
CONSTRUCTIVE THEORY OF FUNCTIONS, Sozopol 2013
(K. Ivanov, G. Nikolov and R. Uluchev, Eds.), pp. 83-95
Prof. Marin Drinov Academic Publishing House, Sofia, 2014

Cubature Rules for Harmonic Functions
on the Disk Using Line Integrals over

Two Sets of Equispaced Chords

Irina Georgieva and Clemens Hofreither

We construct a class of cubature rules for harmonic functions on the
unit disk based on line integrals over 4n + 2 distinct chords which are
separated into two groups of equal size. The chords in each group are
assumed to have constant distances t1 and t2, respectively, to the center
of the disk, and equispaced angles over the interval [0, 2π]. We show that
if t1 and t2 are chosen properly, these rules integrate exactly all harmonic
polynomials of degree up to 8n + 3. We conclude the paper with some
numerical experiments.
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1. Introduction

In the present work, we study a bivariate cubature problem which has two
defining features: first, the functions to be integrated are harmonic functions
on the unit disk, and second, the given data comes not in the form of point
evaluations, but rather as integrals over certain chords of the unit circle. This
Radon projection-like data has been shown to have certain advantages both for
interpolation and cubature of multivariate functions. We point in particular
to the results of Bojanov and Petrova [2, 3], who showed the existence of a
unique cubature formula for the disk that uses n line integrals and is exact for
all bivariate polynomials of degree up to 2n− 1, a result which is not possible
using the same number of point evaluations. In [15], a family of cubature rules
on the unit disk using Radon projections along symmetrically located chords
was found.

Besides the more convincing mathematical theory, we point out that line
integrals as input data arise naturally in some real-world problems, e.g., in com-
puter tomography with its many applications in medicine, radiology, geology,
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etc. The mathematical foundation for these applications is the work of Johann
Radon on the so-called Radon transform [16]. Reconstruction of functions from
their line integrals can be formulated as an interpolation problem where not the
function itself, but its Radon transform is sampled on a discrete set. Early ma-
jor contributions on the topic of multivariate interpolation using integrals over
hyperplanes are due to Marr [14] and Hakopian [13]. Research on this topic
was continued in the previous decade by many researchers [1, 4, 10, 11, 8, 12].

Interpolation of harmonic functions using such Radon projections was pre-
viously studied in [7, 5, 9]. Based on the interpolation theory, cubature rules
for harmonic functions on the unit disk based on line integrals over 2n + 1
distinct chords were constructed in [6]. These chords were assumed to have
constant distance t to the center of the disk. For t properly chosen and eq-
uispaced angles, these formulae were shown to integrate exactly all harmonic
polynomials of degree up to 4n + 1, which is the highest achievable degree of
precision for this class of cubature formulae.

In the present paper we construct another class of cubature rules for har-
monic functions using Radon projections. In contrast to the previous work
[6], we now choose two sets of 2n + 1 equispaced chords each, where the dis-
tances to the origin t1 and t2 are constant within each set, but different from
each other. See Figure 1 for a sketch. We introduce a cubature rule using
the integrals along these 4n + 2 chords with two weights a and b, which we
then show how to choose. Finally we derive a family of possible choices for the
distances (t1, t2) which maximize the degree of precision of the cubature rule
for harmonic polynomials.

Figure 1. A scheme with two sets of 7 chords each with distances t1 and t2.

We point out that the theory both for interpolation and cubature of har-
monic functions using Radon projection type of data has thus far only been
developed for the case of constant distances t, and the present work is the first
result using schemes with chords having different distances.

2. Preliminaries

Let D ⊂ R2 denote the open unit disk and ∂D the unit circle. By I(θ, t) we
denote a chord of the unit circle at angle θ ∈ [0, 2π) and distance t ∈ (−1, 1)
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from the origin (see Figure 2).
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Figure 2. The chord I(θ, t) of the unit circle.

