : p ·x ≤ 1} associated with Qb,s

can be represented as the difference

ηt =
Φs(t)

Ws(Sd)
νt − qεt, (35)

‡‡‡When d = 2, s = d− 2 is understood as the logarithmic case s = log.
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in terms of the s-balayage measure§§§ onto Σt of the positive unit point charge
at b and the uniform measure σd on Sd given by

εt = εt,s := Bals(δb,Σt), νt = νt,s := Bals(σd, Σt).

Furthermore, the function

Φs(t) :=
Ws(Sd) (1 + q ‖εt‖)

‖νt‖ , d− 2 < s < d, (36)

where ‖εt‖ =
∫
Sd d εt and ‖νt‖ =

∫
Sd d νt, plays an important role in the deter-

mination of the support of the s-extremal measure on Sd. In particular, one
has

Uηt
s (x) + Qb,s(x) = GΣt,Qb,s,s = Φs(t) = Fs(Σt). (37)

Here, Fs is the functional of (29) for the field Qb,s.
First, we provide an extended version of [6, Theorem 19] that includes

asymptotic formulas for density and weighted potential valid near the boundary
of the spherical cap.

Proposition 7. Let d − 2 < s < d. The signed s-equilibrium ηt on the
spherical cap Σt ⊂ Sd, −1 < t < 1, associated with Qb,s in (34) is given by (35).
It is absolutely continuous in the sense that for x = (

√
1− u2 x, u) ∈ Σt,

d ηt(x) = η′t(u)
ωd−1

ωd

(
1− u2

)d/2−1
d udσd−1(x), (38)

where (with R = |b| and r =
√

R2 + 2Rt + 1)

η′t(u) =
1

Ws(Sd)
Γ(d/2)

Γ(d− s/2)

( 1− t

1− u

)d/2( t− u

1− t

)(s−d)/2

×
{

Φs(t) 2F̃1

( 1, d/2
1− (d− s)/2;

t− u

1− u

)

− q (R− 1)d−s

rd 2F̃1

( 1, d/2
1− (d− s)/2;

(R + 1)2

r2

t− u

1− u

)}
.

(39)

The density η′t is expressed in terms of regularized Gauss hypergeometric func-
tions. As u approaches t from below, we get

η′t(u) =
1

Ws(Sd)
Γ(d/2)

Γ(d− s/2) Γ(1− (d− s)/2)

( t− u

1− t

)(s−d)/2

×
{

Φs(t)− q
(R− 1)d−s

rd
+R(t) (t− u) +O((t− u)2)

}
,

(40)

§§§Given a measure ν and a compact set K (of the sphere Sd), the balayage measure
ν̂ := Bals(ν, K) preserves the Riesz s-potential of ν onto the set K and diminishes it elsewhere
(on the sphere Sd).
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where

R(t) =
d

2

d−s
2

1− d−s
2

Φs(t)− q (R−1)d−s

rd

1− t
−

d
2

1− d−s
2

q
(R− 1)d−s

rd

2R

r2
. (41)

Furthermore, if z = (
√

1− ξ2 z, ξ) ∈ Sd, the weighted s-potential is given by

Uηt
s (z) + Qb,s(z) = Φs(t), z ∈ Σt,

Uηt
s (z) + Qb,s(z) = Φs(t) +

q

ρs
I
( (R− 1)2

r2

ξ − t

1 + ξ
;
d− s

2
,
s

2

)

− Φs(t) I
( ξ − t

1 + ξ
;
d− s

2
,
s

2

)
, z ∈ Sd \ Σt,

(42)

where ρ =
√

R2 + 2Rξ + 1 and I(x; a, b) is the regularized incomplete Beta
function.

As ξ approaches t from above, we get

Uηt
s (z) + Qb,s(z) = Φs(t) +

(ξ − t

1 + t

)(d−s)/2{ Γ(d/2)
Γ(1 + (d− s)/2) Γ(s/2)

×
[
q
(R− 1)d−s

rd
− Φs(t)

]
+O(ξ − t)

}
.

(43)

The next remarks, leading up to Proposition 8, emphasize the special role
of Φs(t).

