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Beta Operators with Jacobi Weights
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We discuss Beta operators with Jacobi weights on C[0, 1] for o, 8 > —1,
thus including the discussion of three limiting cases. Emphasis is on the
moments and their asymptotic behavior. Extended Voronovskaya-type
results and a discussion concerning the over-iteration of the operators is
included.
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1. Introduction

Many operators arising in the theory of positive linear operators are composi-
tions of other mappings of this type. Many times the classical Bernstein oper-
ator B, given for f € C[0,1], n € N and z € [0, 1] by

By(f;x) = zn: (Z)xk(l _ x)"_kf(S), 0<k<n, (1)

is one of the building blocks. Other frequently used factor operators are Beta-
type operators B%# of various kinds which will be further discussed in this
note.

The best known examples are the genuine Bernstein-Durrmeyer opera-
tors U,,, the original Bernstein-Durrmeyer operators M,,, their analogies M®#
with Jacobi weights, certain Stancu operators S, to name just a few. A com-
plete list will be given in the third author’s forthcoming thesis on Bernstein-
Euler-Jacobi (BEJ) operators.

Here we focus on the building blocks B%# for natural values of r and
a,B > —1, and on their moments of all orders. As is well known, knowl-
edge of their behavior is essential for asymptotic statements as, for example,
Voronovskaya-type results. We conclude this paper with a discussion concern-
ing over-iterated operators B%A.
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2. Definition of Operators Bg"'@

Definition 1. For f € C[0,1], and = € [0, 1] we define

(i) incase a = = —1:
£(0), z = 0;
1
nr—1 _ $\n—nz—1
B(nz,n — nx) » UsEsh
(i) in case a = —1,0 > —1:
f(o)v z =0,
1B ) = & amae _
B, P(fix) = q [tne=1(1 — t)n—netB £ (t) dt
0 <1
Bnz,n—nx+8+1) O<z=l
(iii) in case a > —1,8 = —1:
1
ftnz+a(1 _ t)nfnmflf(t) dt
a,—1/ ¢, — 0 < 1
By (fiz) Bnz+a+1,n—nz) ’ Osw<d,
f(1), z=1;

(iv) in case o, 8 > —1:
1
Sl — et Bf(t) dt

BB (fra) = = 0<z<l
n(fio) Bnz+a+1,n—nzx+3+1) =T=

Remark 1. When discussing this class of operators one must refer to the
papers of Miihlbach [5] and Lupag in [3] where the first special cases were
considered.

Case « = 3 = —1. This case can be traced back to a paper by Miihlbach [5]
who used a real number % > 0 instead of the natural n in the definition above.
The same case was investigated by Lupas in [3], where the operator was denoted
by B,, (see [3, p. 63]).

Case a = $ = 0. These were called Beta operators by Lupag (see [3, p. 37])
and denoted by B,,.
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3. Moments and Their Recursion

Definition 2. Let a,8 > —1,n > 1,m € Ny and =z € [0,1], then the
moment of order m is defined by

Tgﬁb(x) = Bg’ﬁ((el —xeg)™; x)
Theorem 1.

a+l—(a+8+2)x

Tog(x)=1,  Tof(z) = nta+p+2

and for m > 1 we have the following recursion formula

(n+m+a+ﬂ+2)Tﬁ"’,’i+1($) =mXT*? _ (2)

n,m—1

+m+a+1l—(2m+a+B+22]Te0 () (3)
where X = z(1 — x).

Proof. Below we will repeatedly use the function ¢ (t) = ¢t(1 —t), ¢t € [0, 1].
Let f € C1[0,1], a,3>—1, 0 <z < 1. Then

flt””a(l — )P — ) f(t) dt

Bl (g fse) =5

Bnz4+a+1,n—nz+p5+1)
Using integration by parts we obtain

1

a,ﬁ /. =
Bn (wfv‘r) B(nx+a+1’n—nl‘+6+1)

[tna:JraJrl(l o t)nfnw+ﬂ+1f(t)] |(1)

1
_ /f(t) [(nx + o+ 1)tna:+oc(1 . t)n—nz+,3+1
0

—(n—nx+ B+ Dot — t)”_"“'ﬁ} dt

ff(t)t”x+‘*(1 — )y Bt (n —nx + B+ 1) — (1 —t)(nx +a + 1)] dt
0
N Bnz+a+1l,n—nz+p5+1)