Definition 1. Let u(x, y) be a real-valued bivariate function in the unit
disk D. The Radon projection Rθ(u; t) of u in direction θ is defined by the line
integral

Rθ(u; t) :=
∫

I(θ,t)

u(x, y) dS.

Johann Radon [16] showed in 1917 that a differentiable function u is uniquely
determined by the values of its Radon transform,

u 7→ {Rθ(u; t) : −1 ≤ t ≤ 1, 0 ≤ θ < π
}
.

2.1. Radon Projections of Harmonic Polynomials

Let Π2
n denote the space of real bivariate polynomials of total degree at

most n. In the following, we will often work with the subspace

Hn =
{
p ∈ Π2

n : ∆p = 0
}

of real bivariate harmonic polynomials of total degree at most n, which has
dimension 2n + 1. Here and below, ∆ = ∂xx + ∂yy.

We use the basis of Hn given by

φ0(x, y) = 1, φk,1(x, y) = Re(x + iy)k, φk,2(x, y) = Im(x + iy)k, (1)

where k = 1, . . . , n. In polar coordinates, the basis functions have the repre-
sentation

φk,1(r, θ) = rk cos(kθ), φk,2(r, θ) = rk sin(kθ).

The following result, which gives a closed formula for Radon projections
of the basis harmonic polynomials, can be considered a harmonic analogue to
the famous Marr’s formula [14]. A special case of this harmonic version was
first derived using tools from symbolic computation [7]. Later, Georgieva and
Hofreither [5] have given an analytic proof in a more general setting.
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Theorem 1 ([5]). The Radon projections of the basis harmonic polynomi-
als are given by

∫

I(θ,t)

φk,1 dS =
2

k + 1

√
1− t2 Uk(t) cos(kθ),

∫

I(θ,t)

φk,2 dS =
2

k + 1

√
1− t2 Uk(t) sin(kθ),

where k ∈ N, θ ∈ R, t ∈ (−1, 1), and Uk(t) = sin((k+1) arccos t)
sin(arccos t) is the k-th degree

Chebyshev polynomial of second kind.

3. Cubature Rules on Two Sets of Equispaced Chords

For an integrable function u on the unit disk D, we denote

I[u] :=
∫∫

D

u(x, y) dx dy.

For the integrals of the basis harmonic polynomials over D, it is easy to compute
that

I[φk,1] =

{
π, k = 0,

0, k ≥ 1,

I[φk,2] = 0, k ≥ 1.

(2)

In the following, we will construct cubature rules for the unit disk D for
harmonic functions using Radon projections along 4n+2 chords I, divided into
two sets of 2n + 1 chords each,

I = {I(θj , t1) : j = 1, . . . , 2n + 1} ∪ {I(ψj , t2) : j = 1, . . . , 2n + 1} ,

where the distances t1 ∈ (−1, 1) and t2 ∈ (−1, 1) are constant within each
subset.

Let n ∈ N0, fix some a, b ∈ R \ {0} and t1, t2 ∈ (−1, 1), t1 6= t2 and define
the cubature rule

Q[u] := a

2n+1∑

j=1

Rθj (u, t1) + b

2n+1∑

j=1

Rψj (u, t2). (3)

Using Theorem 1, we obtain

Q[φk,1] = a
2

k + 1

√
1− t21 Uk(t1)

2n+1∑

j=1

cos(kθj)

+ b
2

k + 1

√
1− t22 Uk(t2)

2n+1∑

j=1

cos(kψj),
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Q[φk,2] = a
2

k + 1

√
1− t21 Uk(t1)

2n+1∑

j=1

sin(kθj)

+ b
2

k + 1

√
1− t22 Uk(t2)

2n+1∑

j=1

sin(kψj).

Let us denote A := a
√

1− t21 and B := b
√

1− t22 for the sake of shortness
of notation.