Remark. The behavior of the density η′t near the boundary of Σt inside Σt

determines if ηt is a positive measure; namely, the signed equilibrium ηt on Σt

associated with Qb,s is a positive measure with support Σt if and only if

Φs(t) ≥ q
(R− 1)d−s

(R2 + 2Rt + 1)d/2
. (44)

Indeed, relations (40) and (41) show that (44) is necessary and sufficient for
η′t(u) > 0 in a sufficiently small neighborhood (t−ε, t), ε > 0, and this inequality
extends to all of [−1, t) as shown after the proof of Proposition 7. Note that
the density η′t(u) has a singularity at u = t if

Φs(t)− q
(R− 1)d−s

(R2 + 2Rt + 1)d/2
6= 0

and η′t(u) → 0 as u → t− when equality holds in (44). In that case, however,

d η′t
du

=
Γ(1 + d/2)

Γ(d− s/2) Γ(1− (d− s)/2)

( t− u

1− t

)(s−d)/2{ Φs(t)
Ws(Sd)

+O(t− u)
}

.
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Remark. The weighted s-potential of the signed equilibrium ηt on Σt asso-
ciated with Qb,s exceeds the value Φs(t) assumed on Σt strictly outside of Σt

(but on Sd) if and only if

Φs(t) ≤ q
(R− 1)d−s

(R2 + 2Rt + 1)d/2
. (45)

Indeed, the expansion (43) shows that Uηt
s (z) + Qb,s(z) > Φs(t) in a small

neighborhood of the boundary of Sd \Σt if and only if (45) holds. In addition,
if Φs(t) satisfies (45), then

Uηt
s (z) + Qb,s(z) > Φs(t) everywhere on Sd \ Σt. (46)

(This inequality is shown after the proof of Proposition 7.) The weighted
s-potential of ηt tends to Φs(t) when the boundary of Sd \ Σt is approached
from the outside (ξ → t+). There is a vertical tangent if

Φs(t)− q
(R− 1)d−s

(R2 + 2Rt + 1)d/2
6= 0

which turns into a horizontal one at a t for which equality holds in (46). In
such a case

d
d ξ

{
Uηt

s (z) + Qb,s(z)
}

=
(ξ − t

1 + t

)(d−s)/2

×
{ Γ(1 + d/2)

Γ(1 + (d− s)/2) Γ(s/2)
2R Φs(t)

R2 + 2Rt + 1
+O(ξ − t)

}
.

For ηt to coincide with the s-extremal measure on Sd associated with Qb,s

with support Σt both (45) and (44) have to hold. The next result is [6, Theo-
rem 20].

Proposition 8. Let d − 2 < s < d. For the external field (34) the func-
tion Φs(t) given in (36) has precisely one global minimum tc ∈ (−1, 1]. This
minimum is either the unique solution tc ∈ (−1, 1) of the equation

Φs(t) =
q(R− 1)d−s

(R2 + 2Rt + 1)d/2
,

or tc = 1 when such a solution does not exist. In addition, Φs(t) is greater
than the right-hand side above if t ∈ (−1, tc) and is less than if t ∈ (tc, 1).
Moreover, tc = max{t : ηt ≥ 0}. The extremal measure µQb,s

on Sd is given
by ηtc (see (38)), and supp(µQb,s

) = Σtc .

Figure 8 illustrates the typical behavior of the signed equilibrium (using
density and weighted potential) on spherical caps that are too large, too small,
and have “just” the “right” size. The right column shows which conditions are
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t > tc,

Uηt
s (z) + Qb,s(z) ≥ Fs(Σt) on Sd \ Σt,

Uηt
s (z) + Qb,s(z) = Fs(Σt) on Σt,

η′t � 0 on Σt.

t = tc,

Uηt
s (z) + Qb,s(z) ≥ Fs(Σt) on Sd \ Σt,

Uηt
s (z) + Qb,s(z) = Fs(Σt) on Σt,

η′t ≥ 0 on Σt.

t < tc,

Uηt
s (z) + Qb,s(z) � Fs(Σt) on Sd \ Σt,

Uηt
s (z) + Qb,s(z) = Fs(Σt) on Σt,

η′t ≥ 0 on Σt.

Figure 8. The weighted s-potential of ηt for t > tc, t = tc, and t < tc versus

altitude ξ of z = (
p

1− ξ2 z, ξ) ∈ Sd for d = 2, s = 1, q = −5, and R = 1 + φ

(φ the Golden ratio), cf. Propositions 7 and 8. Insets show the respective density η′t.
The horizontal line (Red in colored version) indicates Φs(tc) = Fs(Σtc) = GQb,s,s.

Observe the vertical tangent at the graph of η′t as t → t−c in the middle display (see

first remark after Proposition 7).

violated when the spherical cap is too small or too large. This figure should be
compared with [5, Fig. 1].