[ HOF(1 = =m0 — ) — (@ + 1)+t + 8+ 2)]

0

Bnz+a+1l,n—nz+p+1)

and taking into consideration the identity

nt—z)—(a+1)+t(a+5+2)
= ((e1 —zeo)(n+a+ B +2) +[z(a+F+2) — (a+1)e) ()
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we can write

Brl(bf'sx) = By ([(er —weo) (ntat B+2) +(x(a+5+2) — (a+1))eo] ;7).
(4)
Now in the last equation (4) we choose f = (e; — xep)™ and use the identity
t(l—t) = (X 4+ X'(ex — weo) — (e1 — wep)?)(t) to obtain:
meL"ﬁ([X(el —2eg)™ 4+ X' (e — weg)™ — (e1 — xeo)m“];x)
— B,"{’ﬁ ( [(n+a+ﬁ+2)(el—xeo)m+l—(a+1—(a+5+2)x)(el—xeo)m] ; x)

The equality above becomes successively:

mXT*?  (z)+ mX' T80 (x) — mT®P  (x)

n,m—1 n,m+1

=(m+a+B+2T50 1(z) = [a+1—(a+ B+ 2)2]T08 (),

(m+n+a+B+2)T08  (z)
=mXToD (@) + [m+a+1—(a+B+2+2m)z]T5 (2).

n.m—1

So (3) is established for 0 < 2 < 1. Due to the continuity, it is valid also for
z €{0,1}. O

In particular we have:

Corollary 1. For a = 8 =0 we have BY° = B,, (Lupas notation) with the
corresponding recurrence formula for the moments:

(n+m+ 2)T3:?n+1(x) =mXT" _(2)+ (m+ DX'TY0 (),

n,m—1

/

where T,(L):g(x) =1, ng(z) = ia -
For a = = —1 we have B, V'~1 = B,, (Lupas notation). Then the recur-
rence formula becomes
(n+m)T, ;o1 (x) = mXT, "1 (z) + mX'T, 5 (@),

n n.m—1
where Tnié’fl(x) =1, Tnj}’*l(x) =0.

In the sequel we denote by (a)” = a(a+1)---(a+r—1) the rising factorial
function. The next proposition contains another kind of recurrence formula for
the moments.

Proposition 1. Let i > 0 and 5 > 0 be integers. Then

(m+a+B+27  Hid—az)® o

Toti6+7 () — - i s
n,m (z) (nx 4+ a+1)i(nx + B+ 1)J prs k! n,m+k( )- (5)
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Proof. Using the definition of the Beta operator it is easy to show that

(nz+a+ 1){(7156 + B+ 1); it

BB (H(1 — £y f(t);z) = I By (f(t); ). (6)

The following equation

is a consequence of Taylor’s formula.
Next, using (7) and the fact that the Beta operator is linear, we get

i+j[ (

BB (t(1 =ty f(t)iz) = S v(1—w

J(k)
il a Byl ((t =) f(t);z).  (8)
k=0

Combining (6) and (8) we arrive at

(n+a+8+2)
(nz 4+ o+ 1)i(nz + +1)7
i+

(1 — 2)71®
SO DT s (4~ 1)),

k!
k=0

Byt (f(t);2) =

For f(t) = (t — )™ we obtain (5). O

Remark 2. Another recurrence formula for the moments of B, 1~ can be
found in [5, Satz 3.

4. The Moments of Order Two

Since the second moment controls to a certain extent the approximation
properties of Bf{’ﬁ , it is useful to have a closer look at it. From Theorem 1 we
obtain

(a+1)(a+2)+ (n—2(a+1)(a+B+3))x

a,B —
T ) = G Dt at 1 3)
(—n+6+ (a+B)(a+ B +5))a? o)
(n+a+8+2)(n+a+p+3) "
(I). First, let us remark that
lim Tﬁ‘f(x) = (1—x)? uniformly on [0, 1], (10)

a— 00
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and

2

ma Ts‘f(m) =x° uniformly on [0, 1]. (11)