Using Euler’s formula, we can rewrite the sums over trigonometric func-
tions in the above formulas as the real and imaginary parts, respectively, of∑2n+1

j=1 eikθj and
∑2n+1

j=1 eikψj . With the special choice of equispaced angles

θj =
2jπ

2n + 1
, ψj = α +

2jπ

2n + 1
, j = 1, 2, . . . , 2n + 1, (4)

where α ∈ R is an arbitrary offset, we have

2n+1∑

j=1

eikψj =
2n+1∑

j=1

eik( 2jπ
2n+1+α) =

2n∑

l=0

eikαeik(l+1) 2π
2n+1 = eikαeik 2π

2n+1

2n∑

l=0

eik 2π
2n+1 l

=





eikα(2n + 1), k ∈ N0 · (2n + 1),

eikαeik 2π
2n+1 1−eik2π

1−e
ik 2π

2n+1
= 0, otherwise.

Hence,

Q[φk,1] =

{
2(2n+1)

k+1

(
AUk(t1) + BUk(t2) cos(kα)

)
, k ∈ N0 · (2n + 1),

0, otherwise,

Q[φk,2] = 0, k ≥ 1.

For the time being, we restrict ourselves to the case α = 0, and thus, θj = ψj .
Comparing with (2), for the cubature formula Q to be exact for all the

harmonic polynomials of degree up to 2n, i.e., Q[φk,j ] = I[φk,j ], k = 0, . . . , 2n,
we only have to require

I[φ0,1] = π = 2(2n + 1)(A + B) = Q[φ0,1].

This gives us
π

2(2n + 1)
= A + B. (5)

For the cubature formula Q to be exact for all the harmonic polynomials of
degree up to 4n + 1, we have to additionally satisfy Q[φ2n+1,1] = I[φ2n+1,1],
i.e.,

0 = AU2n+1(t1) + BU2n+1(t2). (6)

For exactness up to degree 6n + 2, we get additionally (k = 4n + 2):

0 = AU4n+2(t1) + BU4n+2(t2). (7)
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For exactness up to degree 8n + 3, we get additionally (k = 6n + 3):

0 = AU6n+3(t1) + BU6n+3(t2). (8)

In the following, we construct a family of solutions to the system of equa-
tions (5)–(8). From (6), we get that

B = −A
U2n+1(t1)
U2n+1(t2)

,

provided that U2n+1(t2) 6= 0. Inserting this in (5), we get that

A =
π

2(2n + 1)
U2n+1(t2)

U2n+1(t2)− U2n+1(t1)
(9)

under the additional condition that U2n+1(t1) 6= U2n+1(t2). Hence from (5) it
follows that

B =
−π

2(2n + 1)
U2n+1(t1)

U2n+1(t2)− U2n+1(t1)
(10)

under the additional condition that U2n+1(t1) 6= 0. Inserting A and B in (7),
we get that the equality

U4n+2(t1)U2n+1(t2) = U4n+2(t2)U2n+1(t1) (11)

should hold true. Analoguously, inserting A and B in (8), the equality

U6n+3(t1)U2n+1(t2) = U6n+3(t2)U2n+1(t1) (12)

should hold true.
We summarize the conditions obtained so far in a lemma.

Lemma 1. Assume that a pair (t1, t2) satisfying t1 6= t2, U2n+1(t1) 6= 0,
U2n+1(t2) 6= 0, and U2n+1(t2)−U2n+1(t1) 6= 0 satisfies also the equations (11)
and (12), A and B are defined according to (9) and (10), respectively, and
the angles θi, ψi are equispaced as in (4) with α = 0. Then the corresponding
cubature rule (3) is precise for all harmonic polynomials of degree up to 8n+3.

In order to construct such pairs(t1, t2), we first prove a technical lemma.

Lemma 2. Let t, t′ be zeros of U4n+2. Then we have

U2n+1(t) 6= 0, (13)
U6n+3(t) = −U2n+1(t), (14)
U8n+4(t) = −1, (15)

U2n+1(t) = U2n+1(t′) ⇔ t = t′. (16)
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Proof. Since t is a zero of U4n+2, it can be written as t = cos kπ
4n+3 with

some k ∈ {1, 2, . . . , 4n + 2}.
We can only have U2n+1(t) = 0 if sin (2n+2)kπ

4n+3 = 0, or in other words, if
2n+2
4n+3k ∈ Z. However, by Euclid’s algorithm, we have

gcd(4n + 3, 2n + 2) = gcd(2n + 2, 2n + 1) = gcd(2n + 1, 1) = 1.