In the limiting case s = d−2 with s > 0 it can be shown that the s-balayage
measures

εt := εt,d−2 = Bald−2(δb, Σt), νt := νt,d−2 = Bald−2(σ,Σt) (47)

exist and both have a component that is uniformly distributed on the boundary
of Σt. Moreover, unlike the case d − 2 < s < d, the density for µQb,s

, where
s = d − 2, does not vanish on the boundary of its support. We introduce the
measure

βt(x) := δt(u) · σd−1(x), x = (
√

1− u2 x, u) ∈ Sd.

Using similar methods as in [5], one can show the following.
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Theorem 12. Let d ≥ 3. The signed s-equilibrium ηt on the spherical
cap Σt associated with Qb,d−2(x) = q |x − b|2−d, q < 0 and b = (0,−R)
(R > 1), is given by

ηt =
Φd−2(t)

Wd−2(Sd)
νt − qεt, Φd−2(t) :=

Wd−2(Sd)(1 + q‖εt‖)
‖νt‖ ,

where νt and εt are given in (47). More explicitly, for x = (
√

1− u2 x, u) ∈ Sd,

d ηt(x) = η′t(u) d σd

∣∣
Σt

(x) + qt d βt(x),

where the density with respect to σd restricted to Σt takes the form

η′t(u) =
Φd−2(t)

Wd−2(Sd)
− q

Wd−2(Sd)
(R2 − 1)2

(R2 + 2Ru + 1)d/2+1

and the boundary charge uniformly distributed over the boundary of Σt is

qt =
1− t

2
(1− t2)d/2−1

[
Φd−2(t)− q(R− 1)2

(R2 + 2Rt + 1)d/2

]
.

Moreover, for any fixed t ∈ (−1, 1), the following weak∗ convergence holds:

νt,s
∗−→ νt, εt,s

∗−→ εt, as s → (d− 2)+.

The function Φd−2(t) has precisely one global minimum tc ∈ (−1, 1]. This
minimum is either the unique solution tc ∈ (−1, 1) of the equation

Φd−2(t) = q
(R− 1)2

(R2 + 2Rt + 1)d/2
,

or tc = 1 when such a solution does not exist. Moreover, tc = max{t : ηt ≥ 0}.
The extremal measure µQb,d−2

on Sd with supp(µQb,d−2
) = Σtc is given by

d µQb,d−2
(x) = d ηt0(x)

=
Φd−2(t0)
Wd−2(Sd)

[
1− (R + 1)2(R2 + 2Rtc + 1)d/2

(R2 + 2Ru + 1)d/2+1

]
dσd

∣∣
Σt0

(x).

Furthermore, if z = (
√

1− ξ2 z, ξ) ∈ Sd, the weighted (d− 2)-potential is

U
ηt

d−2(z) + Qb,d−2(z) = Φd−2(t), z ∈ Σt,

U
ηt

d−2(z) + Qb,d−2(z) = Φd−2(t) +
q

ρd−2

[
1−

(
1− ξ − t

1 + ξ

)d/2−1]

− Φd−2(t)
[
1−

(
1− (R− 1)2

R2 + 2Rt + 1
ξ − t

1 + ξ

)d/2−1]
, z ∈ Sd \ Σt,

where ρ =
√

R2 + 2Rξ + 1. As ξ approaches t from above, we get

U
ηt

d−2(z)+Qb,d−2(z) = Φd−2(t)+
ξ − t

1 + t

{d− 2
2

[
q
(R− 1)2

rd
−Φd−2(t)

]
+O(ξ−t)

}
.

A similar result holds for the logarithmic case s = log on S2.
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5. Proofs

Proofs and discussions for Section 2. First, we show the result for the
signed s-equilibrium on Sd.

Proof of Theorem 1. For R > 1 this result has been proven in [5] (cf. [7] for
the harmonic case). Let 0 ≤ R < 1. By linearity of the s-potential, we have

UηQ
s (x) =

[
1 +

qUσd
s (a)

Ws(Sd)

]
Uσd

s (x)

− q

Ws(Sd)

∫ |y − a|s
(1−R2)s|y − x|s

(1−R2)d

|y − a|d
d σd(y)
|y − a|d .

