Beta Operators with Jacobi Weights

Heiner Gonska, Ioan Raşa and Elena-Dorina Stănilă

We discuss Beta operators with Jacobi weights on $C[0,1]$ for $\alpha, \beta \geq-1$, thus including the discussion of three limiting cases. Emphasis is on the moments and their asymptotic behavior. Extended Voronovskaya-type results and a discussion concerning the over-iteration of the operators is included.

Keywords and Phrases: Beta operator, Jacobi weight, asymptotics, moments, Voronovskaya-type results, over-iteration.

Mathematics Subject Classification 2010: 41A36, 41A60, 33B15.

1. Introduction

Many operators arising in the theory of positive linear operators are compositions of other mappings of this type. Many times the classical Bernstein operator B_{n} given for $f \in C[0,1], n \in \mathbb{N}$ and $x \in[0,1]$ by

$$
\begin{equation*}
B_{n}(f ; x):=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} f\left(\frac{k}{n}\right), \quad 0 \leq k \leq n, \tag{1}
\end{equation*}
$$

is one of the building blocks. Other frequently used factor operators are Betatype operators $\mathcal{B}_{r}^{\alpha, \beta}$ of various kinds which will be further discussed in this note.

The best known examples are the genuine Bernstein-Durrmeyer operators U_{n}, the original Bernstein-Durrmeyer operators M_{n}, their analogies $M_{n}^{\alpha, \beta}$ with Jacobi weights, certain Stancu operators S_{n}^{α}, to name just a few. A complete list will be given in the third author's forthcoming thesis on Bernstein-Euler-Jacobi (BEJ) operators.

Here we focus on the building blocks $\mathcal{B}_{r}^{\alpha, \beta}$ for natural values of r and $\alpha, \beta \geq-1$, and on their moments of all orders. As is well known, knowledge of their behavior is essential for asymptotic statements as, for example, Voronovskaya-type results. We conclude this paper with a discussion concerning over-iterated operators $\mathcal{B}_{n}^{\alpha, \beta}$.

2. Definition of Operators $\mathcal{B}_{n}^{\alpha, \beta}$

Definition 1. For $f \in C[0,1]$, and $x \in[0,1]$ we define
(i) in case $\alpha=\beta=-1$:

$$
\mathcal{B}_{n}^{-1,-1}(f ; x)= \begin{cases}f(0), & x=0 \\ \frac{\int_{0}^{1} t^{n x-1}(1-t)^{n-n x-1} f(t) d t}{B(n x, n-n x)}, & 0<x<1 \\ f(1), & x=1\end{cases}
$$

(ii) in case $\alpha=-1, \beta>-1$:

$$
\mathcal{B}_{n}^{-1, \beta}(f ; x)= \begin{cases}f(0), & x=0 \\ \int_{0}^{1} t^{n x-1}(1-t)^{n-n x+\beta} f(t) d t \\ \frac{B(n x, n-n x+\beta+1)}{}, & 0<x \leq 1\end{cases}
$$

(iii) in case $\alpha>-1, \beta=-1$:

$$
\mathcal{B}_{n}^{\alpha,-1}(f ; x)= \begin{cases}\frac{\int_{0}^{1} t^{n x+\alpha}(1-t)^{n-n x-1} f(t) d t}{B(n x+\alpha+1, n-n x)}, & 0 \leq x<1 \\ f(1), & x=1\end{cases}
$$

(iv) in case $\alpha, \beta>-1$:

$$
\mathcal{B}_{n}^{\alpha, \beta}(f ; x)=\frac{\int_{0}^{1} t^{n x+\alpha}(1-t)^{n-n x+\beta} f(t) d t}{B(n x+\alpha+1, n-n x+\beta+1)}, \quad 0 \leq x \leq 1
$$

Remark 1. When discussing this class of operators one must refer to the papers of Mühlbach [5] and Lupaş in [3] where the first special cases were considered.

Case $\alpha=\beta=-1$. This case can be traced back to a paper by Mühlbach [5] who used a real number $\frac{1}{\lambda}>0$ instead of the natural n in the definition above. The same case was investigated by Lupaş in [3], where the operator was denoted by $\overline{\mathbb{B}}_{n}$ (see [3, p. 63]).

Case $\alpha=\beta=0$. These were called Beta operators by Lupaş (see [3, p. 37]) and denoted by \mathbb{B}_{n}.

3. Moments and Their Recursion

Definition 2. Let $\alpha, \beta \geq-1, n>1, m \in \mathbb{N}_{0}$ and $x \in[0,1]$, then the moment of order m is defined by

$$
T_{n, m}^{\alpha, \beta}(x)=\mathcal{B}_{n}^{\alpha, \beta}\left(\left(e_{1}-x e_{0}\right)^{m} ; x\right)
$$

Theorem 1.

