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We establish a sharp characterization of the error of the Szász-Mirakjan
operator in uniform norm with power-type weights in terms of a K-
functional. The weight exponents are optimal. We also state a sharp
characterization of the K-functional by means of the classical unweighted
fixed-step modulus of smoothness.
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1. Introduction

1.1. Notations and Main Result

The Szász-Mirakjan operator for a function f defined on [0,∞) is given by

Snf(x) =
∞∑

k=0

f
(k

n

)
sn,k(x), sn,k(x) = e−nx (nx)k

k!
, n ≥ 1, x ≥ 0.

Here n is not necessarily an integer.
In order to describe the approximation properties of Sn we need a number

of function spaces. Let C[0,∞) denote the space of all continuous functions on
[0,∞) and L∞[0,∞) denote the Lebesgue measurable and essentially bounded
on [0,∞) functions with the essential supremum norm ‖ · ‖. For continuous
functions ‖ · ‖ coincides with the uniform norm on [0,∞). Also, we denote the
first derivative operator by D = d

dx , thus Dg(x) = g′(x) and D2g(x) = g′′(x).
We further set ϕ(x) = x. Now, for a weight function w on (0,∞) we put

C(w)(0,∞) = {f ∈ C[0,∞) : wf ∈ L∞[0,∞)},
∗The authors have been supported by grant DDVU 02/30 of the Fund for Scientific
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W 2(wϕ)(0,∞) =
{
g ∈ ACloc(0,∞) : Dg ∈ ACloc(0,∞), wϕD2g ∈ L∞[0,∞)

}
,

W 3(wϕ3/2)(0,∞) =
{
g ∈ ACloc(0,∞) : Dg, D2g ∈ ACloc(0,∞),

wϕ3/2D3g ∈ L∞[0,∞)
}
,

where ACloc(0,∞) consists of the functions which are absolutely continuous
in [a, b] for every [a, b] ⊂ (0,∞). Finally, π1 stands for the set of algebraic
polynomials of first degree.

In [13] the second author introduces the concept of a natural weight for an
approximation operator.

Definition 1.1. A weight w is called a natural weight for approximation
by a sequence Qn of operators in a specified norm if the norm of the weighted
approximation error w(f − Qnf) allows matching direct and strong inverse
estimates for the widest reasonable class of functions f .

Here we shall consider weights on (0,∞) of the form

w(x) = w(γ0, γ∞; x) =
( x

1 + x

)γ0

(1 + x)γ∞ (1.1)

and show that they are natural for the uniform approximation by the Szász-
Mirakjan operator for any γ0 ∈ [−1, 0] and γ∞ ∈ R. More precisely, let the
K-functional Kw(f, t) be defined for f ∈ C(w)(0,∞) + π1 and t > 0 by

Kw(f, t) = inf
{‖w(f − g)‖+ t‖wϕD2g‖ : g ∈ W 2(wϕ)(0,∞)

}
. (1.2)

We establish the following characterization.

Theorem 1.1. Let w = w(γ0, γ∞) be given by (1.1) with γ0 ∈ [−1, 0] and
γ∞ ∈ R. Then for all f ∈ C(w)(0,∞) + π1 and n ≥ 1 there holds

‖w(f − Snf)‖ ∼ Kw

(
f,

1
n

)
.

The relation ψ(f, t) ∼ θ(f, t) means that there exists a positive constant
independent of f and t such that

c−1θ(f, t) ≤ ψ(f, t) ≤ c θ(f, t).

Let us note that the range of γ0 cannot be reasonably extended. Indeed,
if γ0 < −1 then we must assume that f(x) = 0 in a neighbourhood of 0,
otherwise Snf will not be bounded. On the other hand, if γ0 > 0, then f(x) is
not generally defined at 0 and hence Snf is not defined. Moreover, we cannot
settle this case by restricting to functions f ∈ C[0,∞) because then Sn is not
a bounded operator in the weighted uniform norm.
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1.2. Characterization of the Weighted K-functionals

The K-functional Kw(f, t) is equivalent to the Ditzian-Totik modulus of
smoothness if γ0 = 0 (see [4, Theorem 6.1.1]), whereas for γ0 < 0 it is only
weakly equivalent to the so called weighted main-part modulus (see [4, Section
6.2]). Also, this K-functional with γ0 = γ∞ = 0 was shown to be equivalent
to a modulus introduced by the second author in [12]. In a series of papers
[5, 6, 7, 8] the authors introduced and studied moduli of smoothness which
are equivalent to weighted K-functionals like Kw(f, t). They are defined by
means of the classical unweighted fixed-step modulus and a continuous linear
transform of the function. In particular, we can characterize Kw(f, t) by such
moduli by first splitting the singularities

Kw(f, t) ∼ Kw(f, t)[0,2] + Kw(f, t)[1,∞),

which is valid for all f ∈ C(w)(0,∞) and t ∈ (0, 1]. The K-functional Kw(f, t)I

is defined as in (1.2) with the supremum taken on the interval I. By [8, Theorem
6.2 and 6.8] we have

Kw(f, t)[0,2] ∼ ω2(Aγ0f, t)[0,2] (1.3)

where ω2(f, t)[0,2] is the classical modulus of smoothness of second order in
uniform norm on the interval [0, 2] and

Aγ0f(x) =





f(x2)− x

∫ x

1

y−2f(y2) dy for γ0 = 0,

x2γf(x2) +
4γ2 − 1

5
x

∫ x

1

y2γ−2f(y2) dy

−4(γ0 + 2)(γ0 + 3)
5

x−4

∫ x

0

y2γ+3f(y2) dy for − 1 < γ0 < 0,

x−2f(x2) + 3x

∫ x

1

y−4f(y2) dy for γ0 = −1,

for x ∈ [0, 2]. Relation (1.3) holds provided that wf has a limit at 0, which is,
moreover, equal to 0 if γ0 ∈ (−1, 0).

Similarly, one can construct a modulus equivalent to Kw(f, t)[1,∞). We shall
present this case in [9].

1.3. Related Works

Many mathematicians investigated the approximation behaviour of the
Szász-Mirakjan operator. First, Becker [2] established direct and weak converse
estimates for w(x) = (1+x)−N , N ∈ N. Amonov [1] proved a weak equivalence
result for w(x) = (1+x)γ , γ ≤ 0. He studied also more general weights. Holhoş
[11] introduced a general approach to verifying direct estimates in weighted
uniform norm. As an application he obtained a direct result for Sn in the case
w(x) = (1 + x)γ , γ ≤ 0.
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As for strong converse estimates, Totik [15] established the assertion of
Theorem 1.1 in the unweighted case w = 1. Quite recently Finta [10] developed
a general method, which in particular enable him to verify a two-term strong
converse inequality for the weights w(x) = xγ , γ ∈ (−1, 0].

As can be seen, most researchers were interested in studying the rate
of approximation in weighted spaces that are larger than C[0,∞) and thus
allowing for more function to be approximated. In our opinion, it is also
worthwhile finding in which weighted spaces the norm of the approximation
error can be neatly characterized since that reveals intrinsic properties of the
operator.

