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We discuss Beta operators with Jacobi weights on C[0, 1] for α, β ≥ −1,
thus including the discussion of three limiting cases. Emphasis is on the
moments and their asymptotic behavior. Extended Voronovskaya-type
results and a discussion concerning the over-iteration of the operators is
included.
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1. Introduction

Many operators arising in the theory of positive linear operators are composi-
tions of other mappings of this type. Many times the classical Bernstein oper-
ator Bn given for f ∈ C[0, 1], n ∈ N and x ∈ [0, 1] by

Bn(f ;x) :=
n∑

k=0

(
n

k

)
xk(1− x)n−kf

(k

n

)
, 0 ≤ k ≤ n, (1)

is one of the building blocks. Other frequently used factor operators are Beta-
type operators Bα,β

r of various kinds which will be further discussed in this
note.

The best known examples are the genuine Bernstein-Durrmeyer opera-
tors Un, the original Bernstein-Durrmeyer operators Mn, their analogies Mα,β

n

with Jacobi weights, certain Stancu operators Sα
n , to name just a few. A com-

plete list will be given in the third author’s forthcoming thesis on Bernstein-
Euler-Jacobi (BEJ) operators.

Here we focus on the building blocks Bα,β
r for natural values of r and

α, β ≥ −1, and on their moments of all orders. As is well known, knowl-
edge of their behavior is essential for asymptotic statements as, for example,
Voronovskaya-type results. We conclude this paper with a discussion concern-
ing over-iterated operators Bα,β

n .
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2. Definition of Operators Bα,β
n

Definition 1. For f ∈ C[0, 1], and x ∈ [0, 1] we define

(i) in case α = β = −1:

B−1,−1
n (f ; x) =





f(0), x = 0;
1∫
0

tnx−1(1− t)n−nx−1f(t) dt

B(nx, n− nx)
, 0 < x < 1,

f(1), x = 1;

(ii) in case α = −1, β > −1:

B−1,β
n (f ; x) =





f(0), x = 0,

1∫
0

tnx−1(1− t)n−nx+βf(t) dt

B(nx, n− nx + β + 1)
, 0 < x ≤ 1;

(iii) in case α > −1, β = −1:

Bα,−1
n (f ; x) =





1∫
0

tnx+α(1− t)n−nx−1f(t) dt

B(nx + α + 1, n− nx)
, 0 ≤ x < 1,

f(1), x = 1;

(iv) in case α, β > −1:

Bα,β
n (f ;x) =

1∫
0

tnx+α(1− t)n−nx+βf(t) dt

B(nx + α + 1, n− nx + β + 1)
, 0 ≤ x ≤ 1.

Remark 1. When discussing this class of operators one must refer to the
papers of Mühlbach [5] and Lupaş in [3] where the first special cases were
considered.

Case α = β = −1. This case can be traced back to a paper by Mühlbach [5]
who used a real number 1

λ > 0 instead of the natural n in the definition above.
The same case was investigated by Lupaş in [3], where the operator was denoted
by Bn (see [3, p. 63]).

Case α = β = 0. These were called Beta operators by Lupaş (see [3, p. 37])
and denoted by Bn.
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3. Moments and Their Recursion

Definition 2. Let α, β ≥ −1, n > 1,m ∈ N0 and x ∈ [0, 1], then the
moment of order m is defined by

Tα,β
n,m(x) = Bα,β

n

(
(e1 − xe0)m;x

)
.

Theorem 1.

Tα,β
n,0 (x) = 1, Tα,β

n,1 (x) =
α + 1− (α + β + 2)x

n + α + β + 2
(2)

and for m ≥ 1 we have the following recursion formula

(n + m + α + β + 2)Tα,β
n,m+1(x) = mXTα,β

n,m−1(x)

+ [m + α + 1− (2m + α + β + 2)x]Tα,β
n,m(x) (3)

where X = x(1− x).

Proof. Below we will repeatedly use the function ψ(t) = t(1− t), t ∈ [0, 1].
Let f ∈ C1[0, 1], α, β ≥ −1, 0 < x < 1. Then

Bα,β
n (ψf ′;x) =

1∫
0

tnx+α(1− t)n−nx+βt(1− t)f ′(t) dt

B(nx + α + 1, n− nx + β + 1)
.