$$
\begin{equation*}
T_{n, 0}^{\alpha, \beta}(x)=1, \quad T_{n, 1}^{\alpha, \beta}(x)=\frac{\alpha+1-(\alpha+\beta+2) x}{n+\alpha+\beta+2} \tag{2}
\end{equation*}
$$

and for $m \geq 1$ we have the following recursion formula

$$
\begin{align*}
(n+m+\alpha+\beta+2) T_{n, m+1}^{\alpha, \beta} & (x)=m X T_{n, m-1}^{\alpha, \beta}(x) \\
& +[m+\alpha+1-(2 m+\alpha+\beta+2) x] T_{n, m}^{\alpha, \beta}(x) \tag{3}
\end{align*}
$$

where $X=x(1-x)$.
Proof. Below we will repeatedly use the function $\psi(t)=t(1-t), t \in[0,1]$. Let $f \in C^{1}[0,1], \alpha, \beta \geq-1, \quad 0<x<1$. Then

$$
\mathcal{B}_{n}^{\alpha, \beta}\left(\psi f^{\prime} ; x\right)=\frac{\int_{0}^{1} t^{n x+\alpha}(1-t)^{n-n x+\beta} t(1-t) f^{\prime}(t) d t}{B(n x+\alpha+1, n-n x+\beta+1)}
$$

Using integration by parts we obtain

$$
\begin{array}{r}
\mathcal{B}_{n}^{\alpha, \beta}\left(\psi f^{\prime} ; x\right)=\left.\frac{1}{B(n x+\alpha+1, n-n x+\beta+1)}\left[t^{n x+\alpha+1}(1-t)^{n-n x+\beta+1} f(t)\right]\right|_{0} ^{1} \\
-\int_{0}^{1} f(t)\left[(n x+\alpha+1) t^{n x+\alpha}(1-t)^{n-n x+\beta+1}\right. \\
\left.-(n-n x+\beta+1) t^{n x+\alpha+1}(1-t)^{n-n x+\beta}\right] d t \\
=\frac{\int_{0}^{1} f(t) t^{n x+\alpha}(1-t)^{n-n x+\beta}[t(n-n x+\beta+1)-(1-t)(n x+\alpha+1)] d t}{B(n x+\alpha+1, n-n x+\beta+1)} \\
=\frac{\int_{0}^{1} f(t) t^{n x+\alpha}(1-t)^{n-n x+\beta}[n(t-x)-(\alpha+1)+t(\alpha+\beta+2)] d t}{B(n x+\alpha+1, n-n x+\beta+1)}
\end{array}
$$

and taking into consideration the identity

$$
\begin{aligned}
& n(t-x)-(\alpha+1)+t(\alpha+\beta+2) \\
& \quad=\left(\left(e_{1}-x e_{0}\right)(n+\alpha+\beta+2)+[x(\alpha+\beta+2)-(\alpha+1)] e_{0}\right)(t)
\end{aligned}
$$

we can write
$\mathcal{B}_{n}^{\alpha, \beta}\left(\psi f^{\prime} ; x\right)=\mathcal{B}_{n}^{\alpha, \beta}\left(\left[\left(e_{1}-x e_{0}\right)(n+\alpha+\beta+2)+(x(\alpha+\beta+2)-(\alpha+1)) e_{0}\right] f ; x\right)$.
Now in the last equation (4) we choose $f=\left(e_{1}-x e_{0}\right)^{m}$ and use the identity $t(1-t)=\left(X+X^{\prime}\left(e_{1}-x e_{0}\right)-\left(e_{1}-x e_{0}\right)^{2}\right)(t)$ to obtain:

$$
\begin{aligned}
& m \mathcal{B}_{n}^{\alpha, \beta}\left(\left[X\left(e_{1}-x e_{0}\right)^{m-1}+X^{\prime}\left(e_{1}-x e_{0}\right)^{m}-\left(e_{1}-x e_{0}\right)^{m+1}\right] ; x\right) \\
& \quad=\mathcal{B}_{n}^{\alpha, \beta}\left(\left[(n+\alpha+\beta+2)\left(e_{1}-x e_{0}\right)^{m+1}-(\alpha+1-(\alpha+\beta+2) x)\left(e_{1}-x e_{0}\right)^{m}\right] ; x\right) .
\end{aligned}
$$

The equality above becomes successively:

$$
\begin{aligned}
& m X T_{n, m-1}^{\alpha, \beta}(x)+m X^{\prime} T_{n, m}^{\alpha, \beta}(x)-m T_{n, m+1}^{\alpha, \beta}(x) \\
& \quad=(n+\alpha+\beta+2) T_{n, m+1}^{\alpha, \beta}(x)-[\alpha+1-(\alpha+\beta+2) x] T_{n, m}^{\alpha, \beta}(x) \\
& \begin{aligned}
(m+n+\alpha+ & \beta+2) T_{n, m+1}^{\alpha, \beta}(x) \\
& =m X T_{n, m-1}^{\alpha, \beta}(x)+[m+\alpha+1-(\alpha+\beta+2+2 m) x] T_{n, m}^{\alpha, \beta}(x)
\end{aligned}
\end{aligned}
$$

So (3) is established for $0<x<1$. Due to the continuity, it is valid also for $x \in\{0,1\}$.