2. Proof of Theorem 1.1

First, let us recall several basic properties of the Szász-Mirakjan operator:

Sn is a positive linear operator; (2.1)
Snf = f ∀f ∈ π1; (2.2)

Sn

(
(◦ − x)2

)
(x) =

x

n
, Sn

(
(◦ − x)3

)
(x) =

x

n2
; (2.3)

Sn

(
(◦ − x)4

)
(x) = d1

x2

n2
+ d2

x

n3
, (2.4)

Sn

(
(◦ − x)6

)
(x) = d3

x3

n3
+ d4

x2

n4
+ d5

x

n5
; (2.5)

Snf =
(
S1(f1/n)

)
n
, where Fν(x) = F (νx), ν > 0. (2.6)

Above, d1, . . . , d5 are constants independent of n. For (2.3)–(2.5) see e.g. [4,
(9.1.13) and Lemma 9.5.5].

The proof of Theorem 1.1 is based on [3, Theorem 4.1 and (1.2)–(1.4)].
So, we proceed to the verification of their hypotheses. The first concerns the
boundedness of the Szász-Mirakjan operator in weighted uniform norm. Below
c, c1, c2, . . . denote positive constants which do not depend on f and n.

Proposition 2.1. Let w = w(γ0, γ∞) be given by (1.1) with γ0 ∈ [−1, 0]
and γ∞ ∈ R. Then

‖wSnf‖ ≤ c1‖wf‖ ∀f ∈ C(w)(0,∞) ∀n ≥ 1.

Proof. Using the positivity of Sn, we get

|Snf(x)| ≤ (
Sn(w−1)

)
(x)‖wf‖.

Thus it remains to show that
(
Sn(w−1)

)
(x) ≤ cw(x)−1. (2.7)
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To this end we apply a routine technique based on Hölder’s inequality. If
γ0 6= γ∞, we fix r ∈ Z such that r/(γ0 − γ∞) ≥ 1; if γ0 = γ∞, we set r = 1.
Then consecutive applications of Hölder’s inequality yield

∑

k≥0

(k

n

)−γ0
(
1 +

k

n

)γ0−γ∞
sn,k(x)

≤
{∑

k≥0

k

n

(
1 +

k

n

)γ0−γ∞
sn,k(x)

}−γ0
{∑

k≥0

(
1 +

k

n

)γ0−γ∞
sn,k(x)

}1+γ0

≤
{∑

k≥0

k

n

(
1 +

k

n

)r

sn,k(x)

}γ0(γ∞−γ0)/r{∑

k≥0

k

n
sn,k(x)

}−γ0(1+(γ∞−γ0)/r)

×
{∑

k≥0

(
1 +

k

n

)r

sn,k(x)

}(1+γ0)(γ0−γ∞)/r{∑

k≥0

sn,k(x)

}(1+γ0)(1+(γ∞−γ0)/r)

.

(2.8)

It is known that (cf. [4, p. 163]),

∑

k≥0

(
1 +

k

n

)r

sn,k(x) ≤ c (1 + x)r, r ∈ Z; (2.9)

hence also
∑

k≥0

k

n

(
1 +

k

n

)r

sn,k(x) ≤ c x
∑

k≥0

(
1 +

k

n

)r

sn,k(x) ≤ c x(1 + x)r. (2.10)

Now, (2.7) readily follows from (2.2) and (2.8)-(2.10). ¤
Next, we establish a Jackson-type inequality.

Proposition 2.2. Let w = w(γ0, γ∞) be given by (1.1) with γ0 ∈ [−1, 0]
and γ∞ ∈ R. Then

‖w(g − Sng)‖ ≤ c2

n
‖wϕD2g‖ ∀g ∈ W 2(wϕ)(0,∞) ∀n ≥ 1.

Proof. Since g ∈ W 2(wϕ)(0,∞), then g ∈ C[0,∞). By Taylor’s formula we
have for x > 0 and t ≥ 0 that

g(t) = g(x) + (t− x)Dg(x) +
∫ t

x

(t− u)D2g(u) du.

We apply Sn to both sides of this identity with regard to the variable t. Then,
taking into account that Sn preserves the linear functions (see (2.2)), we get

Sng(x) = g(x) + Sn

(∫ ◦

x

(◦ − u)D2g(u) du

)
(x).
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Next, by the positivity of Sn, we derive the estimate

|g(x)− Sng(x)| ≤ Sn

(∫ ◦

x

(◦ − u)|D2g(u)| du

)
(x)

≤ R1,n(x) ‖wϕD2g‖,
(2.11)

where we have set

R1,n(w; x) = Sn

(∫ ∞

0

Q1(◦, u, x)w(u)−1 du

)
(x)

and Q1(t, u, x) = |t−u|u−1 for u between t and x and Q1(t, u, x) = 0 otherwise.
Thus it is sufficient to show that

R1,n(w;x) ≤ c

n
w(x)−1. (2.12)

Just as in the proof of Proposition 2.1 we get

R1,n(w(γ0, γ∞); x) ≤ R1,n(w(−1,−r − 1); x)γ0(γ∞−γ0)/r

×R1,n(w(−1, 0); x)−γ0(1+(γ∞−γ0)/r)

×R1,n(w(0,−r); x)(1+γ0)(γ0−γ∞)/r

×R1,n(w(0, 0); x)(1+γ0)(1+(γ∞−γ0)/r).

(2.13)

We estimate separately each of the R1,n’s above. By (2.3) we immediately get

R1,n(w(−1, 0); x) ≤ Sn

(
(◦ − x)2

)
(x) =

x

n
. (2.14)

Next, we observe that for u between t and x there hold

|t− u|
u

≤ |t− x|
x

, (1 + u)r ≤ (1 + x)r + (1 + t)r. (2.15)

The first of these inequalities is verified directly and the second one is trivial.
The first inequality above and (2.2) yield

R1,n(w(0, 0); x) ≤ 1
x

Sn

(
(◦ − x)2

)
(x) =

1
n

. (2.16)

Further, by means of the second inequality in (2.15) we arrive at

R1,n(w(−1,−r − 1); x) ≤ (1 + x)rSn

(
(◦ − x)2

)
(x)

+ Sn

(
(◦ − x)2(1 + ◦)r

)
(x).