Hence there are no solutions k to this equation between k = 0 and k = 4n + 3,
which proves (13).

Statement (14) follows immediately from

sin
(6n + 4)kπ

4n + 3
= sin

(
2kπ − (2n + 2)kπ

4n + 3

)
= − sin

(2n + 2)kπ

4n + 3

and the trigonometric definition of the Chebyshev polynomials. Similarly, the
statement (15) follows from the observation that

sin
(8n + 5)kπ

4n + 3
= sin

(
2kπ − kπ

4n + 3

)
= − sin

kπ

4n + 3
.

For proving (16), we use the relation

Tp(t)Uq(t) =
1
2
(
Up+q(t) + Uq−p(t)

)
(17)

which can be easily proved using the “product to sum” formula

cos α sin β =
1
2
(
sin(α + β) + sin(β − α)

)

for α := p arccos t, β := (q + 1) arccos t, and the definitions for the Cheby-
shev polynomials Tp(t) = cos(p arccos t) and Uq(t) = sin(q+1) arccos t

sin(arccos t) . Setting
p = q = 2n + 1 in (17), we get

T2n+1(t)U2n+1(t) =
1
2
(
U4n+2(t) + U0(t)

)
.

Inserting the expression for t, we obtain

U2n+1

(
cos

kπ

4n + 3

)
=

1
2T2n+1

(
cos kπ

4n+3

) .

Let t′ = cos jπ
4n+3 . Then U2n+1(t) = U2n+1(t′) if and only if

cos
2n + 1
4n + 3

kπ = cos
2n + 1
4n + 3

jπ.

The latter holds true if and only if

(2n + 1)π
4n + 3

(k ± j) = 2πm, j, k ∈ {1, . . . , 4n + 2}, m ∈ Z.
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Since
gcd(4n + 3, 2n + 1) = gcd(2n + 1, 1) = 1,

then k ± j = 2(4n + 3)s for some s ∈ Z, which can only happen when k = j,
i.e., when t = t′. This completes the proof of the lemma. ¤

According to the above lemma, we construct pairs (t1, t2) which satisfy the
conditions of Lemma 1 by choosing t1 and t2 as two different zeros of U4n+2.
Then equation (11) is satisfied. Statement (14) of the above lemma proves that
also equation (12) is satisfied for this choice. Statements (13) and (16) take
care of three of the additional assumptions in Lemma 1.

The third statement (15) allows us to show sharpness of the obtained degree
of precision of the cubature rule Q. Indeed, if we wish to increase the degree of
precision beyond 8n+3, we have to satisfy the additional condition Q[φ8n+4,1] =
I[φ8n+4,1], i.e.,

0 = AU8n+4(t1) + B U8n+4(t2).

However, due to (15), this is equivalent to

0 = A + B,

a contradiction to (5).
All in all, we have proved the following theorem.

Theorem 2. Consider the cubature rule

I[u] ≈ Q[u] =
π

2(2n + 1)
1√

1− t21

U2n+1(t2)
U2n+1(t2)− U2n+1(t1)

2n+1∑

j=1

Rθj (u, t1)

− π

2(2n + 1)
1√

1− t22

U2n+1(t1)
U2n+1(t2)− U2n+1(t1)

2n+1∑

j=1

Rθj (u, t2)

with equispaced angles θj as in (4). If we choose roots of U4n+2

t1 = sin
jπ

4n + 3
, t2 = sin

kπ

4n + 3
, j, k ∈ {1, . . . , 4n + 2}

with j 6= k, then the cubature rule Q is exact for all harmonic polynomials of
degree up to 8n + 3 and there exist harmonic polynomials of degree 8n + 4 for
which it is not exact.