Using Imaginary inversion (i.e., utilizing dσd(y)/|y− a|d = d σd(y∗)/|y∗ − a|d
and |y − a| |y∗ − a| = 1− R2), the integral reduces to Ws(Sd)/|x− a|s. Since
Uσd

s (x) = Ws(Sd) on Sd, one gets that the weighted potential of ηQ is constant,

UηQ
s (x) +

q

|x− a|s = Ws(Sd) + q Uσd
s (a) everywehre on Sd.

This shows (6). In a similar way,

∫
d ηQ = 1 +

qUσd
s (a)

Ws(Sd)
− q

Ws(Sd)

∫ |y − a|s
(1−R2)s

(
1−R2

)d

|y − a|d
dσd(y)

|y − a|d
= 1,

where the integral reduces to Uσd
s (a) under Imaginary inversion. Thus ηQ,

indeed, satisfies Definition 2 for A = Sd. Furthermore, the signed measure ηQ

is absolutely continuous with respect to σd. The result follows.

Next, we provide the technical details for the discussion in the two remarks
after Proposition 1.

First remark after Proposition 1. For R > 1, we can use term-wise differ-
entiation in the following series expansion of the right-hand side of (9) to show
monotonicity,

∞∑

k=0

[
1− (s/2)k

(d)k

] (d/2)k

k!
(4R)k

(R + 1)s+2k
.

For R ∈ (0, 1), we show that the following formula of the right-hand side of (9)

(1 + R)d−s

(1−R)d

[
1− 2F1

(
d− s/2, d/2

d
;− 4R

(1−R)2
)]

,

obtained by applying the linear transformation [8, last of Eq.s 15.8.1] to (8), is
strictly monotonically increasing on (0, 1) for each s ∈ (0, d). It is easy to see
that the ratio (1+R)d−s/(1−R)d has this property for each s ∈ (0, d) and using
the differentiation formula [8, Eq. 15.5.1], the square-bracketed part above has
a positive derivative on (0, 1) for each s ∈ (0, d). The result follows.
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Second remark after Proposition 1. The continuity of f is evident by con-
tinuity of the s-potential Uσd

s (a), which is a radial function depending on
R = |a|, in the potential-theoretical case 0 < s < d. Note that, since σd is the
s-equilibrium measure on Sd,

f(1) = −Uσd
s (1) = −Ws(Sd) < 0.

The negativity of f in (0, 1) ∪ (1,∞) follows from

Uσd
s (R) =

[
(R− 1)2

](d−s)/2

(R + 1)d 2F1

(
d− s/2, d/2

d
;

4R

(R + 1)2
)

>
|R− 1|d−s

(R + 1)d
,

where the right-hand side is derived from (8) using the last transformation in
[8, Eq. 15.8.1]. Clearly, f(R) ≥ −Uσd

s (R). From (8) it follows that Uσd
s (R)

is strictly monotonically decreasing on (1,∞). Since σd is the s-equilibrium
measure on Sd,

f(R) ≥ −Uσd
s (1) = −Ws(Sd) = f(1) on [1,∞).

Since the continuous function f is bounded on the compact interval [0, 1], f is
bounded from below on [0,∞). Verification of monotonicity of f on (1,∞) by
direct calculation of f ′ seems to be futile, but by using (8) and the differentia-
tion formula [8, Eq. 15.5.1], we get

s(R + 1)s−1 f(R) + (R + 1)s f ′(R)

=
{
(R + 1)s

f(R)
}′ = (d− s)

(R− 1
R + 1

)d−1−s 2
(R + 1)2

+ s
R− 1

(R + 1)3 2F1

(
1 + s/2, 1 + d/2

1 + d
;

4R

(R + 1)2
)

> 0.

Since it has already been established that f(R) < 0, it follows that f ′(R) > 0
on (1,∞). It is easy to see that f(R) → 0 as R →∞, thus f has a horizontal
asymptote at level 0.

Next, we prove results for Gonchar’s problem for negative external fields for
interior sources. The following proof concerns in particular Theorem 5.

Proof. For an interior source (0 ≤ R < 1) the right-hand side in (10) is

f(R) := g(R)− Uσd
s (R), where g(R) :=

(1−R)d−s

(1 + R)−d
.