Using integration by parts we obtain

Bα,β
n (ψf ′; x) =

1
B(nx + α + 1, n− nx + β + 1)

[
tnx+α+1(1− t)n−nx+β+1f(t)

]∣∣1
0

−
1∫

0

f(t)
[
(nx + α + 1)tnx+α(1− t)n−nx+β+1

− (n− nx + β + 1)tnx+α+1(1− t)n−nx+β
]
dt

=

1∫
0

f(t)tnx+α(1− t)n−nx+β [t(n− nx + β + 1)− (1− t)(nx + α + 1)] dt

B(nx + α + 1, n− nx + β + 1)

=

1∫
0

f(t)tnx+α(1− t)n−nx+β [n(t− x)− (α + 1) + t(α + β + 2)] dt

B(nx + α + 1, n− nx + β + 1)

and taking into consideration the identity

n(t− x)− (α + 1) + t(α + β + 2)

=
(
(e1 − xe0)(n + α + β + 2) + [x(α + β + 2)− (α + 1)]e0

)
(t)



104 Beta Operators with Jacobi Weights

we can write

Bα,β
n (ψf ′; x) = Bα,β

n

([
(e1−xe0)(n+α+β+2)+(x(α+β+2)−(α+1))e0

]
f ; x

)
.

(4)
Now in the last equation (4) we choose f = (e1 − xe0)m and use the identity
t(1− t) =

(
X + X ′(e1 − xe0)− (e1 − xe0)2

)
(t) to obtain:

mBα,β
n

([
X(e1 − xe0)m−1 + X ′(e1 − xe0)m − (e1 − xe0)m+1

]
; x

)

= Bα,β
n

([
(n+α+β+2)(e1−xe0)m+1−(α+1−(α+β+2)x)(e1−xe0)m

]
;x

)
.

The equality above becomes successively:

mXTα,β
n,m−1(x) + mX ′Tα,β

n,m(x)−mTα,β
n,m+1(x)

= (n + α + β + 2)Tα,β
n,m+1(x)− [α + 1− (α + β + 2)x]Tα,β

n,m(x),

(m + n + α + β + 2)Tα,β
n,m+1(x)

= mXTα,β
n,m−1(x) + [m + α + 1− (α + β + 2 + 2m)x]Tα,β

n,m(x).

So (3) is established for 0 < x < 1. Due to the continuity, it is valid also for
x ∈ {0, 1}. ¤

In particular we have:

Corollary 1. For α = β = 0 we have B0,0
n = Bn (Lupaş notation) with the

corresponding recurrence formula for the moments:

(n + m + 2)T 0,0
n,m+1(x) = mXT 0,0

n,m−1(x) + (m + 1)X ′T 0,0
n,m(x),

where T 0,0
n,0(x) = 1, T 0,0

n,1(x) =
X ′

n + 2
.

For α = β = −1 we have B−1,−1
n = Bn (Lupaş notation). Then the recur-

rence formula becomes

(n + m)T−1,−1
n,m+1(x) = mXT−1,−1

n,m−1(x) + mX ′T−1,−1
n,m (x),

where T−1,−1
n,0 (x) = 1, T−1,−1

n,1 (x) = 0.

In the sequel we denote by (a)r = a(a+1) · · · (a+ r− 1) the rising factorial
function. The next proposition contains another kind of recurrence formula for
the moments.

Proposition 1. Let i ≥ 0 and j ≥ 0 be integers. Then

Tα+i,β+j
n,m (x) =

(n + α + β + 2)i+j

(nx + α + 1)i(nx + β + 1)j

i+j∑

k=0

[xi(1− x)j ](k)

k!
Tα,β

n,m+k(x). (5)
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Proof. Using the definition of the Beta operator it is easy to show that

Bα,β
n

(
ti(1− t)jf(t); x

)
=

(nx + α + 1)i(nx + β + 1)j

(n + α + β + 2)i+j
Bα+i,β+j

n (f(t); x). (6)

The following equation

ti(1− t)j =
i+j∑

k=0

[xi(1− x)j ](k)

k!
(t− x)k (7)

is a consequence of Taylor’s formula.
Next, using (7) and the fact that the Beta operator is linear, we get

Bα,β
n

(
ti(1− t)jf(t); x

)
=

i+j∑

k=0

[xi(1− x)j ](k)

k!
Bα,β

n

(
(t− x)kf(t); x

)
. (8)

Combining (6) and (8) we arrive at

Bα+i,β+j
n (f(t); x) =

(n + α + β + 2)i+j

(nx + α + 1)i(nx + β + 1)j

×
i+j∑

k=0

[xi(1− x)j ](k)

k!
Bα,β

n

(
(t− x)kf(t); x

)
.