(2.17)

Let us consider Sn

(
(◦ − x)2(1 + ◦)r

)
(x). For nx ≥ 1 we apply the Cauchy

inequality, (2.4) and (2.9) to get

Sn((◦ − x)2(1 + ◦)r)(x) ≤
√

Sn

(
(◦ − x)4

)
(x)

√
Sn

(
(1 + ◦)2r

)
(x)

≤ c x(1 + x)r

n
.
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To verify this inequality for nx ≤ 1 we proceed as follows:

Sn

(
(◦ − x

)2(1 + ◦)r)(x) =
∑

k≥0

(k

n
− x

)2(
1 +

k

n

)r

sn,k(x)

=
∑

k≥0

(k

n

)2(
1 +

k

n

)r

sn,k(x)− 2x
∑

k≥0

k

n

(
1 +

k

n

)r

sn,k(x)

+ x2
∑

k≥0

(
1 +

k

n

)r

sn,k(x)

≤ c x
∑

k≥0

k

n

(
1 +

k

n

)r

sn,k(x) + c
(x

n
+ x2

) ∑

k≥0

(
1 +

k

n

)r

sn,k(x)

≤ c
(x

n
+ x2

)
(1 + x)r ≤ c x(1 + x)r

n
,

as at the last but one step we have applied (2.9) and (2.10).
Thus we have established the estimate

Sn

(
(◦ − x

)2(1 + ◦)r)(x) ≤ c x(1 + x)r

n
, x ≥ 0. (2.18)

Now, (2.17), (2.3) and (2.18) imply

R1,n(w(−1,−r − 1); x) ≤ c x(1 + x)r

n
. (2.19)

Finally, by means of (2.15) we get

R1,n(w(0,−r); x) ≤ (1 + x)r

x
Sn

(
(◦ − x)2

)
(x) +

1
x

Sn

(
(◦ − x

)2(1 + ◦)r)(x),

which along with (2.3) and (2.18), gives

R1,n(w(0,−r); x) ≤ c(1 + x)r

n
, x ≥ 0. (2.20)

The estimate (2.12) follows from (2.13), (2.14), (2.16), (2.19) and (2.20). The
proof of the proposition is completed. ¤

We shall also need the following Voronovskaya-type inequality.

Proposition 2.3. Let w = w(γ0, γ∞) be given by (1.1) with γ0 ∈ [−1, 0]
and γ∞ ∈ R. Then
∥∥∥w

(
Sng−g− 1

2n
ϕD2g

)∥∥∥ ≤ c3

n3/2
‖wϕ3/2D3g‖ ∀g ∈ W 3(wϕ3/2)(0,∞) ∀n ≥ 1.

Proof. The proof is quite similar to the one of the previous proposition. We
first use Taylor’s formula to get the representation

g(t) = g(x) + (t− x)Dg(x) +
(t− x)2

2
D2g(x) +

1
2

∫ t

x

(t− u)2D3g(u) du.
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We apply Sn to both sides of this identity with regard to the variable t. Then,
taking into account (2.2) and (2.3), we get

Sng(x) = g(x) +
1
2n

ϕ(x)D2g(x) +
1
2

Sn

(∫ ◦

x

(◦ − u)2D3g(u) du

)
(x).

Next, by the positivity of Sn, we derive the estimate
∣∣∣Sng(x)− g(x)− 1

2n
ϕ(x)D2g(x)

∣∣∣

≤ 1
2

Sn

(∣∣∣
∫ ◦

x

(◦ − u)2|D3g(u)| du
∣∣∣
)

(x)

≤ 1
2

R2,n(x) ‖wϕ3/2D3g‖,

(2.21)

where we have set

R2,n(w; x) = Sn

(∫ ∞

0

Q2(◦, u, x)w(u)−1 du

)
(x)

and Q2(t, u, x) = (t − u)2u−3/2 for u between t and x and Q2(t, u, x) = 0
otherwise.

We shall show that

R2,n(w(γ0, γ∞); x) ≤ c

n3/2
w(x)−1. (2.22)

As in the proof of the previous propositions we get

R2,n(w(γ0, γ∞); x) ≤ R2,n(w(−1,−r − 1); x)γ0(γ∞−γ0)/r

×R2,n(w(−1, 0); x)−γ0(1+(γ∞−γ0)/r)

×R2,n(w(0,−r); x)(1+γ0)(γ0−γ∞)/r

×R2,n(w(0, 0); x)(1+γ0)(1+(γ∞−γ0)/r).

Thus it is sufficient to establish (2.22) only for each of the R2,n’s on the right
above. This is done by arguments similar to those in the proof of the previous
proposition based on the following relations:

(t− u)2

u1/2
≤ (t− x)2

x1/2
,

(t− u)2

u3/2
≤ (t− x)2

x3/2
for u between t and x, (2.23)

Sn

(| ◦ −x|3(1 + ◦)i
)
(x) ≤ c

n3/2
x3/2(1 + x)i, i ∈ Z, nx ≥ 1, (2.24)

∑

k≥2

(k

n
−x

)3(
1+

k

n

)i

sn,k(x) ≤ c

n3/2
x3/2(1+x)i, i ∈ Z, nx ≤ 1, (2.25)

and
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∣∣∣
∫ k/n

x

(
k
n − u

)2

u3/2
uα(1 + u)β du

∣∣∣sn,k(x)

≤ c

n3/2
w(−α,−β; x)−1, nx ≤ 1, (2.26)

for k = 0, 1 and each of the couples

(α, β) = (0, 0), (α, β) = (1, 0), (α, β) = (0, r), (α, β) = (1, r).

The inequalities (2.23) are verified directly.
To prove (2.24) we apply the Cauchy inequality, (2.5) and (2.9) and thus

get

Sn

(| ◦ −x|3(1 + ◦)i
)
(x) ≤

√
Sn

(
(◦ − x)6

)
(x)

√
Sn

(
(1 + ◦)2i

)
(x)

≤ c

n3/2
x3/2(1 + x)i

since nx ≥ 1.
To establish (2.25) we observe that

∑

k≥2

(k

n
− x

)3(
1 +

k

n

)i

sn,k(x)

=
∑

k≥2

k

n

(k

n
− x

)2(
1 +

k

n

)i

sn,k(x)− x
∑

k≥2

(k

n
− x

)2(
1 +

k

n

)i

sn,k(x)

≤ c x
∑

k≥1

(k + 1
n

− x
)2(

1 +
k

n

)i

sn,k(x)

= c x

[∑

k≥1

(k

n
− x

)2(
1 +

k

n

)i

sn,k(x) +
2
n

∑

k≥1

(k

n
− x

)(
1 +

k

n

)i

sn,k(x)

+
1
n2

∑

k≥1

(
1 +

k

n

)i

sn,k(x)

]

≤ c x2(1 + x)i

n
≤ c x3/2(1 + x)i

n3/2
, nx ≤ 1,

as at the last but one step we have used (2.9), (2.10), (2.18) and the estimate

1
n2

∑

k≥1

(
1 +

k

n

)i

sn,k(x) =
x

n

∑

k≥1

1
k

(
1 +

k

n

)i

sn,k−1(x)

≤ c x

n

∑

k≥0

(
1 +

k

n

)i

sn,k(x) ≤ c x(1 + x)i

n
.

It remains to prove (2.26). Set

An,k(α, β;x) =

∣∣∣∣∣
∫ k/n

x

(
k
n − u

)2

u3/2
uα(1 + u)β du

∣∣∣∣∣ sn,k(x).
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For α = β = 0 we have by straightforward calculations

An,0(0, 0; x) =
∫ x

0

u2

u3/2
du sn,0(x) =

2
3

x3/2 e−nx ≤ c

n3/2
w(0, 0;x)−1

and

An,1(0, 0; x) =
∫ 1/n

x

(
1
n − u

)2

u3/2
du sn,1(x)

= e−nx

(
2(1− nx)2

x1/2

n
− 4nx

∫ 1/n

x

1
n − u

u1/2
du

)

≤ c

n3/2
w(0, 0; x)−1.