We show that the equation f ′(R) = 0, or equivalently, g′(R)/R = {Uσd
s (R)}′/R

has only one solution in (0, 1) in the superharmonic regime 0 < s < d − 1.
Expanding the last equation using formula (18) for Uσd

s (R), we get

[2d−s(1+R)]
(1−R)d−s−1

(1 + R)d+1

1
R

=
s(d−1− s)

d + 1 2F1

(1− (d−1−s)/2, 1+s/2
1 + (d + 1)/2 ; R2

)
.
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The function h(R) := − g′(R)/R at the left-hand side goes to +∞ as R → 0
and h(1) = 0. Since {R(1+R)d+1h(R)}′ = {[2d− s (1 + R)] (1−R)d−s−1}′ < 0,
it follows that h′(R) < 0. The right-hand side of the above equation assumes
the positive value s(d − 1 − s)/(d + 1) at R = 0 and is strictly decreasing
if 0 < s < d−3, constant if s = d−3, or strictly increasing if d−3 < s < d−1.
In either case for 0 < s < d− 1 there is exactly one solution in (0, 1). That is,
the function f(R) has a single minimum in (0, 1) because f ′(0) = s − 2d < 0
and ([8, Eq. 15.4.20])

f ′(1−) =
s(d− 1− s)

d + 1 2F1

(1− (d− 1− s)/2, 1 + s/2
1 + (d + 1)/2 ; 1

)

=
s(d− 1− s)

d + 1
Γ(1 + (d + 1)/2) Γ(d− 1− s)
Γ(d− s/2) Γ((d + 1− s)/2)

=
s

2
Γ((d + 1)/2) Γ(d− s)

Γ(d− s/2) Γ((d + 1− s)/2)

=
s

2
Ws(Sd) > 0, 0 < s < d− 1.

The last step is due to the duplication formula for the gamma function and (7).
In particular, the minimum from above is strictly less than −f(1−) = −Ws(Sd).

The function g(R) is strictly decreasing on (0, 1) for all 0 < s < d. From

g′′(R) =
(1−R)d−s−2

(R + 1)d+2

{
[2(d + 1)− (s + 2)(R + 1)][2d− s(R + 1)] + s(1−R2)

}

one infers that g(R) changes from convex to concave as R → 1 and g′′(R) →−∞
as R → 1− if d−1 < s < d. Since the s-potential Uσd

s (R) is a strictly increasing
and convex function on (0, 1) in the subharmonic range d−1 < s < d, it follows
that f(R) is strictly decreasing on (0, 1) and neither convex nor concave on all
of (0, 1) for d− 1 < s < d. Moreover, f ′′(0) > 0 and f ′′(R) → −∞ as R → 1−

for d− 1 < s < d.

Proofs and discussions for Section 4. In the following we make use of a
Kelvin transformation (spherical inversion) of points and measures that maps
Sd to Sd. Let KR denote the Kelvin transformation (stereographic projection)
with center b = (0,−R) and radius

√
R2 − 1; that is, for any point x ∈ Rd+1

the image x∗ := KR(x) lies on a ray stemming from b, and passing through x
such that

|x− b| · |x∗ − b| = R2 − 1.

The image of x = (
√

1− u2 x, u) in Sd is again a point x∗ = (
√

1− (u∗)2 x, u∗)
in Sd, where the formulas

1 + u∗ =
(R− 1)2

R2 + 2Ru + 1
(1− u), 1− u∗ =

(R + 1)2

R2 + 2Ru + 1
(1 + u), (48)
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Figure 9. Kelvin transform with center at a and radius
√

R2 − 1.

relating the heights u and u∗, follow from similar triangle proportions. From
this and the formula |x − y|2 = 2 − 2x · y for x,y ∈ Sd it follows that the
Euclidean distance of two points on the sphere transforms like

|x∗ − y∗| = (R2 − 1)
|x− y|

|x− a||y − a| , x,y ∈ Sd.

Geometric properties include that the Kelvin transformation maps the North
Pole p to the South Pole q and vice versa, KR(Sd) = Sd, and KR sends the
spherical cap AR :=

{
(
√

1− u2 x, u) : −1/R ≤ u ≤ 1,x ∈ Sd−1
}

to
BR :=

{
(
√

1− u2 x, u) : −1 ≤ u ≤ −1/R,x ∈ Sd−1
}

and vice versa, with
the points on the boundary being fixed.