For f(t) = (t− x)m we obtain (5). ¤

Remark 2. Another recurrence formula for the moments of B−1,−1
n can be

found in [5, Satz 3].

4. The Moments of Order Two

Since the second moment controls to a certain extent the approximation
properties of Bα,β

n , it is useful to have a closer look at it. From Theorem 1 we
obtain

Tα,β
n,2 (x) =

(α + 1)(α + 2) +
(
n− 2(α + 1)(α + β + 3)

)
x

(n + α + β + 2)(n + α + β + 3)

+

(−n + 6 + (α + β)(α + β + 5)
)
x2

(n + α + β + 2)(n + α + β + 3)
. (9)

(I). First, let us remark that

lim
α→∞

Tα,β
n,2 (x) = (1− x)2 uniformly on [0, 1], (10)
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and
lim

β→∞
Tα,β

n,2 (x) = x2 uniformly on [0, 1]. (11)

Roughly speaking, a large value of α (with a fixed β) suggests a better approx-
imation near 1, and we draw a similar conclusion from (11).

(II). Now let β = α ≥ −1. Consider the sequence sn :=
√

4n + 1− 5
4

,
n ≥ 1. In this case,

Tα,α
n,2 (x) =

(α + 1)(α + 2)− (−n + 6 + 2α(2α + 5)
)
x(1− x)

(n + 2α + 2)(n + 2α + 3)
. (12)

Therefore,

Tα,α
n,2 (0) = Tα,α

n,2 (1) =
(α + 1)(α + 2)

(n + 2α + 2)(n + 2α + 3)
, (13)

and
Tα,α

n,2

(1
2

)
=

1
4(n + 2α + 3)

. (14)

(i) If −1 ≤ α < sn, the graph of Tα,α
n,2 has the following form:

- x
0 1

2 1

6
y

q

q q

This suggests a better approximation near the end points.

(ii) If α = sn, Tα,α
n,2 is a constant function, namely

T sn,sn

n,2 (x) =
(√4n + 1− 1

4n

)2

, x ∈ [0, 1]. (15)

(iii) For α > sn, the graph looks like

- x
0 1

2 1

6
y

q

q q

and indicates a better approximation near 1
2 .
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(iv) In the extreme cases, when α = −1, respectively α → ∞, we have

T−1,−1
n,2 (x) =

x(1− x)
n + 1

, respectively lim
α→∞

Tα,α
n,2 (x) =

(1− 2x

2

)2

.

5. Asymptotic Formulae

Here we present first two asymptotic formulae for higher order moments of
Bα,β

n in order to arrive at Voronovskaya-type results.

Theorem 2. For α, β ≥ −1 and all l ≥ 1 one has

(Pl) :





lim
n→∞

nlTα,β
n,2l(x) = (2l − 1)!!X l,

lim
n→∞

nlTα,β
n,2l−1(x) = X l−1

[
(l − 1)!2l−1X ′ l−1∑

k=1

(2k − 1)!!
(2k − 2)!!

+(2l − 1)!!(α + 1− (α + β + 2)x)
]
.

(16)

The convergence is uniform on [0, 1].

Proof. We shall prove the proposition by induction on l ≥ 1. The moments
Tα,β

n,1 and Tα,β
n,2 are given by (2), respectively (9), and it is easy to prove that

(P1) is true. Suppose that (Pl) is true. According to (3) and (16),

lim
n→∞

nl+1Tα,β
n,2l+1(x) = lim

n→∞
nl+1 2lX

n + 2l + α + β + 2
Tα,β

n,2l−1(x)

+ lim
n→∞

nl+1 2l + α + 1− (4l + α + β + 2)x
n + 2l + α + β + 2

Tα,β
n,2l(x)

= 2lX l
[
(l − 1)!2l−1X ′

l−1∑

k=1

(2k − 1)!!
(2k − 2)!!

+ (2l − 1)!!(α + 1− (α + β + 2)x)
]

+ [2l + α + 1− (4l + α + β + 2)x](2l − 1)!!X l

= X l
[
2ll!X ′

l−1∑

k=1

(2k − 1)!!
(2k − 2)!!

