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Interpolating Basis in the Space C∞[−1, 1]d

A.P. Goncharov

An interpolating Schauder basis in the space C∞[−1, 1]d is suggested.
This gives a unified approach for constructing bases in spaces of infinitely
differentiable functions and their traces on compact sets. In the construc-
tion we use Newton’s interpolation of functions at the sequence that was
found recently by Jean-Paul Calvi and Phung Van Manh.
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1. Introduction

There is a variety of different topological bases in the space C∞[−1, 1]. The
classical work here is [14], where Mityagin found the first such basis, namely
the Chebyshev polynomials. Later it was proven in [12] and [1] that other
classical orthogonal polynomials have the basis property in this space as well.
If we apply the result by Zeriahi [18] to the set [−1, 1] then we obtain a basis
from polynomials that are orthogonal with respect to more general measures.
Following Triebel [17] (see also [2]) a basis from eigenvectors of a certain dif-
ferential operator can be constructed in this space. A special basis in C∞[0, 1]
was used in [10] to construct a basis in the space of C∞-functions on a grad-
uated sharp cusp with arbitrary sharpness. Recently it was shown in [9] that
the wavelets system suggested by Kilgor and Prestin in [13] also forms a basis
in the space C∞[−1, 1].

In view of the isomorphism

C∞[−1, 1]d ' C∞[−1, 1] ⊗̂C∞[−1, 1] ⊗̂ · · · ⊗̂C∞[−1, 1]︸ ︷︷ ︸
d

(see [11, Ch. 2, Theorem 13]) these results can be extended to the multivariate
case.

Here we present an interpolating topological basis in the space C∞[−1, 1]d.
Together with [7] it gives a unified approach for constructing bases in spaces
of infinitely differentiable functions and their traces on compact sets.
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A polynomial basis (Pn)∞n=0 in a functional space is called a Faber (or strict
polynomial) basis if deg Pn = n for all n. Due to the classical result of Faber [6],
the space C[a, b] does not possess such a basis.

Here we use the Newton interpolation, so the basis presented for C∞[−1, 1]
is a Faber basis. The crucial aspect in the proof is the existence of the sequence
(xn)∞n=1 ⊂ [−1, 1] with a moderate growth of the corresponding Lebesgue con-
stants. A sequence of this type was found recently by Calvi and Manh in [4].
This essentially improves the author’s result [8] where, for the sequence of the
Lebesgue constants, only the asymptotic behavior exp(log2 n) was achieved.

2. Interpolating Topological Basis in C∞[−1, 1]d

Let X be a linear topological space over the field K. By X ′ we denote the
topological dual space. A sequence (en)∞n=0 ⊂ X is a (topological) basis for X if
for each f ∈ X there is a unique sequence (ξn(f))∞n=0 ⊂ K such that the series∑∞

n=0 ξn(f) en converges to f in the topology of X . The sequence (ξn)∞n=0

of linear functionals ξn : X −→ K : f 7→ ξn(f) for n ∈ N0 := {0, 1, . . .} is
biorthogonal to (en)∞n=0 and total over X . The latter indicates that ξn(f) = 0
for all n ∈ N0 implies f = 0.

Given a compact set K ⊂ R and a sequence of distinct points (xn)∞n=1 ⊂ K,
let e0 ≡ 1 and en(x) =

∏n
k=1(x − xk) for n ∈ N. Let X (K) be a Fréchet

space of continuous functions on K, containing all polynomials. By ξn we
denote, by means of the divided differences, the linear functional ξn(f) =
[x1, x2, . . . , xn+1]f with f ∈ X (K) and n ∈ N0. Properties of the divided
differences (see e.g. [5]) imply the following evident result.

Lemma 1. If a sequence (xn)∞n=1 of distinct points is dense on a per-
fect compact set K ⊂ R, then the system (en, ξn)∞n=0 is biorthogonal and the
sequence of functionals (ξn)∞n=0 is total on X (K).

Here the partial sum of the expansion with respect to the system (en, ξn)∞n=0

is the Lagrange interpolating polynomial of f , so Ln(f, x) =
∑n

k=0 ξk(f) ek, and
Ln : X (K) → Pn : f 7→ Ln(f, ·) is the corresponding projection on the space
of all polynomials of degree at most n.

We proceed to present an interpolating basis in the space X = C∞[−1, 1]
equipped with the topology defined by the sequence of norms

‖f‖p = sup{|f (i)(x)| : |x| ≤ 1, 0 ≤ i ≤ p}, p ∈ N0.

Let (xn)∞n=1 be the sequence in [−1, 1] suggested in [4]. Then, by [4, Theo-
rem 3.1], the sequence of uniform norms of Ln, which are the Lebesgue con-
stants corresponding to the sequence (xn)∞n=1, is polynomially bounded:

‖Ln‖0 ≤ C n3 log n (1)

for some constant C.
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Theorem 1. The functions (en)∞n=0 form a topological basis in the space
C∞[−1, 1].

Proof. Since the space under consideration is complete, it is enough to show
that, given f ∈ C∞[−1, 1], the series

∑∞
n=0 ξn(f) en converges absolutely, that

is, the series
∑∞

n=0 |ξn(f)| · ‖en‖p converges for each p ∈ N.
By the Markov inequality (see e.g. [5, p. 98]),

|ξn(f)| · ‖en‖p = ‖Ln(f)− Ln−1(f)‖p ≤ n2p‖Ln(f)− Ln−1(f)‖0. (2)

Let Qn be the polynomial of best uniform approximation to f on [−1, 1]
and En(f) = ‖f − Qn‖0. By the Jackson theorem (see e.g. [5, p. 219]), the
sequence (En(f))∞n=0 is rapidly decreasing, that is, nq En(f) → 0 as n →∞ for
any fixed q. Thus, for each q there is a constant Cq such that En(f) ≤ Cq n−q

for all n ∈ N.
Applying (1) and a standard argument we have

‖Ln(f)− f‖0 ≤ ‖Ln(f)− Ln(Qn)‖0 + ‖Qn − f‖0 ≤ (C n3 log n + 1) Cq n−q.

Therefore,

‖Ln(f)− Ln−1(f)‖0 ≤ (C n3 log n + 1) (Cq + Cq−1) (n− 1)−q.

From (2) we conclude that the value q = 2p+5 provides the desired result.

Corollary 1. The space C∞[−1, 1]d possesses an interpolating topological
basis.

Indeed, by [3, Theorem 16], there is a sequence of points in [−1, 1]d for a
multivariate Newton interpolation with a polynomial grows of the correspond-
ing Lebesgue constants. The tensor products of ordinary divided differences
work now as biorthogonal functionals. Since for the set [−1, 1]d both Markov’s
type estimation and Jackson’s theorem are valid (see e.g. [15] and [16, 5.3.2]),
we can repeat the proof for the univariate case.
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