We note that the uniform measure σd on Sd transforms like

|x∗ − b|−d dσd(x∗) = |x− b|−d dσd(x). (49)

Further, given a measure λ with no point mass at b, its Kelvin transformation
(associated with a fixed s) λ∗ = Kb,s(λ) is a measure defined by

d λ∗(x∗) :=
(R2 − 1)s/2

|x− b|s d λ(x),

where the s-potentials of λ∗ and λ are related as follows (e.g. [11, Eq. (5.1)])

Uλ∗
s (x∗) =

∫
dλ∗(y∗)
|x∗ − y∗|s =

∫ |x− b|s dλ(y)
(R2 − 1)s/2|x− y|s =

|x− b|s
(R2 − 1)s/2

Uλ
s (x). (50)

(The Kelvin transformation has the duality property Kb,s(λ∗(x∗)) = λ(x).)
For convenience, we recall the specific form of the s-balayage onto Σt of the

uniform measure (see [5, Lemma 24]) and its norm (see [5, Lemma 30]).
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Proposition 9. Let d− 2 < s < d. The measure νt = Bals(σd, Σt) is given
by

d νt(x) = ν′t(u)
ωd−1

ωd
(1− u2)d/2−1 d udσd−1(x), x ∈ Σt,

where the density ν′t(u) has the form

ν′t(u) :=
Γ(d/2)

Γ(d− s/2)

( 1− t

1− u

)d/2( t− u

1− t

)(s−d)/2

2F̃1

( 1, d/2
1− (d− s)/2;

t− u

1− u

)
.

Furthermore,

‖νt‖ =
21−d Γ(d)

Γ(d− s/2) Γ(s/2)

∫ t

−1

(1 + u)s/2−1(1− u)d−s/2−1 du

= 1− I((1− t)/2; d− s/2, s/2).

Suppose

εt =
Kb,s(λ∗(x∗))
(R2 − 1)s/2

,

where λ∗(x∗) is the s-extremal measure on the image Σ∗t = KR(Σt). Then
by (50) we have

Uεt
s (x) = (R2 − 1)−s/2U

Kb,s(λ∗(x∗))
s (x) =

Uλ∗
s (x∗)
|x− b|s =

1
|x− b|s , x ∈ Σt.

With this idea in mind we can easily show the analogous of [5, Lemmas 25
and 29].

Lemma 1. Let d− 2 < s < d. The measure εt = Bals(δb, Σt) is given by

d εt(x) = ε′t(u)
ωd−1

ωd
(1− u2)d/2−1 dud σd−1(x), x ∈ Σt, (51)

and setting r2 :=R2 + 2Rt + 1, the density is given by

ε′t(u) :=
1

Ws(Sd)
Γ(d/2)

Γ(d− s/2)
(R− 1)d−s

rd

( 1− t

1− u

)d/2

×
( t− u

1− t

)(s−d)/2

2F̃1

( 1, d/2
1− (d− s)/2;

(R + 1)2

r2

t− u

1− u

)
.

(52)

The norm of εt is given by

‖εt‖ =
21−d Γ(d)

Γ(d− s/2) Γ(s/2)
(R− 1)d−s

Ws(Sd)

∫ t

−1

(1 + u)s/2−1(1− u)d−s/2−1

(R2 + 2Ru + 1)d/2
du. (53)

Proof. For λ∗ = Bals(σd, Σ∗t )/Ws(Sd) (see [5, Eq. (40) and following])

dλ∗(x∗) = (λ∗)′(u∗)
ωd−1

ωd
[1− (u∗)2]d/2−1 du∗ dσd−1(x∗),
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where the density is given by

(λ∗)′(u∗) :=
Γ(d/2)/Ws(Sd)

Γ(d− s/2)

( 1 + t∗

1 + u∗

)d/2(u∗ − t∗

1 + t∗

)(s−d)/2

× 2F̃1

( 1, d/2
1− (d− s)/2;

u∗ − t∗

1 + u∗

)
.

From (48) we obtain

1 + t∗

1 + u∗
=

R2 + 2Ru + 1
R2 + 2Rt + 1

1− t

1− u

and
u∗ − t∗ = (R2 − 1)2

t− u

(R2 + 2Ru + 1)(R2 + 2Rt + 1)
.

From the latter we get

u∗ − t∗

1 + t∗
=

(R + 1)2

R2 + 2Ru + 1
t− u

1− t
,

u∗ − t∗

1 + u∗
=

(R + 1)2

R2 + 2Rt + 1
t− u

1− u
.

Furthermore, by (49)

ωd−1

ωd
[1− (u∗)2]d/2−1 d u∗ dσd−1(x∗) = dσd

∣∣
Σ∗t

(x∗) =
|x∗ − b|d
|x− b|d dσd

∣∣
Σt

(x)

=
(R2 − 1)d

(R2 + 2Ru + 1)2d

ωd−1

ωd
(1− u2)d/2−1 dud σd−1(x).