+ (2l − 1)!!(2l(α + 1)− 2l(α + β + 2)x + 2l + α + 1− (4l + α + β + 2)x)
]

= X l
[
2ll!X ′

l∑

k=1

(2k − 1)!!
(2k − 2)!!

− (2l)!!X ′ (2l − 1)!!
(2l − 2)!!

+ (2l − 1)!!((2l + 1)(α + 1− (α + β + 2)x) + 2l − 4lx
]

= X l
[
2ll!X ′

l∑

k=1

(2k − 1)!!
(2k − 2)!!

+ (2l + 1)!!(α + 1− (α + β + 2)x
]
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and this proves the first formula in (16) for l + 1 instead of l. Similarly,

lim
n→∞

nl+1Tα,β
n,2l+2(x) = lim

n→∞
nl+1 (2l + 1)X

n + 2l + 1 + α + β + 2
Tα,β

n,2l(x)

+ lim
n→∞

nl+1 2l + 1 + α + 1− (4l + 2 + α + β + 2)x
n + 2l + 1 + α + β + 2

Tα,β
n,2l+1(x)

= (2l + 1)X(2l − 1)!!X l

= (2l + 1)!!X l+1,

which is the second formula in (16) for l + 1 instead of l. This concludes the
proof by induction. ¤

The following result of Sikkema (see [7, p. 241]) will be used below. Note
also the 1962 result of Mamedov [4] dealing with a similar problem.

Theorem 3. Let Ln : B[a, b] → C[c, d], [c, d] ⊆ [a, b], be a sequence of
positive linear operators. Let the function f ∈ B[a, b] be q−times differentiable
at x ∈ [c, d], where q ≥ 2 is a natural number. Let ϕ : N → R be a function
such that

(i) lim
n→∞

ϕ(n) = ∞;

(ii) Ln((e1 − x)q; x) =
cq(x)
ϕ(n)

+ o
(

1
ϕ(n)

)
as n → ∞, where cq(x) does not

depend on n;

(iii) there exists an even number m > q such that Ln

(
(e1− x)m; x

)
= o

(
1

ϕ(n)

)
as n →∞.

Then

lim
n→∞

ϕ(n)
{

Ln(f ;x)−
q∑

r=0

Ln

(
(e1 − x)r;x

)

r!
f (r)(x)

}
= 0.

Corollary 2. (i) Theorem 3 can be rewritten in the form

lim
n→∞

ϕ(n)
{

Ln(f ; x)−
q−1∑
r=0

Ln

(
(e1 − x)r; x

)

r!
f (r)(x)

}
= cq(x)

f (q)(x)
q!

.

(ii) If in addition to the assumption of Theorem 3, one assumes that

Ln

(
(e1 − x)r;x

)
=

cr(x)
ϕ(n)

+ o
( 1

ϕ(n)

)
, n →∞, r = 1, 2, . . . , q,

where the functions cr are independent of n, then one also has

lim
n→∞

ϕ(n)
{
Ln(f ;x)− f(x)Ln(e0;x)

}
=

q∑
r=1

cr(x)
f (r)(x)

q!
.

That is, all derivatives now appear on the right-hand side which is inde-
pendent of n.
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As a consequence of Corollary 2 (ii) we have the following Voronovskaya-
type relation.

Corollary 3. Let f ∈ C2[0, 1]. Then

lim
n→∞

n
{Bα,β

n (f ; x)−f(x)
}

=
x(1− x)

2
f ′′(x)+[α+1−(α+β+2)x]f ′(x), (17)

uniformly on [0, 1].

Proof. For ϕ(n) = n and q = 2 as given in Corollary 2 (ii),

lim
n→∞

n
{Bα,β

n (f ; x)− f(x)
}

=
2∑

r=1

cr(x)
f (r)(x)

r!
= c1(x)

f ′(x)
1!

+ c2(x)
f ′′(x)

2!

where cr(x) = lim
n→∞

nTα,β
n,r (x). By using Lemma 2 with l = 1, we get

c1(x) = α + 1− (α + β + 2)x,

c2(x) = X,

and this concludes the proof. ¤
Remark 3. As a consequence of Lemma 2 and Corollary 2 (i) we deduce

similarly that for f ∈ C2l[0, 1],

lim
n→∞

nl
{
Bα,β

n (f(t); x)−
2l−1∑

k=0

f (k)(x)
k!