For α = 1, β = 0 we calculate

An,0(1, 0; x) =
∫ x

0

u2

u3/2
u du sn,0(x) =

2
5

x5/2 e−nx ≤ c

n3/2
w(−1, 0; x)−1

and

An,1(1, 0; x) =
∫ 1/n

x

(
1
n − u

)2

u3/2
u du sn,1(x)

= e−nx

(
−2(1− nx)2

x3/2

n
+

8
3

(1− nx)x5/2 − 8
3

nx

∫ 1/n

x

u3/2 du

)

≤ c

n3/2
w(−1, 0; x)−1.

In the other two cases (2.26) follows from the inequality

An,k(α, r;x) ≤ cAn,k(α, 0;x)(1 + x)r, x ∈ [0, 1],

and the estimates we have already established. ¤
The last two propositions contain Bernstein-type inequalities.

Proposition 2.4. Let w = w(γ0, γ∞) be given by (1.1) with γ0 ∈ [−1, 0]
and γ∞ ∈ R. Then

‖wϕD2(Snf)‖ ≤ c4n ‖wf‖ ∀f ∈ C(w)(0,∞) ∀n ≥ 1.

Proof. Analogously to the assertions we proved so far we shall show that

|ϕ(x)D2(Snf)(x)| ≤ c n ‖wf‖w(x)−1. (2.27)

To this end, we shall consider the cases nx ≤ 1 and nx ≥ 1 separately.
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For nx ≤ 1 we use the representation

D2Snf(x) = n2 Sn(∆2
1/nf)(x). (2.28)

It follows from
DSnf(x) = nSn(∆1/nf)(x), (2.29)

which is established straightforwardly. By (2.28), we have for nx ≤ 1

|ϕ(x)D2Snf(x)|

≤ n2x
∑

k≥0

(
w

(k + 2
n

)−1

+ 2w
(k + 1

n

)−1

+ w
(k

n

)−1
)

sn,k(x) ‖wf‖. (2.30)

But since nx ≤ 1 and γ0 ∈ [−1, 0]
(k + i

n

)−γ0 ≤
(k

n

)−γ0

+ c nγ0 ≤
(k

n

)−γ0

+
c

n
x−1−γ0 , i = 1, 2.

Consequently,

w
(k + i

n

)−1

≤ cw
(k

n

)−1

+
c

n
x−1−γ0

(
1 +

k

n

)γ0−γ∞
, i = 1, 2. (2.31)

Relations (2.30), (2.31) and (2.7) imply (2.27) for nx ≤ 1.
Let now nx ≥ 1. In this case we use that

s′n,k(x) =
n

x

(k

n
− x

)
sn,k(x). (2.32)

Therefore
DSnf(x) =

n

x
Sn

(
(◦ − x)f(◦))(x);

hence

D2Snf(x) =
n2

x2
Sn

(
(◦ − x)2f(◦))(x)− n

x2
Sn

(
(◦ − x)f(◦))(x).

Consequently,

|ϕ(x)D2Snf(x)|
≤ n

x

[
nSn

(
(◦ − x)2w(◦)−1

)
(x) + Sn

(| ◦ −x|w(◦)−1
)
(x)

]‖wf‖. (2.33)

For the first summand on the right above we have by Hölder’s inequality the
estimate (cf. (2.8))

Sn((◦ − x)2w(◦)−1)(x) ≤ Sn((◦ − x)2w(1, r + 1; ◦))(x)γ0(γ∞−γ0)/r

× Sn

(
(◦ − x)2w(1, 0; ◦))(x)−γ0(1+(γ∞−γ0)/r)

× Sn

(
(◦ − x)2w(0, r; ◦))(x)(1+γ0)(γ0−γ∞)/r

× Sn

(
(◦ − x)2w(0, 0; ◦))(x)(1+γ0)(1+(γ∞−γ0)/r).

(2.34)
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To estimate Sn

(
(◦ − x)2w(1, 0; ◦))(x) we observe that by (2.3)

Sn

(
(◦ − x)2w(1, 0; ◦))(x) = xSn

(
(◦ − x)2

)
(x) + Sn

(
(◦ − x)3

)
(x)

=
x2

n
+

x

n2
≤ 2x2

n
.

(2.35)

Similarly, we have

Sn

(
(◦ − x)2w(1, r + 1; ◦))(x)

≤ c x
∑

k≥0

(k + 1
n

− x
)2(

1 +
k

n

)r

sn,k(x)

= c x

[∑

k≥0

(k

n
− x

)2(
1 +

k

n

)r

sn,k(x)

+
2
n

∑

k≥0

(k

n
− x

)(
1 +

k

n

)r

sn,k(x) +
1
n2

∑

k≥0

(
1 +

k

n

)r

sn,k(x)

]

≤ c
(x2

n
+

x

n2

)
(1 + x)r ≤ c x2(1 + x)r

n
,

(2.36)

as at the last but one step we have used (2.9), (2.10) and (2.18).
Now, (2.34), (2.3), (2.18), (2.35) and (2.36) yield for nx ≥ 1

Sn

(
(◦ − x)2w(◦)−1

)
(x) ≤ c x

n
w(x)−1. (2.37)

For the second summand on the right of (2.33) we have by the Cauchy
inequality, (2.37) and (2.7)

Sn

(| ◦ −x|w(◦)−1
)
(x) ≤

√
Sn

(
(◦ − x)2w(◦)−1

)
(x)

√
Sn(w−1)(x)

≤ c

√
x

n
w(x)−1 ≤ c xw(x)−1,

as nx ≥ 1.
The inequalities (2.33), (2.37) and the last estimate above imply (2.27) for

nx ≥ 1. This completes the proof of the proposition. ¤
The next proposition is the analogue of a result of Knoop and Zhou concerning

the Bernstein operator [14, Theorem 2.1]. We prove it following their argument.
Perhaps it is worth noting that it fits even more naturally and is easier to apply
for the Szász-Mirakjan operator than for the Bernstein operator, for which it
was originally developed.

Proposition 2.5. Let w = w(γ0, γ∞) be given by (1.1) with γ0 ∈ [−1, 0]
and γ∞ ∈ R. Let r ∈ Z be such that r/(γ0− γ∞) > 1 if γ0 6= γ∞, and let r = 1
if γ0 = γ∞. We set γ = (1 + γ0)(γ0 − γ∞)/r. Let also m ∈ N as m ≥ 2. Then
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‖wϕ3/2D3(Sm
n g)‖ ≤ c5

√
mγ−1(log m)1+γ0

√
n ‖wϕD2g‖

∀g ∈ W 2(wϕ)(0,∞) ∀n ≥ m2.

The value of the constant c5 depends only on r.