Hence, substituting these relations into

d εt(x) = (R2 − 1)−s/2 dKb,s(λ∗(x∗)) = (R2 − 1)−s/2 |x− b|s
(R2 − 1)s/2

dλ∗(x∗),

we arrive after some simplifications at the desired results (51) and (52).
Proceeding as in the proof of Lemma 29, we substitute (51) and (52) into

‖εt‖ =
∫

Sd

d εt =
ωd−1

ωd

∫ t

−1

ε′t(u)(1− u2)d/2−1 du.

Now, applying [4, Lemma A.1] (which is also valid for |xy| < 1), we obtain
(r2 = R2 + 2Rt + 1)

‖εt‖ = 2(d−s)/2−1 Γ(d/2)
Γ(d− s/2)

Γ(d/2)
Γ(s/2)

ωd−1

ωd

(R− 1)d−s

Ws(Sd)rd
(1− t)d/2(1 + t)s/2

× (1− xy)−d/2

∫ 1

0

vs/2−1(1− xv)d−s/2−1
(
1− x(1− y)

1− xy
v
)−d/2

d v,

where

x =
1 + t

2
, y =

(R + 1)2

R2 + 2Rt + 1
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and thus

1− xy =
(R− 1)2

R2 + 2Rt + 1
1− t

2
,

x(1− y)
1− xy

= − 4R

(R− 1)2
1 + t

2
.

Simplification gives the Euler-type integral of an Appell function [8, Eq. 16.15.1]

‖εt‖ =
2−s/2 Γ(d)

Γ(d− s/2) Γ(s/2)
1

Ws(Sd)
(R− 1)−s(1 + t)s/2

×
∫ 1

0

us/2−1
(
1− 1 + t

2
u
)d−s/2−1(

1 +
4R

(R− 1)2
1 + t

2
u
)−d/2

d u.

A change of variable 1 + v = (1 + t)u yields (53).

With this preparations we are able to prove Proposition 7.

Proof of Proposition 7. Let −1 < t < 1. The representation of the signed
equilibrium ηt follows by substituting the representations of νt (Proposition 9)
and εt (Lemma 1) into (35). For the analysis of the behavior of the density η′t
near t− we write (39) as

η′t(u) =
1

Ws(Sd)
Γ(d/2)

Γ(d− s/2) Γ(1− (d− s)/2)

( t− u

1− t

)(s−d)/2

f(u),

where the function

f(u) :=
( 1− t

1− u

)d/2{
Φs(t) 2F1

( 1, d/2
1− (d− s)/2;

t− u

1− u

)

− q(R− 1)d−s

rd 2F1

( 1, d/2
1− (d− s)/2;

(R + 1)2

r2

t− u

1− u

)}

is analytic at u = t. (Note that the argument of either hypergeometric function
is in the interval (0, 1− ε) if t ∈ (−1, 1− ε].) We consider the Taylor expansion

f(u) = f(t)− f ′(t)(t− u) +
f ′′(τ)

1!
(t− u)2

for some u < τ < t whenever −1 < u < t. As the Gauss hypergeometric
functions evaluate to 1 at u = t, we get

f(t) = Φs(t)− q(R− 1)d−s

rd
,

the differentiation formula for Gauss hypergeometric functions ([8, Eq. 15.5.1])
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gives

f ′(t) =
d

2
1

1− t

{
Φs(t)− q (R− 1)d−s

rd

}

+
{

Φs(t)
d/2

1− (d− s)/2 2F1

( 2, 1 + d/2
2− (d− s)/2;

t− u

1− u

) t− 1
(1− u)2

− q(R− 1)d−s

rd

d/2
1− (d− s)/2 2F1

( 2, 1 + d/2
2− (d− s)/2;

(R + 1)2

r2

t− u

1− u

)

× (R + 1)2

r2

t− 1
(1− u)2

}∣∣∣
u=t

and one can verify that |f ′′(u)| is uniformly bounded on [−1, t]. In particular

R(t) = −f ′(t) = −d

2
f(t)
1− t

+
d

2− (d− s)
1

1− t

{
Φs(t)− q(R− 1)d−s

rd

(R + 1)2

r2

}

= −d

2

(
1− 1

1− (d− s)/2

) f(t)
1− t

− d

2− (d− s)
1

1− t

( R2 + 2R + 1
R2 + 2Rt + 1

− 1
)
.