Remark 1. Theorem 2 states that with integrals along M = 4n + 2 prop-
erly chosen chords, we can integrate exactly all harmonic polynomials from the
spaceH2M−1, which has dimension 4M−1. The result is thus of the same qual-
ity as the cubature rule using constant distances t from [6], where N = 2n + 1
chords were sufficient for exact integration in H2N−1 with dimension 4N − 1.
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4. Examples

4.1. Example 1

We test the cubature rule from Theorem 2 on the harmonic function

u(x, y) = log
√

(x− 1)2 + (y − 1)2.

In Figure 3 we plot the cubature errors for varying degree n (x-axis) with the
choice t1 = cos 6π

4n+3 and t2 = cos 12π
4n+3 according to Theorem 2.

Figure 3. Cubature errors for varying degree n (x-axis) with the choice t1 =

cos 6π
4n+3

and t2 = cos 12π
4n+3

.

We observe that the errors decay exponentially with the degree n until
machine accuracy is reached.

In Figure 4 we plot the cubature errors for varying distances t1, t2 ∈ [0, 1]
for n = 2. Although the diagonal t1 = t2 is disallowed and leads to division by
zero, we see that choices very close to the diagonal still lead to well-performing
cubature rules.

Figure 4. Cubature errors for varying distances t1 (x-axis) and t2 (y-axis). Errors

are truncated at 3 · 10−4.
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A cross section through the error plot with n = 2 and fixed t1 = cos 5π
4n+3

is shown in Figure 5. The positive roots of U4n+2 are marked with diamonds.
Again we see that the limit t2 → t1 exists, although t1 = t2 is disallowed.
However, choosing t2 as a different root leads to smaller errors. The peaks in
the error plot are avoided by our choice.

Figure 5. Cubature errors for fixed distance t1 = cos 5π
4n+3

and t2 varying (x-axis).

The positive roots of U4n+2 are shown as diamonds. The root t1 corresponds to the

left-most diamond.

4.2. Example 2

In order to test the cubature rule for functions with less smoothness, we
construct the harmonic extension of the boundary function f(θ) = θ2 on the
unit circle in polar coordinates, where the argument θ is chosen in the interval
[−π, π]. This function is only C0 on the unit circle, but analytic within the
unit disk. By expanding f into its Fourier series, it can be shown that the
corresponding harmonic function has the representation

u(x, y) = Re
(π2

3
+ 2

(
Li2(−x− iy) + Li2(−x + iy)

))
,

where

Li2(z) =
∞∑

k=1

zk

k2

is the dilogarithm or Spence’s function. See Figure 6 for a plot of the harmonic
function u.

For the chord distances, we choose t1 = cos π
4n+3 and t2 = cos 4π

4n+3 , which
satisfy the conditions of Theorem 2.

We compare the cubature rule Q from Theorem 2 to the cubature rule Q̄[u]
derived in [6], which uses 2n + 1 equispaced angles as in (4) and a constant
distance t̄ chosen as a zero of U2n+1. In this example we choose t̄ = cos nπ

2n+2
and thus

Q̄[u] =
π

(4n + 2)
√

1− t̄2

2n+1∑

j=1

Rθj (u, t̄).
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This rule is exact for all harmonic polynomials of degree at most 4n + 3, as
shown in [6].

In Figure 7 we plot the errors for the cubature rules Q and Q̄ for varying
number of used chords (x-axis). We observe that both cubatures rules show
convergence which is exponential in the number of chords. Furthermore, the
cubature rule Q yields smaller errors than the cubature rule Q̄ in this example.
However, we note that this is dependent on the chosen distances. In general,
the rules seem to produce errors which are of similar order of magnitude.

Figure 6. The harmonic function u with C0 boundary data.

Figure 7. Errors for the cubature rules Q (circles) and Q̄ (squares) for varying the

number of the used chords (x-axis).
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5. Conclusions

We have constructed cubature rules for harmonic functions on the disk using
Radon projections along chords with two different distances to the origin. We
have given a construction for pairs of distances (t1, t2) which leads to high
degree of precision. The numerical results show that these rules perform well
and yield similar errors, for the same number of chords, as the previous rules
with only one constant distance of the chords.