Roughly speaking, a large value of o (with a fixed ) suggests a better approx-

imation near 1, and we draw a similar conclusion from (11).
vidn+1-5

(IT). Now let 8 = a > —1. Consider the sequence s, := ———

4
n > 1. In this case,
7o (1) = (a+1)(a+2)— (-n+6+2a(2a +5))z(l — z) (1)
m2 T (n+2a 4+ 2)(n + 2a + 3) ’
Therefore,
T5(0)=T."5"(1) = 13
n,Q() n,2() (TL+20¢+2)(7’L+20&+3)7 ( )
and 1 ]
*Ne) = 14
n,2 (2) 4(n +2a + 3) (14)
(i) If =1 < a < s, the graph of 7,3 has the following form:
Y
- —x
0 i 1
This suggests a better approximation near the end points.
(i) If @ = sy, T}, is a constant function, namely
o s ViAn +1—1\2
Iyye) = () el (15)

(iii) For a > s, the graph looks like
Y

0 1 1
and indicates a better approximation near %
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(iv) In the extreme cases, when o = —1, respectively @« — oo, we have

-1,-1 m(l — .’17) . . oo 1— 92
T,y (z)= nrl respectively ah_)rr;o Ty (x) = ( 5 ) )

5. Asymptotic Formulae

Here we present first two asymptotic formulae for higher order moments of
B2P in order to arrive at Voronovskaya-type results.

Theorem 2. For a,3 > —1 and all 1l > 1 one has

lim 7 T (@) = (20— DIXY,
. _ -1 -1 (Qk — 1)”
(P): § lim n T () = X (- 1)1y z Gk )i

FE - DM+ 1 - (a + 8+ 2)x)]

(16)

The convergence is uniform on [0, 1].

Proof. We shall prove the proposition by induction on ! > 1. The moments
TP and T 2 are given by (2), respectively (9), and it is easy to prove that

n,l

(Pl) is true. Suppose that (B) is true. According to (3) and (16),

20X
I+1pa,p : I+1 @,
Lo @) = i e gra a1 (@)

. A+a+l1—A+a+5+2)z
1 +1 TOQﬁ

lim n
n—oo

-1
=2X! {(l —nRIxTy g:_;;:: + @ - a+1—(a+B8+2)z)

+R2l+a+1— 4l +a+B+2)2)(2 - HIX!

-1
=X {2 X ;(%—2)!!

+(21—1)!!(2z(a+1)—21(a+ﬁ+2)x+2l+a+1—(4l+a+ﬁ+2)x)}

x! [zll!X/ zl: (2k — !

k=1
(20— DN+ 1) (a+1— (a+ B+ 2)x) + 20 — 4195}

(20— 1)
r—2n MG

l
X! {2111)(' 3 @L”': + @+ D) a+1— (a+ B+ 2)4
2 I
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and this proves the first formula in (16) for [ 4 1 instead of . Similarly,

SRR A P B s} 2+ 1DX a8

nh_}rr;on T21+2()—nlirgon nt2+ltat i n21(%)
. 2t ltatl— (@424 a+ 8422 0 (@)
n—o00 7’L+2l+1+a+ﬁ+2 m2+1

= (20 +1)X (2 — )X
= (20 + X
which is the second formula in (16) for [ + 1 instead of I. This concludes the

proof by induction. O

The following result of Sikkema (see [7, p. 241]) will be used below. Note
also the 1962 result of Mamedov [4] dealing with a similar problem.

Theorem 3. Let L, : Bla,b] — Clc,d], [¢,d] C [a,b], be a sequence of
positive linear operators. Let the function f € Bla,b] be g—times differentiable
at x € [e,d], where ¢ > 2 is a natural number. Let ¢ : N — R be a function
such that

(i) lim p(n) = oo;

(i) Lp((e1 — x)%x) = Z;Z(I) + 0(=t=) as n — oo, where cy(x) does not

w(n)
depend on n;

(iii) there exists an even number m > q such that Ly, ((e1 —x)™;z) = o(=t=)
asn — oo.