Proof. For g ∈ W 2(wϕ)(0,∞) the formulae (2.28) and (2.29) give

DSng(x) =
∑

k≥0

n

∫ 1/n

0

Dg
(k

n
+ u

)
du sn,k(x) (2.38)

and

D2Sng(x) =
∑

k≥0

n2

∫ 1/n

0

∫ 1/n

0

D2g
(k

n
+ u + v

)
du dv sn,k(x). (2.39)

Iterating the latter we arrive at

D2Sm
n g(x)

=
∑

kj≥0
j=1,...,m

n2

∫ 1/n

0

∫ 1/n

0

D2g
(k1

n
+ u + v

)
du dv Sn,k̄ sn,km(x), (2.40)

where we have set k̄ = (k1, . . . , km),

Sn,k̄ =
m−1∏

j=1

sn,2,kj

(kj+1

n

)

and

sn,i,k(x) = ni

∫ 1/n

0

· · ·
∫ 1/n

0

sn,k(x + t1 + · · ·+ ti) dt1 · · · dti.

Next, just as in [14, pp. 319-320], using (2.38) and (2.40), we arrive at the
following m− 1 representations of D3Sm

n g

D3Sm
n g(x) =

∑

kj≥0
j=1,...,m

n2

∫ 1/n

0

∫ 1/n

0

D2g
(k1

n
+ u + v

)
du dv

× Sn,k̄ Qn,j,k̄ sn,km(x), j = 1, . . . , m− 1, (2.41)

where

Qn,j,k̄ = `∗n,kj

(kj+1

n

)
`n,kj+1

(kj+2

n

)
· · · `n,km−1

(km

n

)
, j = 1, . . . , m− 2,

Qn,m−1,k̄ = `∗n,km−1

(km

n

)
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and

`∗n,k(x) =
n

∫ 1/n

0

s′n,2,k(x + t) dt

sn,2,k(x)
, `n,k(x) =

sn,3,k(x)
sn,2,k(x)

.

Summing the relations in (2.41) we get

D3Sm
n g(x) =

1
m− 1

∑

kj≥0
j=1,...,m

n2

∫ 1/n

0

∫ 1/n

0

D2g
(k1

n
+ u + v

)
du dv

× Sn,k̄ Qn,k̄ sn,km(x) (2.42)

with

Qn,k̄ =
m−1∑

j=1

Qn,j,k̄.

Further, let us observe that

∣∣∣n2

∫ 1/n

0

∫ 1/n

0

D2g
(k

n
+ u + v

)
du dv

∣∣∣

≤ n2

∫ 1/n

0

∫ 1/n

0

w
(k

n
+ u + v

)−1

ϕ
(k

n
+ u + v

)−1

du dv ‖wϕD2g‖ (2.43)

and

n2

∫ 1/n

0

∫ 1/n

0

w
(k

n
+ u + v

)−1

ϕ
(k

n
+ u + v

)−1

du dv

≤ cw
(k + 1

n

)−1

ϕ
(k + 1

n

)−1

. (2.44)

The first of these estimates is obvious. To verify the second one we proceed as
follows:

n2

∫ 1/n

0

∫ 1/n

0

w
(k

n
+ u + v

)−1

ϕ
(k

n
+ u + v

)−1

du dv

= n2

∫ 1/n

−1/n

( 1
n
− |u|

)
w

(k + 1
n

+ u
)−1

ϕ
(k + 1

n
+ u

)−1

du

≤ c
(
1 +

k + 1
n

)γ0−γ∞
n2

∫ 1/n

−1/n

( 1
n
− |u|

)(k + 1
n

+ u
)−γ0−1

du

≤ cw
(k + 1

n

)−1

ϕ
(k + 1

n

)−1

,

as at the last estimate we have used that the function (1/n− |u|)[(k + 1)/n +
u]−γ0−1 is increasing on [−1/n, 0] and decreasing on [0, 1/n]. We derive from
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(2.42) by the Cauchy inequality and (2.43)-(2.44) the estimate

|D3Sm
n g(x)| ≤ 1

m− 1

√√√√
∑

kj≥0
j=1,...,m

Sn,k̄ Q2
n,k̄

sn,km
(x)

×
√√√√√

∑

kj≥0
j=1,...,m

∣∣∣n2

∫ 1/n

0

∫ 1/n

0

D2g
(k1

n
+ u + v

)
du dv

∣∣∣
2

Sn,k̄ sn,km
(x)

≤ c

m

√√√√
∑

kj≥0
j=1,...,m

Sn,k̄ Q2
n,k̄

sn,km
(x)

×
√√√√√

∑

kj≥0
j=1,...,m

w
(k1 + 1

n

)−2

ϕ
(k1 + 1

n

)−2

Sn,k̄ sn,km(x) ‖wϕD2g‖.

Thus we can finish the proof of the proposition if we show that
∑

kj≥0
j=1,...,m

Sn,k̄ Q2
n,k̄ sn,km(x) ≤ c nmϕ(x)−1 (2.45)

and

∑

kj≥0
j=1,...,m

w
(k1 + 1

n

)−2

ϕ
(k1 + 1

n

)−2

Sn,k̄ sn,km(x)

≤ cw(x)−2ϕ(x)−2mγ(log m)1+γ0 , n ≥ m2. (2.46)

In order to simplify these two assertions we take into account that sn,i,k(x) =
s1,i,k(nx). Consequently,

Sn,k̄ = S1,k̄,

`∗n,k(x) = n`∗1,k(nx), `n,k(x) = `1,k(nx),

Qn,j,k̄ = nQ1,j,k̄.

Also, we have (cf. [14, pp. 327–328])
∑

kj≥0
j=1,...,m

Sn,k̄ Qn,j′,k̄ Qn,j′′,k̄ sn,km(x) ≡ 0, j′ 6= j′′.

Hence (2.45) and (2.46) reduce respectively to
∑

kj≥0
j=1,...,m

S1,k̄ Q2
1,j,k̄ s1,km(x) ≤ c ϕ(x)−1, j = 1, . . . , m− 1,
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and
∑

kj≥0
j=1,...,m

(1 + k1)−2(1+γ0)(n + k1)2(γ0−γ∞)S1,k̄ s1,km(x)

≤ c x−2(1+γ0)(n + x)2(γ0−γ∞)mγ(log m)1+γ0 , n ≥ m2. (2.47)

The first estimate is verified in Lemma 2.1 below. As for for the second we use
Hölder’s inequality as in the proof of the previous propositions to get

∑

kj≥0
j=1,...,m

(1 + k1)−2(1+γ0)(n + k1)2(γ0−γ∞)S1,k̄ s1,km
(x)

≤
{ ∑

kj≥0
j=1,...,m

(1 + k1)−4S1,k̄ s1,km(x)

}(1+γ0)(γ0−γ∞)/(2r)

×
{ ∑

kj≥0
j=1,...,m

(1 + k1)−2S1,k̄ s1,km(x)

}(1+γ0)(1+(γ∞−γ0)/r)

×
{ ∑

kj≥0
j=1,...,m

(n + k1)2rS1,k̄ s1,km(x)

}γ0(γ∞−γ0)/r

×
{ ∑

kj≥0
j=1,...,m

(n + k1)4rS1,k̄ s1,km(x)

}(1+γ0)(γ0−γ∞)/(2r)

×
{ ∑

kj≥0
j=1,...,m

S1,k̄ s1,km(x)

}−γ0(1+(γ∞−γ0)/r)

.