In particular we have:
Corollary 1. For $\alpha=\beta=0$ we have $\mathcal{B}_{n}^{0,0}=\mathbb{B}_{n}$ (Lupa§ notation) with the corresponding recurrence formula for the moments:

$$
(n+m+2) T_{n, m+1}^{0,0}(x)=m X T_{n, m-1}^{0,0}(x)+(m+1) X^{\prime} T_{n, m}^{0,0}(x),
$$

where $T_{n, 0}^{0,0}(x)=1, T_{n, 1}^{0,0}(x)=\frac{X^{\prime}}{n+2}$.
For $\alpha=\beta=-1$ we have $\mathcal{B}_{n}^{-1,-1}=\overline{\mathbb{B}}_{n}$ (Lupaş notation). Then the recurrence formula becomes

$$
(n+m) T_{n, m+1}^{-1,-1}(x)=m X T_{n, m-1}^{-1,-1}(x)+m X^{\prime} T_{n, m}^{-1,-1}(x)
$$

where $T_{n, 0}^{-1,-1}(x)=1, T_{n, 1}^{-1,-1}(x)=0$.
In the sequel we denote by $(a)^{\bar{r}}=a(a+1) \cdots(a+r-1)$ the rising factorial function. The next proposition contains another kind of recurrence formula for the moments.

Proposition 1. Let $i \geq 0$ and $j \geq 0$ be integers. Then

$$
\begin{equation*}
T_{n, m}^{\alpha+i, \beta+j}(x)=\frac{(n+\alpha+\beta+2)^{\overline{i+j}}}{(n x+\alpha+1)^{\bar{i}}(n x+\beta+1)^{\bar{j}}} \sum_{k=0}^{i+j} \frac{\left[x^{i}(1-x)^{j}\right]^{(k)}}{k!} T_{n, m+k}^{\alpha, \beta}(x) \tag{5}
\end{equation*}
$$

Proof. Using the definition of the Beta operator it is easy to show that

$$
\begin{equation*}
\mathcal{B}_{n}^{\alpha, \beta}\left(t^{i}(1-t)^{j} f(t) ; x\right)=\frac{(n x+\alpha+1)^{\bar{i}}(n x+\beta+1)^{\bar{j}}}{(n+\alpha+\beta+2)^{\overline{i+j}}} \mathcal{B}_{n}^{\alpha+i, \beta+j}(f(t) ; x) . \tag{6}
\end{equation*}
$$

The following equation

$$
\begin{equation*}
t^{i}(1-t)^{j}=\sum_{k=0}^{i+j} \frac{\left[x^{i}(1-x)^{j}\right]^{(k)}}{k!}(t-x)^{k} \tag{7}
\end{equation*}
$$

is a consequence of Taylor's formula.
Next, using (7) and the fact that the Beta operator is linear, we get

$$
\begin{equation*}
\mathcal{B}_{n}^{\alpha, \beta}\left(t^{i}(1-t)^{j} f(t) ; x\right)=\sum_{k=0}^{i+j} \frac{\left[x^{i}(1-x)^{j}\right]^{(k)}}{k!} \mathcal{B}_{n}^{\alpha, \beta}\left((t-x)^{k} f(t) ; x\right) \tag{8}
\end{equation*}
$$

Combining (6) and (8) we arrive at

$$
\begin{aligned}
\mathcal{B}_{n}^{\alpha+i, \beta+j}(f(t) ; x)= & \frac{(n+\alpha+\beta+2)^{\overline{i+j}}}{(n x+\alpha+1)^{\bar{i}}(n x+\beta+1)^{\bar{j}}} \\
& \times \sum_{k=0}^{i+j} \frac{\left[x^{i}(1-x)^{j}\right]^{(k)}}{k!} \mathcal{B}_{n}^{\alpha, \beta}\left((t-x)^{k} f(t) ; x\right) .
\end{aligned}
$$

For $f(t)=(t-x)^{m}$ we obtain (5).
Remark 2. Another recurrence formula for the moments of $\mathcal{B}_{n}^{-1,-1}$ can be found in [5, Satz 3].

4. The Moments of Order Two

Since the second moment controls to a certain extent the approximation properties of $\mathcal{B}_{n}^{\alpha, \beta}$, it is useful to have a closer look at it. From Theorem 1 we obtain

$$
\begin{align*}
& T_{n, 2}^{\alpha, \beta}(x)=\frac{(\alpha+1)(\alpha+2)+(n-2(\alpha+1)(\alpha+\beta+3)) x}{(n+\alpha+\beta+2)(n+\alpha+\beta+3)} \\
&+\frac{(-n+6+(\alpha+\beta)(\alpha+\beta+5)) x^{2}}{(n+\alpha+\beta+2)(n+\alpha+\beta+3)} \tag{9}
\end{align*}
$$

(I). First, let us remark that

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty} T_{n, 2}^{\alpha, \beta}(x)=(1-x)^{2} \quad \text { uniformly on }[0,1] \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\beta \rightarrow \infty} T_{n, 2}^{\alpha, \beta}(x)=x^{2} \quad \text { uniformly on }[0,1] . \tag{11}
\end{equation*}
$$