Tα,β
n,k (x)

}
=

(2l − 1)!!
(2l)!

X lf (2l)(x), l ≥ 1.

(18)
From this we get also

lim
n→∞

nl
{
Bα,β

n (f(t); x)−
2l−2∑

k=0

f (k)(x)
k!

Tα,β
n,k (x)

}
=

(2l − 1)!!
(2l)!

X lf (2l)(x)

+
X l−1

(2l − 1)!

[
(l − 1)!2l−1X ′

l−1∑

k=1

(2k − 1)!!
(2k − 2)!!

+ (2l − 1)!!(α + 1− (α + β + 2)x)
]
f (2l−1)(x).

(19)

Remark 4. In order to compare the above with a special previous result
for the case α = β = −1 we manipulate the left hand side of (19) for l = 2 by
writing

lim
n→∞

n
[
n(Bα,β

n (f(t); x)− f(x))− (α + 1− (α + β + 2)x)f ′(x)− X

2
f ′′(x)

]

= lim
n→∞

n2

[
(Bα,β

n (f(t); x)− f(x)− Tα,β
n,1 (x)f ′(x)− Tα,β

n,2 (x)
f ′′(x)

2

]

+ lim
n→∞

n
[
nTα,β

n,1 (x)− (α + 1− (α + β + 2)x)
]
f ′(x)

+
1
2

lim
n→∞

n
[
nTα,β

n,2 (x)−X
]
f ′′(x).
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By using (2), (16) and (19) with l = 2, we get

lim
n→∞

n
[
n(Bα,β

n

(
f(t); x)− f(x)

)− X

2
f ′′(x)− (α + 1− (α + β + 2)x)f ′(x)

]

=
1
8

X2f IV (x) +
1
6

X(3α + 5− (3α + 3β + 10)x)f ′′′(x)

− (α + β + 2)(α + 1− (α + β + 2)x)f ′(x)

+
1
2

f ′′(x)[(α + 1)(α + 2)− (2α2 + 2αβ + 10α + 4β + 11)x

+ x2((α + β)(α + β + 7) + 11)].

For α = β = −1 this reduces to

lim
n→∞

n
[
n
(B−1,−1

n (f ;x)− f(x)
)− X

2
f ′′(x)

]

=
1
24

(
3X2f IV (x) + 8X(1− 2x)f ′′′(x)− 12Xf ′′(x)

)
.

This result can be also deduced from [1, Remark 3].

6. Iterates of Bα,β
n

1. α = β = −1. In this case B−1,−1
n are positive linear operators preserving

linear functions, and B−1,−1
n e2(x) =

nx(nx + 1)
n(n + 1)

> e2(x), for 0 < x < 1.

Consequently

lim
m→∞

(B−1,−1
n

)m
f(x) = (1− x)f(0) + xf(1), f ∈ C[0, 1],

uniformly on [0, 1] (see [6]).

2. α > −1, β = −1. Then Bα,−1
n are positive linear operators preserving

constant functions, Bα,−1
n f(1) = f(1) for all f ∈ C[0, 1], and

Bα,−1
n e2(x) =

(nx + α + 1)(nx + α + 2)
(n + α + 1)(n + α + 2)

> e2(x), 0 ≤ x < 1.

Therefore
lim

m→∞
(Bα,−1

n

)m
f(x) = f(1), f ∈ C[0, 1],

uniformly on [0, 1] (see [6]).

3. α = −1, β > −1. As in the previous case, one proves that

lim
m→∞

(B−1,β
n

)m
f(x) = f(0), f ∈ C[0, 1].
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4. α > −1, β > −1. In this case we have for all k ≥ 0,

Bα,β
n ek(x) =

(nx + α + 1)k

(n + α + β + 2)k
, x ∈ [0, 1].