Now, (2.47) follows from Lemma 2.2 and the fact that the last term above is
equal to 1. ¤

Now we shall establish the two lemmas used in the proof above.

Lemma 2.1. Let m ∈ N as m ≥ 2. Then there hold
∑

kj≥0
j=1,...,m

S1,k̄ Q2
1,j,k̄ s1,km(x) ≤ c ϕ(x)−1, x > 0,

for j = 1, . . . ,m− 1. The value of the constant c does not depend on x or m.

Proof. We follow the argument of Knoop and Zhou [14]. We start with the
equality
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∑

kj≥0
j=1,...,m

S1,k̄ Q2
1,j,k̄ s1,km

(x) =
∑

km≥0

s1,km
(x)

∑

km−1≥0

s1,2,km−1(km) `1,km−1(km)2

· · ·
∑

kj+1≥0

s1,2,kj+1(kj+2) `1,kj+1(kj+2)2
∑

kj≥0

s1,2,kj
(kj+1) `∗1,kj

(kj+1)2. (2.48)

Next, we establish that
∑

k≥0

s1,2,k(i) `∗1,k(i)2 ≤ c

1 + i
, i ∈ N0, (2.49)

and

∑

k≥0

s1,2,k(i) `1,k(i)2
1

1 + k
≤ 1

1 + i
, i ∈ N0. (2.50)

Then the lemma follows from (2.48)-(2.50) and (2.9) (with r = −1).
To prove (2.49) for i = 0 we use that s′n,k(x) = n(sn,k−1(x) − sn,k(x)),

k > 0, to derive the estimate
∣∣∣
∫ 1

0

∫ 1

0

∫ 1

0

s′1,k(t1 + t2 + t3) dt1 dt2 dt3

∣∣∣ ≤ 3k(k + 1)
k!

.

Since, also, we have
∫ 1

0

∫ 1

0

s1,k(t1 + t2) dt1 dt2 ≥ 1
e2k!

∫ 1

0

tk dt =
1

e2(k + 1)!
,

we arrive at

s1,2,k(0) `∗1,k(0)2 =

(∫ 1

0

∫ 1

0

∫ 1

0

s′1,k(t1 + t2 + t3) dt1 dt2 dt3

)2

∫ 1

0

∫ 1

0

s1,k(t1 + t2) dt1 dt2

≤ e232k(k + 1)3

k!
;

hence (2.49) follows for i = 0.
To prove (2.49) for i ≥ 1 we apply the formula (2.32) and the Cauchy

inequality to get

s1,2,k(i) `∗1,k(i)2 =

(∫ 1

0

∫ 1

0

∫ 1

0

s′1,k(i + t1 + t2 + t3) dt1 dt2 dt3

)2

∫ 1

0

∫ 1

0

s1,k(i + t1 + t2) dt1 dt2

≤
∫ 1

0

∫ 1

0

∫ 1

0

(k − (i + t1 + t2 + t3)
i + t1 + t2 + t3

)2 s1,k(i + t1 + t2 + t3)2

s1,k(i + t1 + t2)
dt1 dt2 dt3

≤ c

i2
(
[k − (i + 5)]2 + 1

)
s1,k(i + 5)

(2.51)
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since for t1, t2, t3 ∈ [0, 1]

(
k − (i + t1 + t2 + t3)

i + t1 + t2 + t3

)2

≤ c

i2
(
[k − (i + 5)]2 + 1

)

and

(i + t1 + t2 + t3)2

i + t1 + t2
≤ i + 5, i ≥ 1.

Now, (2.49) follows for i ≥ 1 from (2.51), (2.2) and (2.3).
The inequality (2.50) is derived by similar though more precise estimates.

First, let i = 0. We observe that

∫ 1

0

∫ 1

0

s1,k(t1 + t2) dt1 dt2 =
1
k!

∫ 1

0

∫ 1

0

e−t1−t2(t1 + t2)k dt1 dt2

=
1
k!

k∑

l=0

(
k

l

) ∫ 1

0

e−t1tl1 dt1

∫ 1

0

e−t2tk−l
2 dt2

≥ 1
k!

k∑

l=0

(
k

l

) ∫ 1

0

e−t1tl1 dt1
1

e(k − l + 1)

≥ 1
e(k + 1)

1
k!

∫ 1

0

e−t1

k∑

l=0

(
k

l

)
tl1 dt1

=
1

k + 1

∫ 1

0

s1,k(1 + t1) dt1.

Then by the Cauchy inequality we get

s1,2,k(0) `1,k(0)2
1

1 + k
=

1
1 + k

(∫ 1

0

∫ 1

0

∫ 1

0

s1,k(t1 + t2 + t3) dt1 dt2 dt3

)2

∫ 1

0

∫ 1

0

s1,k(t1 + t2) dt1 dt2

≤
∫ 1

0

∫ 1

0

∫ 1

0

s1,k(t1 + t2 + t3)2

s1,k(1 + t1)
dt1 dt2 dt3

=
∫ 1

0

∫ 1

0

∫ 1

0

e1−t1−2t2−2t3
1
k!

[
(t1 + t2 + t3)2

1 + t1

]k

dt1 dt2 dt3.

Now, to estimate the sum on the left hand-side of (2.50) for i = 0 we calculate
separately its term for k = 0 whereas for the terms with k ≥ 1 we apply the
inequality above. Thus we get
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∑

k≥0

s1,2,k(0) `1,k(0)2
1

1 + k

≤ (1− e−1)4 +
∫ 1

0

∫ 1

0

∫ 1

0

(
e

(1−t2−t3)2

1+t1 − e1−t1−2t2−2t3
)

dt1 dt2 dt3

=
∫ 1

0

∫ 1

0

∫ 1

0

e
(1−t2−t3)2

1+t1 dt1 dt2 dt3 − e

4
(1− e−1)(1− e−2)2 + (1− e−1)4;

hence, in view of [14, (4.9)], (2.50) follows for i = 0.
For i ≥ 1 we have by the Cauchy inequality

s1,2,k(i) `1,k(i)2
1

1 + k
=

1
1 + k

(∫ 1

0

∫ 1

0

∫ 1

0

s1,k(i + t1 + t2 + t3) dt1 dt2 dt3

)2

∫ 1

0

∫ 1

0

s1,k(i + t1 + t2) dt1 dt2

≤ 1
1 + k

∫ 1

0

∫ 1

0

∫ 1

0

s1,k(i + t1 + t2 + t3)2

s1,k(i + t1 + t2)
dt1 dt2 dt3

=
∫ 1

0

∫ 1

0

∫ 1

0

i + t1 + t2
(i + t1 + t2 + t3)2

e
t23

i+t1+t2 s1,k+1

(
(i + t1 + t2 + t3)2

i + t1 + t2

)
dt1 dt2 dt3.