Then
lim o(n { Z L"el—_x)f(r) (x)} = 0.

n—oo
=

Corollary 2. (i) Theorem 3 can be rewritten in the form

! e1 —x)"x (@) (g
tim pn){ L. (i) - 3 22U ) gy 100,

|
n— oo ! :
r=0 q

(i) If in addition to the assumption of Theorem 3, one assumes that

Ln((elz)r;x)Z((Z))Jro((p(ln)>7 n—oo, r=12...

where the functions ¢, are independent of n, then one also has

’Q7

hm 80 {L f, f( eOa Zcr

n—oo

That is, all deriatives now appear on the right-hand side which is inde-
pendent of n.
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As a consequence of Corollary 2 (ii) we have the following Voronovskaya-
type relation.

Corollary 3. Let f € C%[0,1]. Then

lim n{B B(fix)— f(x)}:M

n—oo 2

(@) +[a+1—(a+B+2)z])f (x), (17)
uniformly on [0,1].

Proof. For ¢(n) =n and g = 2 as given in Corollary 2 (ii),

f(r) f/ T f// T
Jdim n{B7(f: ) ZCT = al) 1(! Lt el 2(! )
where ¢,.(z) = lim nT,‘L",’TB(a:) By using Lemma 2 with [ = 1, we get
al@)=a+1-(a+pp+2)z,
e(z) = X,
and this concludes the proof. g

Remark 3. As a consequence of Lemma 2 and Corollary 2 (i) we deduce
similarly that for f € C*[0,1],

21—-1
f(k) a, )}:M lf(QI)( ) lzl

Jm B 5= 3

(20!
(18)
From this we get also
202 (k) . o 1
T {B0(f (1)) - > P9 ey} = le £ ()
X'=t Lo (2B =) (19)
MECTET {(l DR ,;1 (2k — 2)1!

F @) (a+1—(a+B+ 2)x)} FED (),

Remark 4. In order to compare the above with a special previous result
for the case & = # = —1 we manipulate the left hand side of (19) for [ =2 by
writing

tim (B2 (F(1);2) ~ (@) ~ (@ + 1 (0 F+2a)f(x) ~ 5 /" (x)]

= nlln;o n> [(Bgﬁ(f(t);x) — f(z) — Tﬁi’f(m)f’(x) _ Tﬁ‘,’f(az) f//Q(a:)]
+ nlgr;on[nT,?lﬁ(m) —(a+1—(a+8+ 2)$)]f/(x)

+ % lim n[nTi’f(m) — X} [ ().

n—oo
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By using (2), (16) and (19) with [ = 2, we get

tim (B (7)) — f(2)) — 5 5"(@) — (041~ (a4 5+ 2)2)f (2)]

_ é X2V (2) + éX(Z&a 45— (3a+ 38+ 10)2)f” ()
—(a+B8+2)(a+1—(a+B+2)z)f ()

+ % /(@) (a+1)(a+2) — (202 +2a8 + 10a + 43 + 11)z
+22((a+ B)(a+ B+ T7)+11)].

For o = § = —1 this reduces to

lim n{n(B;L_l(f;m) - f(x)) - gf”(a?)]

n—oo

= i (3X2fV (z) + 8X (1 — 22) " (z) — 12X f ().

This result can be also deduced from [1, Remark 3].

6. Iterates of B;‘L"ﬂ

1. @ = 3 = —1. In this case B, '~! are positive linear operators preserving
nx(nx + 1)

for 0 1.
Y > ey(x), for 0 < z <

linear functions, and B, ley(z) =

Consequently

lim (8,47 1)"f(x) = (1 —2)f(0) +f(1),  feC0,1],

m—00

uniformly on [0, 1] (see [6]).

2. a> —1, 3= —1. Then B>~! are positive linear operators preserving
constant functions, B~ f(1) = f(1) for all f € C[0,1], and

(nz+a+1)(nx+a+2)
m+a+)(n+a+2)

B leg(x) = > eg(x), 0<z<l

Therefore
lm (Bo~)"f@) = f(1),  feClo,]
uniformly on [0,1] (see [6]).
3. a=—1, 8> —1. As in the previous case, one proves that

lim (B,"%)" f(z) = £(0), fecClo,1].

m—00
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4. > —1, 8 > —1. In this case we have for all k£ > 0,