Roughly speaking, a large value of α (with a fixed β) suggests a better approximation near 1 , and we draw a similar conclusion from (11).
(II). Now let $\beta=\alpha \geq-1$. Consider the sequence $s_{n}:=\frac{\sqrt{4 n+1}-5}{4}$, $n \geq 1$. In this case,

$$
\begin{equation*}
T_{n, 2}^{\alpha, \alpha}(x)=\frac{(\alpha+1)(\alpha+2)-(-n+6+2 \alpha(2 \alpha+5)) x(1-x)}{(n+2 \alpha+2)(n+2 \alpha+3)} \tag{12}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
T_{n, 2}^{\alpha, \alpha}(0)=T_{n, 2}^{\alpha, \alpha}(1)=\frac{(\alpha+1)(\alpha+2)}{(n+2 \alpha+2)(n+2 \alpha+3)} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{n, 2}^{\alpha, \alpha}\left(\frac{1}{2}\right)=\frac{1}{4(n+2 \alpha+3)} \tag{14}
\end{equation*}
$$

(i) If $-1 \leq \alpha<s_{n}$, the graph of $T_{n, 2}^{\alpha, \alpha}$ has the following form:

This suggests a better approximation near the end points.
(ii) If $\alpha=s_{n}, T_{n, 2}^{\alpha, \alpha}$ is a constant function, namely

$$
\begin{equation*}
T_{n, 2}^{s_{n}, s_{n}}(x)=\left(\frac{\sqrt{4 n+1}-1}{4 n}\right)^{2}, \quad x \in[0,1] \tag{15}
\end{equation*}
$$

(iii) For $\alpha>s_{n}$, the graph looks like

and indicates a better approximation near $\frac{1}{2}$.
(iv) In the extreme cases, when $\alpha=-1$, respectively $\alpha \rightarrow \infty$, we have $T_{n, 2}^{-1,-1}(x)=\frac{x(1-x)}{n+1}$, respectively $\lim _{\alpha \rightarrow \infty} T_{n, 2}^{\alpha, \alpha}(x)=\left(\frac{1-2 x}{2}\right)^{2}$.

5. Asymptotic Formulae

Here we present first two asymptotic formulae for higher order moments of $\mathcal{B}_{n}^{\alpha, \beta}$ in order to arrive at Voronovskaya-type results.

Theorem 2. For $\alpha, \beta \geq-1$ and all $l \geq 1$ one has

$$
\left(P_{l}\right):\left\{\begin{array}{l}
\lim _{n \rightarrow \infty} n^{l} T_{n, 2 l}^{\alpha, \beta}(x)=(2 l-1)!!X^{l}, \tag{16}\\
\lim _{n \rightarrow \infty} n^{l} T_{n, 2 l-1}^{\alpha, \beta}(x)=X^{l-1}\left[(l-1)!2^{l-1} X^{\prime} \sum_{k=1}^{l-1} \frac{(2 k-1)!!}{(2 k-2)!!}\right. \\
\\
\quad+(2 l-1)!!(\alpha+1-(\alpha+\beta+2) x)] .
\end{array}\right.
$$

The convergence is uniform on $[0,1]$.

Proof. We shall prove the proposition by induction on $l \geq 1$. The moments $T_{n, 1}^{\alpha, \beta}$ and $T_{n, 2}^{\alpha, \beta}$ are given by (2), respectively (9), and it is easy to prove that $\left(P_{1}\right)$ is true. Suppose that $\left(P_{l}\right)$ is true. According to (3) and (16),

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n^{l+1} T_{n, 2 l+1}^{\alpha, \beta}(x)=\lim _{n \rightarrow \infty} n^{l+1} \frac{2 l X}{n+2 l+\alpha+\beta+2} T_{n, 2 l-1}^{\alpha, \beta}(x) \\
&+\lim _{n \rightarrow \infty} n^{l+1} \frac{2 l+\alpha+1-(4 l+\alpha+\beta+2) x}{n+2 l+\alpha+\beta+2} T_{n, 2 l}^{\alpha, \beta}(x) \\
&= 2 l X^{l}\left[(l-1)!2^{l-1} X^{\prime} \sum_{k=1}^{l-1} \frac{(2 k-1)!!}{(2 k-2)!!}+(2 l-1)!!(\alpha+1-(\alpha+\beta+2) x)\right] \\
&+[2 l+\alpha+1-(4 l+\alpha+\beta+2) x](2 l-1)!!X^{l} \\
&= X^{l}\left[2^{l} l!X^{\prime} \sum_{k=1}^{l-1} \frac{(2 k-1)!!}{(2 k-2)!!}\right. \\
&+(2 l-1)!!(2 l(\alpha+1)-2 l(\alpha+\beta+2) x+2 l+\alpha+1-(4 l+\alpha+\beta+2) x)] \\
&= X^{l}\left[2^{l} l!X^{\prime} \sum_{k=1}^{l} \frac{(2 k-1)!!}{(2 k-2)!!}-(2 l)!!X^{\prime} \frac{(2 l-1)!!}{(2 l-2)!!}\right. \\
& \quad+(2 l-1)!!((2 l+1)(\alpha+1-(\alpha+\beta+2) x)+2 l-4 l x] \\
&= X^{l}\left[2^{l} l!X^{\prime} \sum_{k=1}^{l} \frac{(2 k-1)!!}{(2 k-2)!!}+(2 l+1)!!(\alpha+1-(\alpha+\beta+2) x]\right.
\end{aligned}
$$

and this proves the first formula in (16) for $l+1$ instead of l. Similarly,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n^{l+1} T_{n, 2 l+2}^{\alpha, \beta}(x)=\lim _{n \rightarrow \infty} n^{l+1} \frac{(2 l+1) X}{n+2 l+1+\alpha+\beta+2} T_{n, 2 l}^{\alpha, \beta}(x) \\
& \quad+\lim _{n \rightarrow \infty} n^{l+1} \frac{2 l+1+\alpha+1-(4 l+2+\alpha+\beta+2) x}{n+2 l+1+\alpha+\beta+2} T_{n, 2 l+1}^{\alpha, \beta}(x) \\
& =(2 l+1) X(2 l-1)!!X^{l} \\
& =(2 l+1)!!X^{l+1},
\end{aligned}
$$

which is the second formula in (16) for $l+1$ instead of l. This concludes the proof by induction.