Summing on k ≥ 0 we arrive at the estimate

∑

k≥0

s1,2,k(i) `1,k(i)2
1

1 + k
≤

∫ 1

0

∫ 1

0

∫ 1

0

i + t1 + t2
(i + t1 + t2 + t3)2

e
t23

i+t1+t2 dt1 dt2 dt3.

Now, (2.50) follows for i ≥ 1 from [14, (4.10)]. ¤

Lemma 2.2. Let m ∈ N as m ≥ 2.

(a) For i ∈ Z− we have
∑

kj≥0
j=1,...,m

(1 + k1)iS1,k̄ s1,km(x) ≤ c xi m−i−2 log m, x > 0.

(b) For i ∈ Z− we have
∑

kj≥0
j=1,...,m

(n + k1)iS1,k̄ s1,km(x) ≤ c (n + x)i, x ≥ 0, n ≥ m2.

(c) For i ∈ N0 we have
∑

kj≥0
j=1,...,m

(n + k1)iS1,k̄ s1,km(x) ≤ c (n + x)i, x ≥ 0, n ≥ m.

The value of the constant c depends only on i.
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Proof. We again follow the argument of Knoop and Zhou [14]. For i ≤ −1
we set ` = −i. We shall use the representation

(n + k)i =
∫ 1

0

· · ·
∫ 1

0

(τ1 · · · τ`)n+k−1 dτ1 · · · dτ`

and the formula

∑

k≥0

aks1,2,k(x) = e−(1−a)x

(
1− e−(1−a)

1− a

)2

.

The latter is checked directly by means of the argument

∑

k≥0

aks1,2,k(x) =
∫ 1

0

∫ 1

0

e−x−t1−t2
∑

k≥0

[a(x + t1 + t2)]k

k!
dt1 dt2

=
∫ 1

0

∫ 1

0

e(a−1)(x+t1+t2) dt1 dt2

= e(a−1)x

(∫ 1

0

e(a−1)t dt

)2

.

Now, just as in [14, pp. 322-323], we arrive at

∑

kj≥0
j=1,...,m

(n + k1)iS1,k̄ s1,km(x)

=
∫ 1

0

· · ·
∫ 1

0

(τ1 · · · τ`)n−1 Fm−1(τ1 · · · τ`)2

F0(τ1 · · · τ`)2
e−Fm−1(τ1···τ`)x dτ1 · · · dτ`,

where
F0(τ) = 1− τ, Fρ(τ) = 1− e−Fρ−1(τ), ρ = 1, 2 . . . .

Let D ⊂ [0, 1]` be a rectangle with at least one side of the form [0, 1/2]. Then,
clearly,

F0(τ1 · · · τ`) ≥ 1/2, (τ1, . . . , τ`) ∈ D. (2.52)

It can be shown by induction that

1− τ

m
≤ Fm−1(τ) ≤ 1, 0 ≤ τ ≤ 1. (2.53)

Also, since y`e−y ≤ c, y ≥ 0, then

Fm−1(τ)`e−Fm−1(τ)x ≤ c xi, τ ≥ 0, x > 0. (2.54)

Now, (2.52), the left inequality in (2.53) and (2.54) imply
∫

D

Fm−1(τ1 · · · τ`)2

F0(τ1 · · · τ`)2
e−Fm−1(τ1···τ`)x dτ1 · · · dτ` ≤ cm−i−2xi. (2.55)
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Similarly, (2.52) and the right inequality in (2.53) directly imply the relation

∫

D
(τ1 · · · τ`)n−1 Fm−1(τ1 · · · τ`)2

F0(τ1 · · · τ`)2
e−Fm−1(τ1···τ`)x dτ1 · · · dτ` ≤ c ni, n ≥ 1.

(2.56)
For n ≥ m (2.52), the left inequality in (2.53) and (2.54) yield

∫

D
(τ1 · · · τ`)n−1 Fm−1(τ1 · · · τ`)2

F0(τ1 · · · τ`)2
e−Fm−1(τ1···τ`)x dτ1 · · · dτ`

≤ cm`−2(nx)i ≤ c xi, n ≥ m. (2.57)

Now, by means of (2.55) we derive

∫ 1

0

· · ·
∫ 1

0

Fm−1(τ1 · · · τ`)2

F0(τ1 · · · τ`)2
e−Fm−1(τ1···τ`)x dτ1 · · · dτ`

≤
∫ 1

1/2

· · ·
∫ 1

1/2

Fm−1(τ1 · · · τ`)2

F0(τ1 · · · τ`)2
e−Fm−1(τ1···τ`)x dτ1 · · · dτ` + c m−i−2xi;

and similarly by (2.56)–(2.57) we get

∫ 1

0

· · ·
∫ 1

0

(τ1 · · · τ`)n−1 Fm−1(τ1 · · · τ`)2

F0(τ1 · · · τ`)2
e−Fm−1(τ1···τ`)x dτ1 · · · dτ`

≤
∫ 1

1/2

· · ·
∫ 1

1/2

(τ1 · · · τ`)n−1 Fm−1(τ1 · · · τ`)2

F0(τ1 · · · τ`)2
e−Fm−1(τ1···τ`)x dτ1 · · · dτ`

+ c (n + x)i, n ≥ m.

So, to complete the proof of (a) and (b) it is enough to show respectively that
that

∫ 1

1/2

· · ·
∫ 1

1/2

Fm−1(τ1 · · · τ`)2

F0(τ1 · · · τ`)2
e−Fm−1(τ1···τ`)x dτ1 · · · dτ`

≤ c xi m−i−2 log m, (2.58)

and

∫ 1

1/2

· · ·
∫ 1

1/2

(τ1 · · · τ`)n−1 Fm−1(τ1 · · · τ`)2

F0(τ1 · · · τ`)2
e−Fm−1(τ1···τ`)x dτ1 · · · dτ`

≤ c (n + x)i, n ≥ m2. (2.59)

We set

Fn(τ, x) = τn−1 Fm−1(τ)2

F0(τ)2
e−Fm−1(τ)x.
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In the integral in (2.59) we make the change of the variables, defined by the
formulae σρ = τ1 · · · τρ, ρ = 1, . . . , `, and arrange the order of integration from
σ1 to σ` to get the estimate
∫ 1

1/2

· · ·
∫ 1

1/2

Fn(τ1 · · · τ`, x) dτ1 · · · dτ`

≤
∫ 1

2i

[
Fn(σ`, x)

∫ 1

σ`

(
1

σ`−1
· · ·

(
1
σ3

∫ 1

σ3

(
1
σ2

∫ 1

σ2

1
σ1

dσ1

)
dσ2

)
· · ·

)
dσ`−1

]
dσ`

≤ c

∫ 1

2i

[
Fn(σ`, x)

∫ 1

σ`

(
· · ·

(∫ 1

σ3

(∫ 1

σ2

dσ1

)
dσ2

)
· · ·

)
dσ`−1

]
dσ`

≤ c

∫ 1

2i

Fn(σ`, x)(1− σ`)`−1dσ`

≤ c

∫ 1

0

(1− v)n−1v`−3Gm−1(v)2 e−Gm−1(v)x dv, (2.60)

as at the last step we have made the change of the variable σ` = 1− v and set

G0(v) = v, Gρ(v) = 1− e−Gρ−1(v), ρ = 1, 2, . . . .