Putting everything together and simplification gives (40) and (41).
The constance of the weighted potential on Σt follows from (37). It remains

to show (42). We can proceed as in [5, Section 5] but using r2 = R2 + 2Rt + 1
and ρ2 = R2 + 2Rξ + 1 and

c2
t =

(R + 1)2

r2
, C =

1
Ws(Sd)

Γ(d/2)
Γ(d− s/2)

(R− 1)d−2

rd
.

This leads to the relations (cf. [5, Section 5])

1− z = 1− c2
t

1 + t

2
=

(R− 1)2

r2

1− t

2
, w + z − wz =

ρ2

r2

1 + t

1 + ξ

and, subsequently, to the desired result (42).
With the help of MATHEMATICA we derive the representation for the

weighted potential near t+.

Positivity of η′t (Remark after Proposition 7). We substitute the series ex-
pansion of the regularized hypergeometric function into (39) to obtain

η′t(u) =
1

Ws(Sd)
Γ(d/2)

Γ(d− s/2)

( 1− t

1− u

)d/2( t− u

1− t

)(s−d)/2

×
∞∑

n=0

(d/2)n

Γ(n + 1− (d− s)/2)

( t− u

1− u

)n{
Φs(t)− q(R− 1)d−s

rd

[ (R + 1)2

r2

]n}
.

Assuming (44), it can be readily verified that the expression in braces above is
0 if n = 0 and postive if n ≥ 1. Hence η′t(u) > 0 for u ∈ [−1, t).
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Proof of Relation (46). The (series) expansion

I(z; a, b) = [Γ(a + b)/ Γ(b)] za(1− z)b
2F̃1

(
1, a + b
a + 1 ; z

)
,

applied to (42) yields for ξ > t > −1

Uηt
s (z) + Qb,s(z) = Φs(t) +

Γ(d/2)
Γ(s/2)

( ξ − t

1 + ξ

)(d−s)/2( 1 + t

1 + ξ

)s/2

×
∞∑

n=0

(d/2)n

Γ(n + 1 + (d− s)/2)

( ξ − t

1 + ξ

)n{q(R− 1)d−s

rd

[ R2 − 2R + 1
R2 + 2Rt + 1

]n

− Φs(t)
}

.

If q(R+1)d−s/rd ≥ Φs(t), then the series above is positive for all ξ ∈ (t, 1].

Proof of Proposition 8. Let us set ∆(t) := Φs(t) − q(R − 1)d−s/rd, where
r = r(t) =

√
R2 + 2Rt + 1. Proceeding as in the Proof [5, Theorem 13], we

show that ∆(t) having a unique solution in (−1, 1] is intimately connected with
the function Φs having a unique minimum in (−1, 1].

Note that Φs and therefore ∆(t) tend to +∞ as t → −1+. Hence there is a
largest tc ∈ (−1, 1] such that ∆(t) > 0 on (−1, tc) (and ∆(tc) = 0 by continuity
if tc < 1). From

dΦs

d t
= −‖νt‖′

‖νt‖
[
Φs(t)− q Ws(Sd)

‖εt‖′
‖νt‖′

]
= −‖νt‖′

‖νt‖ ∆(t), (54)

where ‖νt‖′/‖νt‖ > 0 on (−1, 1), we see that Φs is strictly decreasing on (−1, tc)
(and thus on all of (−1, 1) if tc = 1). Hence, in the case tc = 1, the function Φs

attains its unique minimum at 1. (Then ∆(t) ≥ 0 is equivalent with the
condition (10) with a changed to b.) Suppose tc < 1. Then any zero τ of Φ′s
in the interval (−1, 1) is a minimum of Φs as the in (−1, 1) twice continuously
differentiable function Φs satisfies

d2 Φs

d t2
(τ) = −‖νt‖′

‖νt‖
d q(R− 1)d−sR

rd+2

∣∣∣
t=τ

> 0.

This implies that Φs has a unique minimum in (−1, 1). Relation (54) also
implies that ∆(t) > 0 on (−1, tc) and ∆(t) < 0 on (tc, 1). Hence, by the first
remark after Proposition 7, tc = max{t : ηt ≥ 0}.

By the remarks after Proposition 7, the signed measure ηtc is a positive
probability measure with support Σtc that has constant weighted s-potential on
supp(ηtc) and exceeds this constant (away from the support) on Sd \ supp(ηtc).
By the variational inequalities (cf. (2) and (3)), ηtc is the s-extremal measure
on Sd associated with Qb,s.
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