The following result of Sikkema (see [7, p. 241]) will be used below. Note also the 1962 result of Mamedov [4] dealing with a similar problem.

Theorem 3. Let $L_{n}: B[a, b] \rightarrow C[c, d],[c, d] \subseteq[a, b]$, be a sequence of positive linear operators. Let the function $f \in B[a, b]$ be q-times differentiable at $x \in[c, d]$, where $q \geq 2$ is a natural number. Let $\varphi: \mathbb{N} \rightarrow \mathbb{R}$ be a function such that
(i) $\lim _{n \rightarrow \infty} \varphi(n)=\infty$;
(ii) $L_{n}\left(\left(e_{1}-x\right)^{q} ; x\right)=\frac{c_{q}(x)}{\varphi(n)}+o\left(\frac{1}{\varphi(n)}\right)$ as $n \rightarrow \infty$, where $c_{q}(x)$ does not depend on n;
(iii) there exists an even number $m>q$ such that $L_{n}\left(\left(e_{1}-x\right)^{m} ; x\right)=o\left(\frac{1}{\varphi(n)}\right)$ as $n \rightarrow \infty$.

Then

$$
\lim _{n \rightarrow \infty} \varphi(n)\left\{L_{n}(f ; x)-\sum_{r=0}^{q} \frac{L_{n}\left(\left(e_{1}-x\right)^{r} ; x\right)}{r!} f^{(r)}(x)\right\}=0
$$

Corollary 2. (i) Theorem 3 can be rewritten in the form

$$
\lim _{n \rightarrow \infty} \varphi(n)\left\{L_{n}(f ; x)-\sum_{r=0}^{q-1} \frac{L_{n}\left(\left(e_{1}-x\right)^{r} ; x\right)}{r!} f^{(r)}(x)\right\}=c_{q}(x) \frac{f^{(q)}(x)}{q!}
$$

(ii) If in addition to the assumption of Theorem 3, one assumes that

$$
L_{n}\left(\left(e_{1}-x\right)^{r} ; x\right)=\frac{c_{r}(x)}{\varphi(n)}+o\left(\frac{1}{\varphi(n)}\right), \quad n \rightarrow \infty, \quad r=1,2, \ldots, q
$$

where the functions c_{r} are independent of n, then one also has

$$
\lim _{n \rightarrow \infty} \varphi(n)\left\{L_{n}(f ; x)-f(x) L_{n}\left(e_{0} ; x\right)\right\}=\sum_{r=1}^{q} c_{r}(x) \frac{f^{(r)}(x)}{q!}
$$

That is, all derivatives now appear on the right-hand side which is independent of n.

As a consequence of Corollary 2 (ii) we have the following Voronovskayatype relation.

Corollary 3. Let $f \in C^{2}[0,1]$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left\{\mathcal{B}_{n}^{\alpha, \beta}(f ; x)-f(x)\right\}=\frac{x(1-x)}{2} f^{\prime \prime}(x)+[\alpha+1-(\alpha+\beta+2) x] f^{\prime}(x) \tag{17}
\end{equation*}
$$

uniformly on $[0,1]$.
Proof. For $\varphi(n)=n$ and $q=2$ as given in Corollary 2 (ii),

$$
\lim _{n \rightarrow \infty} n\left\{\mathcal{B}_{n}^{\alpha, \beta}(f ; x)-f(x)\right\}=\sum_{r=1}^{2} c_{r}(x) \frac{f^{(r)}(x)}{r!}=c_{1}(x) \frac{f^{\prime}(x)}{1!}+c_{2}(x) \frac{f^{\prime \prime}(x)}{2!}
$$

where $c_{r}(x)=\lim _{n \rightarrow \infty} n T_{n, r}^{\alpha, \beta}(x)$. By using Lemma 2 with $l=1$, we get

$$
\begin{aligned}
& c_{1}(x)=\alpha+1-(\alpha+\beta+2) x \\
& c_{2}(x)=X
\end{aligned}
$$

and this concludes the proof.
Remark 3. As a consequence of Lemma 2 and Corollary 2 (i) we deduce similarly that for $f \in C^{2 l}[0,1]$,
$\lim _{n \rightarrow \infty} n^{l}\left\{\mathcal{B}_{n}^{\alpha, \beta}(f(t) ; x)-\sum_{k=0}^{2 l-1} \frac{f^{(k)}(x)}{k!} T_{n, k}^{\alpha, \beta}(x)\right\}=\frac{(2 l-1)!!}{(2 l)!} X^{l} f^{(2 l)}(x), \quad l \geq 1$.
From this we get also