Routine considerations show that

v − m

2
v2 ≤ Gm−1(v) ≤ v, 0 ≤ v ≤ 1. (2.61)

For n = 1 (2.60) reads

∫ 1

1/2

· · ·
∫ 1

1/2

Fm−1(τ1 · · · τ`)2

F0(τ1 · · · τ`)2
e−Fm−1(τ1···τ`)x dτ1 · · · dτ`

≤ c

∫ 1

0

v`−3Gm−1(v)2 e−Gm−1(v)x dv.

We split the integral on the right by means of the intermediate point 1/m. For
the one between 0 and 1/m we apply (2.61) to get

∫ 1/m

0

v`−3Gm−1(v)2 e−Gm−1(v)x dv ≤ c

∫ 1

0

v`−1e−vx dv ≤ c xi, (2.62)

as the last estimate is verified by integration by parts.
For the other integral we again use (2.53) and (2.54) to arrive at

∫ 1

1/m

v`−3Gm−1(v)2 e−Gm−1(v)x dv

≤ cm`−2xi

∫ 1

1/m

dv

v
= c xi m−i−2 log m. (2.63)
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Now, (2.62)-(2.63) imply (2.58), which completes the proof of assertion (a).
The estimate (2.59) is established in a similar way. Using the right inequality

in (2.61), we get

∫ 1

0

(1− v)n−1v`−3Gm−1(v)2 e−Gm−1(v)x dv

≤
∫ 1

0

(1− v)n−1v`−1 dv =
(`− 1)! (n− 1)!

(` + n− 1)!
≤ c ni. (2.64)

As above we get

∫ 1/m

0

(1− v)n−1v`−3Gm−1(v)2 e−Gm−1(v)x dv

≤ c

∫ 1

0

v`−1e−vx dv ≤ c xi. (2.65)

To estimate the integral between 1/m and 1, we first observe that

m`
(
1− 1

m

)m2

≤ m`e−m ≤ c, (2.66)

which follow from (1 − y)n ≤ e−ny, y ∈ [0, 1], and y`e−y ≤ c, y ≥ 0. Now, by
means of the first inequality in (2.53), (2.54) and (2.66), we get for n ≥ m2

∫ 1

1/m

(1− v)n−1v`−3Gm−1(v)2 e−Gm−1(v)x dv

≤ c
(
1− 1

m

)n−1

m`−1xi ≤ cm`e−mxi ≤ c xi, n ≥ m2. (2.67)

The estimates (2.60), (2.64), (2.65) and (2.67) imply (2.59). Thus assertion (b)
is established.

For the proof of (c) we first observe that for θ ≥ 0 there holds
∑

k≥0

(θ + k)is1,k(x) ≤ (θ + x)
∑

k≥0

(θ + 1 + k)i−1s1,k(x).

Iterating it we arrive at
∑

k≥0

(θ + k)is1,k(x) ≤ (θ + x)(θ + 1 + x) · · · (θ + i− 1 + x) ≤ (θ + i + x)i. (2.68)

Similarly,
∑

k≥0

(θ + k)is1,2,k(x) ≤ (θ + 2 + x)
∑

k≥0

(θ + 1 + k)i−1s1,2,k(x);
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hence
∑

k≥0

(θ + k)is1,2,k(x) ≤ (θ + 2 + x)(θ + 3 + x) · · · (θ + i + 1 + x)

≤ (θ + i + 1 + x)i.

(2.69)

Now, applying (2.69) consecutively with θ = n, n+ i+1, . . . , n+(m− 2)(i+1)
and then (2.68) with θ = n + (m− 1)(i + 1) we get

∑

kj≥0
j=1,...,m

(n + k1)iS1,k̄ s1,km
(x)

=
∑

km≥0

s1,km
(x)

∑

km−1≥0

s1,2,km−1(km) · · ·
∑

k1≥0

(n + k1)is1,2,k1(k2)

≤
∑

km≥0

s1,km(x)
∑

km−1≥0

s1,2,km−1(km) · · ·
∑

k2≥0

(n + i + 1 + k2)is1,2,k2(k3)

≤
∑

km≥0

[n + (m− 1)(i + 1) + km]is1,km(x)

≤ [n + (m− 1)(i + 1) + i + x]i,

which, in view of n ≥ m, implies assertion (c) of the lemma. ¤

We are ready to proof our main result.

Proof of Theorem 1.1. It is enough to prove the theorem for f ∈C(w)(0,∞)
since ‖w(f − Snf)‖ and Kw(f, n−1) are invariant under addition of a liner
function to f .

The upper error estimate of the theorem follows from Propositions 2.1 and
2.2 via a direct and well-known argument.

To verify the strong converse inequality we apply [3, Theorem 4.1] as
we set Qα = Sn, α = n−1, X = C(w)[0,∞), Y = W 2(wϕ)(0,∞), Z =
W 3(wϕ3/2)(0,∞), the differential operator D of [3, Theorem 4.1] is ϕD2,
Φ(g) = ‖wϕ3/2D3g‖, M = c1, λ(α) = (2n)−1, λ1(α) = c3n

−3/2, ` = 1,
B = c4/2 and m replaced with m + 1. Then

A = 2c3c5

√
mγ−1(log m)1+γ0 .

We fix m ∈ N, m ≥ 2, so large that A < 1. Note that γ < 1. Then [3, Theorem
4.1], Propositions 2.1, 2.3, 2.4 and 2.5 imply the left hand-side inequality of
Theorem 1.1 for any n ≥ m2. To extend the latter for 1 ≤ n ≤ m2− 1, we first
observe that the property (2.6) of the Szász-Mirakjan operator yields

Snf =
[
Sm′(fm′/n)

]
n/m′ ,

where we have set m′ = m2.
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Consequently,

‖w(f − Snf)‖ = ‖wm′/n(fm′/n − Sm′(fm′/n))‖
≥ c ‖w(fm′/n − Sm′(fm′/n))‖ (2.70)

with a constant c > 0 whose value is independent of f and n because 1 ≤
m′/n ≤ m′ and

wν(x) ≥ νmin{γ0,γ∞}w(x), ν ≥ 1.

On the other hand,

Kw(fν , t) = Kw1/ν
(f, νt) ≥ ν−max{γ0,γ∞}Kw(f, νt), ν ≥ 1, (2.71)

because (gν)′ = ν(g′)ν and

w1/ν(x) ≥ ν−max{γ0,γ∞}w(x), ν ≥ 1.

Now, combining the relation

Kw

(
f,

1
m′

)
≤ c ‖w(f − Sm′f)‖ ∀f ∈ C(w)(0,∞)

with (2.70) and (2.71) with ν = m′/n ∈ [1, m′] and t = 1/m′, we get

Kw

(
f,

1
n

)
≤ c ‖w(f − Snf)‖ ∀f ∈ C(w)(0,∞)

for 1 ≤ n ≤ m2 − 1 as well. ¤
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