From this we get

Bα,β
n ek(x) =

1
(n + α + β + 2)k

k∑

j=0

sk−j(k, α)njxj , (20)

where sk−j(k, α) are elementary symmetric sums of the numbers α + 1, α +
2, . . . , α + k; in particular s0(k, α) = 1 and

s1(k, α) = (α + 1) + · · ·+ (α + k) = kα +
k(k + 1)

2
. (21)

It follows that the numbers

λn,k :=
nk

(n + α + β + 2)k
, k ≥ 0,

are eigenvalues of Bα,β
n , and to each of them there corresponds a monic eigen-

polynomial pn,k with deg pn,k = k. Let p ∈ Π and d = deg p. Then p has a
decomposition

p = an,0(p)pn,0 + an,1(p)pn,1 + · · ·+ an,d(p)pn,d

with some coefficients an,k(p) ∈ R. Since λn,0 = 1 and pn,0 = e0 we get

(Bα,β
n

)m
p = an,0(p)e0 +

d∑

k=1

an,k(p)λm
n,kpn,k, m ≥ 1

and so
lim

m→∞
(Bα,β

n

)m
p = an,0(p)e0, p ∈ Π. (22)

Consider the linear functional µn : Π → R, µn(p) = an,0(p) and the linear
operator Pn : Π → Π,

Pnp = µn(p)e0, p ∈ Π.

Then (22) becomes

lim
m→∞

(Bα,β
n

)m
p = Pnp, p ∈ Π. (23)

Obviously Pn is positive, and so µn is positive; moreover, ‖µn‖ = 1 because
µn(e0) = 1. By the Hahn-Banach theorem, µn can be extended to a norm-one
linear functional on C[0, 1]. Since Π is dense in C[0, 1], the extension is unique
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and the extended functional µn : C[0, 1] → R is also positive. Now Pn can
be extended from Π to C[0, 1] by setting Pn : C[0, 1] → Π, Pnf = µn(f)e0,
f ∈ C[0, 1]. Remark that

‖(Bα,β
n

)m‖ = ‖Pn‖ = 1, m ≥ 1. (24)

Using again the fact that Π is dense in C[0, 1], we get from (23) and (24)

lim
m→∞

(Bα,β
n

)m
f = Pnf, f ∈ C[0, 1]. (25)

On the other hand, from (20) we deduce the following recurrence formula for
the computation of Pnek, k ≥ 1:

(
(n + α + β + 2)k − nk

)
Pnek =

k−1∑

j=0

sk−j(k, α)njPnej .

Since Pnek = µn(ek)e0, we get for n ≥ 1 and k ≥ 1

µn(ek) =
k−1∑

j=0

sk−j(k, α)
nj

(n + α + β + 2)k − nk
µn(ej). (26)

Using (26) it is easy to prove by induction on k that there exists

µ(ek) := lim
n→∞

µn(ek), k ≥ 0, (27)

and, moreover,

µ(ek) =
s1(k, α)

(α + β + 2) + · · ·+ (α + β + k + 1)
µ(ek−1),

i.e., taking (21) into account,

µ(ek) =
2α + k + 1

2α + 2β + k + 3
µ(ek−1), k ≥ 1.

Since µ(e0) = 1, it follows that

µ(ek) =
(2α + 2)k

(2α + 2β + 4)k
, k ≥ 0.

This can be rewritten as

µ(ek) =
B(2α + k + 2, 2β + 2)

B(2α + 2, 2β + 2)
=

1∫
0

t2α+1(1− t)2β+1ek(t) dt

1∫
0

t2α+1(1− t)2β+1 dt

,
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so that

µ(p) =

1∫
0

t2α+1(1− t)2β+1p(t) dt

1∫
0

t2α+1(1− t)2β+1 dt

, p ∈ Π.

Consider the extension of µ to C[0, 1], i.e.,

µ(f) =

1∫
0

t2α+1(1− t)2β+1f(t) dt

1∫
0

t2α+1(1− t)2β+1 dt

, f ∈ C[0, 1],

and the positive linear operator P : C[0, 1] → Π, Pf = µ(f)e0, f ∈ C[0, 1].
According to (27), lim

n→∞
µn(p) = µ(p), p ∈ Π, i.e.,

lim
n→∞

Pnp = Pp, p ∈ Π. (28)

Since ‖Pn‖ = ‖P‖ = 1, n ≥ 1, we conclude from (28) that lim
n→∞

Pnf = Pf ,

f ∈ C[0, 1]. Thus, for the operators Pn described in (25) we have proved:

Theorem 4. Let α > −1, β > −1. Then for each f ∈ C[0, 1] and n ≥ 1,

lim
n→∞

Pnf =

1∫
0

t2α+1(1− t)2β+1f(t) dt

1∫
0

t2α+1(1− t)2β+1 dt

e0.

For α = β = 0, this result was obtained, with different methods, in [2].
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