$$
\begin{gather*}
\lim _{n \rightarrow \infty} n^{l}\left\{\mathcal{B}_{n}^{\alpha, \beta}(f(t) ; x)-\sum_{k=0}^{2 l-2} \frac{f^{(k)}(x)}{k!} T_{n, k}^{\alpha, \beta}(x)\right\}=\frac{(2 l-1)!!}{(2 l)!} X^{l} f^{(2 l)}(x) \\
+\frac{X^{l-1}}{(2 l-1)!}\left[(l-1)!2^{l-1} X^{\prime} \sum_{k=1}^{l-1} \frac{(2 k-1)!!}{(2 k-2)!!}\right. \tag{19}\\
\quad+(2 l-1)!!(\alpha+1-(\alpha+\beta+2) x)] f^{(2 l-1)}(x) .
\end{gather*}
$$

Remark 4. In order to compare the above with a special previous result for the case $\alpha=\beta=-1$ we manipulate the left hand side of (19) for $l=2$ by writing

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n & {\left[n\left(\mathcal{B}_{n}^{\alpha, \beta}(f(t) ; x)-f(x)\right)-(\alpha+1-(\alpha+\beta+2) x) f^{\prime}(x)-\frac{X}{2} f^{\prime \prime}(x)\right] } \\
= & \lim _{n \rightarrow \infty} n^{2}\left[\left(\mathcal{B}_{n}^{\alpha, \beta}(f(t) ; x)-f(x)-T_{n, 1}^{\alpha, \beta}(x) f^{\prime}(x)-T_{n, 2}^{\alpha, \beta}(x) \frac{f^{\prime \prime}(x)}{2}\right]\right. \\
& +\lim _{n \rightarrow \infty} n\left[n T_{n, 1}^{\alpha, \beta}(x)-(\alpha+1-(\alpha+\beta+2) x)\right] f^{\prime}(x) \\
& +\frac{1}{2} \lim _{n \rightarrow \infty} n\left[n T_{n, 2}^{\alpha, \beta}(x)-X\right] f^{\prime \prime}(x) .
\end{aligned}
$$

By using (2), (16) and (19) with $l=2$, we get

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n\left[n\left(\mathcal{B}_{n}^{\alpha, \beta}(f(t) ; x)-f(x)\right)-\frac{X}{2} f^{\prime \prime}(x)-(\alpha+1-(\alpha+\beta+2) x) f^{\prime}(x)\right] \\
& = \\
& \quad \frac{1}{8} X^{2} f^{I V}(x)+\frac{1}{6} X(3 \alpha+5-(3 \alpha+3 \beta+10) x) f^{\prime \prime \prime}(x) \\
& \\
& \quad-(\alpha+\beta+2)(\alpha+1-(\alpha+\beta+2) x) f^{\prime}(x) \\
& \\
& \quad+\frac{1}{2} f^{\prime \prime}(x)\left[(\alpha+1)(\alpha+2)-\left(2 \alpha^{2}+2 \alpha \beta+10 \alpha+4 \beta+11\right) x\right. \\
& \left.\quad \quad+x^{2}((\alpha+\beta)(\alpha+\beta+7)+11)\right] .
\end{aligned}
$$

For $\alpha=\beta=-1$ this reduces to

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} n\left[n\left(\mathcal{B}_{n}^{-1,-1}(f ; x)-f(x)\right)-\frac{X}{2} f^{\prime \prime}(x)\right] \\
&=\frac{1}{24}\left(3 X^{2} f^{I V}(x)+8 X(1-2 x) f^{\prime \prime \prime}(x)-12 X f^{\prime \prime}(x)\right)
\end{aligned}
$$

This result can be also deduced from [1, Remark 3].

6. Iterates of $\mathcal{B}_{n}^{\alpha, \beta}$

1. $\alpha=\beta=-1$. In this case $\mathcal{B}_{n}^{-1,-1}$ are positive linear operators preserving linear functions, and $\mathcal{B}_{n}^{-1,-1} e_{2}(x)=\frac{n x(n x+1)}{n(n+1)}>e_{2}(x)$, for $0<x<1$. Consequently

$$
\lim _{m \rightarrow \infty}\left(\mathcal{B}_{n}^{-1,-1}\right)^{m} f(x)=(1-x) f(0)+x f(1), \quad f \in C[0,1]
$$

uniformly on $[0,1]$ (see [6]).
2. $\alpha>-1, \beta=-1$. Then $\mathcal{B}_{n}^{\alpha,-1}$ are positive linear operators preserving constant functions, $\mathcal{B}_{n}^{\alpha,-1} f(1)=f(1)$ for all $f \in C[0,1]$, and

$$
\mathcal{B}_{n}^{\alpha,-1} e_{2}(x)=\frac{(n x+\alpha+1)(n x+\alpha+2)}{(n+\alpha+1)(n+\alpha+2)}>e_{2}(x), \quad 0 \leq x<1
$$

Therefore

$$
\lim _{m \rightarrow \infty}\left(\mathcal{B}_{n}^{\alpha,-1}\right)^{m} f(x)=f(1), \quad f \in C[0,1]
$$

uniformly on $[0,1]$ (see [6]).
3. $\alpha=-1, \beta>-1$. As in the previous case, one proves that

$$
\lim _{m \rightarrow \infty}\left(\mathcal{B}_{n}^{-1, \beta}\right)^{m} f(x)=f(0), \quad f \in C[0,1] .
$$