Acknowledgments

We would like to thank Geno Nikolov for suggesting to study cubature rules
using two different distances of the chords. Furthermore we thank the referees
for constructive remarks.

The authors acknowledge the support by Bulgarian National Science Fund,
Grant DFNI-T01/0001. The research of the first author was also supported by
Bulgarian National Science Fund, Grant DDVU 0230/11. The second author
was supported by the project AComIn “Advanced Computing for Innovation”,
grant 316087, funded by the FP7 Capacity Programme “Research Potential of
Convergence Regions”.

Bibliography

[1] B. Bojanov and I. Georgieva, Interpolation by bivariate polynomials based
on Radon projections, Studia Math. 162 (2004), 141–160.

[2] B. Bojanov and G. Petrova, Numerical integration over a disc. A new
Gaussian cubature formula, Numer. Math. 80 (1998), 39–59.

[3] B. Bojanov and G. Petrova, Uniqueness of the Gaussian cubature for a ball.
J. Approx. Theory 104 (2000), 21–44

[4] B. Bojanov and Y. Xu, Reconstruction of a bivariate polynomials from its
Radon projections, SIAM J. Math. Anal. 37 (2005), 238–250.

[5] I. Georgieva and C. Hofreither, Interpolation of harmonic functions based
on Radon projections, Numer. Math. 127 (2014), 423–445.

[6] I. Georgieva and C. Hofreither, Cubature rules for harmonic functions
based on Radon projections, Calcolo doi:10.1007/s10092-014-0111-2.

[7] I. Georgieva, C. Hofreither, C. Koutschan, V. Pillwein and T. Tha-
natipanonda, Harmonic interpolation based on Radon projections along the
sides of regular polygons, Cent. Eur. J. Math. 11 (2013), 609-620.

[8] I. Georgieva, C. Hofreither and R. Uluchev, Interpolation of mixed type
data by bivariate polynomials, in “Constructive Theory of Functions, Sozopol
2010: In memory of Borislav Bojanov” (G. Nikolov and R. Uluchev, Ed.), pp.
93–107, Prof. Marin Drinov Academic Publishing House, Sofia, 2012.



I. Georgieva and C. Hofreither 95

[9] I. Georgieva, C. Hofreither and R. Uluchev, Least squares fitting of
harmonic functions based on Radon projections, in “Mathematical Methods
for Curves and Surfaces” (M. Floater et al., Eds.), pp. 158–171, LNCS 8177,
Springer, Berlin Heidelberg, 2014.

[10] I. Georgieva and S. Ismail, On recovering of a bivariate polynomial from its
Radon projections, in “Constructive Theory of Functions, Varna 2005” (B. Bo-
janov, Ed.), pp. 127–134, Prof. Marin Drinov Academic Publishing House, Sofia,
2006.

[11] I. Georgieva and R. Uluchev, Smoothing of Radon projections type of data
by bivariate polynomials, J. Comput. Appl. Math. 215 (2008), no. 1, 167–181.

[12] I. Georgieva and R. Uluchev, Surface reconstruction and Lagrange basis
polynomials, in “Large-Scale Scientific Computing 2007” (I. Lirkov, S. Margenov,
J. Wasniewski, Eds.), pp. 670–678, LNCS, vol. 4818, Springer-Verlag, Berlin
Heidelberg, 2008.

[13] H. Hakopian, Multivariate divided differences and multivariate interpolation of
Lagrange and Hermite type, J. Approx. Theory 34 (1982), 286–305.

[14] R. Marr, On the reconstruction of a function on a circular domain from a
sampling of its line integrals, J. Math. Anal. Appl. 45 (1974), 357–374.

[15] G. Nikolov, Cubature formulae for the disk using Radon projections, East J.
Approx. 14 (2008), 401–410.
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