Bedey(n) = A" € [0,1].
(n+a+pB+2)*
From this we get
k
B&Pey(x) = (n+a+ﬂ+2 Z j(k,a)ndad, (20)

where s;_;(k, ) are elementary symmetric sums of the numbers o + 1, +
2,...,a+ k; in particular so(k,a) =1 and

k(k+1
sl(k;,a)=(a+1)+---+(a+k):ka+%. (21)
It follows that the numbers
k
A g = i _ k>0,

)

(n+a+B+2)F

are eigenvalues of B%%, and to each of them there corresponds a monic eigen-
polynomial p,, , with degp, = k. Let p € Il and d = degp. Then p has a
decomposition

p= an,O(p)pn,O + an,l(p)pn,l + -+ an,d(p)pn,d

with some coefficients a1 (p) € R. Since A, 0 =1 and py,0 = ep we get

(B?L‘ﬂ)mp = an,o(p)eo + Z an,k(P)AR kP ks m > 1

and so
lim (BYP)"p=ano(p)eo,  pelL (22)

m— 00

Consider the linear functional p, : II — R, pn(p) = ano(p) and the linear
operator P, : 1T — II,

Pup = pn(p)eo, peIL

Then (22) becomes

lim (B&?)"p="P,p, pell (23)
m— 00
Obviously P, is positive, and so pu, is positive; moreover, ||uy| = 1 because

tn(eo) = 1. By the Hahn-Banach theorem, pu,, can be extended to a norm-one
linear functional on C]0, 1]. Since II is dense in C[0, 1], the extension is unique
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and the extended functional p, : C[0,1] — R is also positive. Now P, can
be extended from II to C[0,1] by setting P, : C[0,1] — II, P,f = un(f)eo,
f € C[0,1]. Remark that

1B I =Pl =1, m=>1. (24)
Using again the fact that II is dense in C'[0, 1], we get from (23) and (24)

lim (B&?)"f = P,f, fecion). (25)

m— 00

On the other hand, from (20) we deduce the following recurrence formula for
the computation of P,ey, k > 1:

k—1
(n+a+B+2)F —n*)Pe, = Z sk—;(k,a)n Pye;.
5=0

Since Pphe = pin(ex)eg, we get forn > 1 and k > 1

nd
n+a+pf+2)Fk—nk

k—1
pnler) =3 - 0,0 ta(es). (26)
j=0

Using (26) it is easy to prove by induction on k that there exists

pleg) = lim pa(es), k>0, (27)
and, moreover,
o Sl(kﬂa)
/L(Gk)— (0(+B+2)++(a+ﬁ+k‘+1)u(6k_l)7

i.e., taking (21) into account,

20+ k+1

__caxntl B>
2a+2ﬁ+k+3“(6’“ 1) =

pu(er)
Since p(eg) = 1, it follows that

(2a + 2)F

Mew) = o v apr

This can be rewritten as

1
21 — )2 ey (t) dt
B2a+k+2,28+2) g{ (1= )" ex (?)

pler) = - 7
B2+ 2,26+ 2) fltza+1(1 _)26+1 g
0




H. Gonska, I. Rasa and E.-D. Stanila 113

so that )

[ 2911 = 020+ p(1) dt
0

up) = — ,  pell
ft2a+1(1 _ t)2[3+1 dt
0
Consider the extension of u to C[0, 1], i.e.,
1
SRt — )2 f () dt
u(f) =" . fechu,
f t2a+1(1 _ t)2,8+1 dt
0

and the positive linear operator P : C[0,1] — II, Pf = u(f)eo, f € C[0,1].
According to (27), Um wu,(p) = p(p), p € 1, i.e.,

lim P,p = Pp, p €Il (28)

Since ||P,|| = ||P]| = 1, n > 1, we conclude from (28) that lim P,f = Pf,
f € C[0,1]. Thus, for the operators P,, described in (25) we have proved:

Theorem 4. Let « > —1, 8 > —1. Then for each f € C[0,1] and n > 1,

1
ST (1 = )2 f(t) dt
lim P, f =2

n—oo 1
ft2a+1(]_ _ t)2,8+1 dt
0

€0.-

For oo = 8 = 0, this result was obtained, with different methods, in [2].
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