4. $\alpha>-1, \beta>-1$. In this case we have for all $k \geq 0$,

$$
\mathcal{B}_{n}^{\alpha, \beta} e_{k}(x)=\frac{(n x+\alpha+1)^{\bar{k}}}{(n+\alpha+\beta+2)^{\bar{k}}}, \quad x \in[0,1]
$$

From this we get

$$
\begin{equation*}
\mathcal{B}_{n}^{\alpha, \beta} e_{k}(x)=\frac{1}{(n+\alpha+\beta+2)^{\bar{k}}} \sum_{j=0}^{k} s_{k-j}(k, \alpha) n^{j} x^{j} \tag{20}
\end{equation*}
$$

where $s_{k-j}(k, \alpha)$ are elementary symmetric sums of the numbers $\alpha+1, \alpha+$ $2, \ldots, \alpha+k$; in particular $s_{0}(k, \alpha)=1$ and

$$
\begin{equation*}
s_{1}(k, \alpha)=(\alpha+1)+\cdots+(\alpha+k)=k \alpha+\frac{k(k+1)}{2} \tag{21}
\end{equation*}
$$

It follows that the numbers

$$
\lambda_{n, k}:=\frac{n^{k}}{(n+\alpha+\beta+2)^{\bar{k}}}, \quad k \geq 0
$$

are eigenvalues of $\mathcal{B}_{n}^{\alpha, \beta}$, and to each of them there corresponds a monic eigenpolynomial $p_{n, k}$ with $\operatorname{deg} p_{n, k}=k$. Let $p \in \Pi$ and $d=\operatorname{deg} p$. Then p has a decomposition

$$
p=a_{n, 0}(p) p_{n, 0}+a_{n, 1}(p) p_{n, 1}+\cdots+a_{n, d}(p) p_{n, d}
$$

with some coefficients $a_{n, k}(p) \in \mathbb{R}$. Since $\lambda_{n, 0}=1$ and $p_{n, 0}=e_{0}$ we get

$$
\left(\mathcal{B}_{n}^{\alpha, \beta}\right)^{m} p=a_{n, 0}(p) e_{0}+\sum_{k=1}^{d} a_{n, k}(p) \lambda_{n, k}^{m} p_{n, k}, \quad m \geq 1
$$

and so

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\mathcal{B}_{n}^{\alpha, \beta}\right)^{m} p=a_{n, 0}(p) e_{0}, \quad p \in \Pi \tag{22}
\end{equation*}
$$

Consider the linear functional $\mu_{n}: \Pi \rightarrow \mathbb{R}, \mu_{n}(p)=a_{n, 0}(p)$ and the linear operator $P_{n}: \Pi \rightarrow \Pi$,

$$
P_{n} p=\mu_{n}(p) e_{0}, \quad p \in \Pi
$$

Then (22) becomes

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\mathcal{B}_{n}^{\alpha, \beta}\right)^{m} p=P_{n} p, \quad p \in \Pi \tag{23}
\end{equation*}
$$

Obviously P_{n} is positive, and so μ_{n} is positive; moreover, $\left\|\mu_{n}\right\|=1$ because $\mu_{n}\left(e_{0}\right)=1$. By the Hahn-Banach theorem, μ_{n} can be extended to a norm-one linear functional on $C[0,1]$. Since Π is dense in $C[0,1]$, the extension is unique
and the extended functional $\mu_{n}: C[0,1] \rightarrow \mathbb{R}$ is also positive. Now P_{n} can be extended from Π to $C[0,1]$ by setting $P_{n}: C[0,1] \rightarrow \Pi, P_{n} f=\mu_{n}(f) e_{0}$, $f \in C[0,1]$. Remark that

$$
\begin{equation*}
\left\|\left(\mathcal{B}_{n}^{\alpha, \beta}\right)^{m}\right\|=\left\|P_{n}\right\|=1, \quad m \geq 1 \tag{24}
\end{equation*}
$$

Using again the fact that Π is dense in $C[0,1]$, we get from (23) and (24)

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(\mathcal{B}_{n}^{\alpha, \beta}\right)^{m} f=P_{n} f, \quad f \in C[0,1] . \tag{25}
\end{equation*}
$$

On the other hand, from (20) we deduce the following recurrence formula for the computation of $P_{n} e_{k}, k \geq 1$:

$$
\left((n+\alpha+\beta+2)^{\bar{k}}-n^{k}\right) P_{n} e_{k}=\sum_{j=0}^{k-1} s_{k-j}(k, \alpha) n^{j} P_{n} e_{j}
$$

Since $P_{n} e_{k}=\mu_{n}\left(e_{k}\right) e_{0}$, we get for $n \geq 1$ and $k \geq 1$

$$
\begin{equation*}
\mu_{n}\left(e_{k}\right)=\sum_{j=0}^{k-1} s_{k-j}(k, \alpha) \frac{n^{j}}{(n+\alpha+\beta+2)^{\bar{k}}-n^{k}} \mu_{n}\left(e_{j}\right) \tag{26}
\end{equation*}
$$

Using (26) it is easy to prove by induction on k that there exists

$$
\begin{equation*}
\mu\left(e_{k}\right):=\lim _{n \rightarrow \infty} \mu_{n}\left(e_{k}\right), \quad k \geq 0 \tag{27}
\end{equation*}
$$

and, moreover,

$$
\mu\left(e_{k}\right)=\frac{s_{1}(k, \alpha)}{(\alpha+\beta+2)+\cdots+(\alpha+\beta+k+1)} \mu\left(e_{k-1}\right),
$$

i.e., taking (21) into account,

$$
\mu\left(e_{k}\right)=\frac{2 \alpha+k+1}{2 \alpha+2 \beta+k+3} \mu\left(e_{k-1}\right), \quad k \geq 1
$$

Since $\mu\left(e_{0}\right)=1$, it follows that

$$
\mu\left(e_{k}\right)=\frac{(2 \alpha+2)^{\bar{k}}}{(2 \alpha+2 \beta+4)^{\bar{k}}}, \quad k \geq 0
$$

This can be rewritten as

$$
\mu\left(e_{k}\right)=\frac{B(2 \alpha+k+2,2 \beta+2)}{B(2 \alpha+2,2 \beta+2)}=\frac{\int_{0}^{1} t^{2 \alpha+1}(1-t)^{2 \beta+1} e_{k}(t) d t}{\int_{0}^{1} t^{2 \alpha+1}(1-t)^{2 \beta+1} d t}
$$

so that

$$
\mu(p)=\frac{\int_{0}^{1} t^{2 \alpha+1}(1-t)^{2 \beta+1} p(t) d t}{\int_{0}^{1} t^{2 \alpha+1}(1-t)^{2 \beta+1} d t}, \quad p \in \Pi
$$

Consider the extension of μ to $C[0,1]$, i.e.,

$$
\mu(f)=\frac{\int_{0}^{1} t^{2 \alpha+1}(1-t)^{2 \beta+1} f(t) d t}{\int_{0}^{1} t^{2 \alpha+1}(1-t)^{2 \beta+1} d t}, \quad f \in C[0,1]
$$

and the positive linear operator $P: C[0,1] \rightarrow \Pi, P f=\mu(f) e_{0}, f \in C[0,1]$. According to (27), $\lim _{n \rightarrow \infty} \mu_{n}(p)=\mu(p), p \in \Pi$, i.e.,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P_{n} p=P p, \quad p \in \Pi \tag{28}
\end{equation*}
$$

Since $\left\|P_{n}\right\|=\|P\|=1, n \geq 1$, we conclude from (28) that $\lim _{n \rightarrow \infty} P_{n} f=P f$, $f \in C[0,1]$. Thus, for the operators P_{n} described in (25) we have proved:

Theorem 4. Let $\alpha>-1, \beta>-1$. Then for each $f \in C[0,1]$ and $n \geq 1$,

$$
\lim _{n \rightarrow \infty} P_{n} f=\frac{\int_{0}^{1} t^{2 \alpha+1}(1-t)^{2 \beta+1} f(t) d t}{\int_{0}^{1} t^{2 \alpha+1}(1-t)^{2 \beta+1} d t} e_{0}
$$

For $\alpha=\beta=0$, this result was obtained, with different methods, in [2].

Bibliography

[1] U. Abel, V. Gupta and R. N. Mohapatra, Local approximation by Beta operators, Nonlinear Anal. 62 (2005), 41-52.
[2] A. Attalienti and I. Raşa, Overiterated linear operators and asymptotic behavior of semigroups, Mediterr. J. Math. 5 (2008), 315-324.
[3] A. Lupaş, "Die Folge der Betaoperatoren", Ph.D Thesis, Universität Stuttgart, Stuttgart, 1972.
[4] R. G. Mamedov, The asymptotic value of the approximation of multiply differentiable functions by positive linear operators, Dokl. Akad. Nauk SSSR 146 (1962), 1013-1016 [in Russian].
[5] G. Mühlbach, Rekursionsformeln für die zentralen Momente der Pólya und der Beta-Verteilung, Metrika 19 (1972), 171-177.
[6] I. RAŞA, C_{0}-semigroups and iterates of positive linear operators: asymptotic behaviour, Rend. Circ. Mat. di Palermo (2) Suppl. 82 (2010), 123-142.
[7] P. C. Sikkema, Über die Schurerschen linearen positiven Operatoren. I, Nederl. Akad. Wetensch. Proc. Ser. A 78 = Indag. Math. 37 (1975), 230-242 [in German].

Heiner Gonska

University of Duisburg-Essen
Faculty of Mathematics
Forsthausweg 2
47057 Duisburg
Germany
E-mail: heiner.gonska@uni-due.de
Ioan Raşa
Technical University of Cluj-Napoca
Department of Mathematics
Str. Memorandumului nr. 28
RO-400114 Cluj-Napoca
Romania
E-mail: Ioan.Rasa@math.utcluj.ro
Elena-Dorina Stănilă
University of Duisburg-Essen
Faculty of Mathematics
Forsthausweg 2
47057 Duisburg
Germany
E-mail: elena.stanila@stud.uni-due.de

