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1. Introduction

This article is a survey of our recent development of robust algorithms for
solution of two problems:

(i) Fast, accurate and memory efficient evaluation of high degree (≥ 2000)
spherical polynomials at many scattered points on the unit 2-d sphere from [10],
and

(ii) Reconstruction (sampling) of high degree spherical polynomials from
their values at irregular sampling points on the sphere from [11].

These are fundamental problems that naturally occur in many areas in
science and technology ranging from Geopotential Modeling to Quantum Me-
chanics and Cosmology, where spherical harmonics are the main tool for rep-
resentation of functions on the sphere.

∗This research has been supported by a NURI grant from NGA. The first author has
been supported by grant DDVU 02/30 of the Fund for Scientific Research of the Bulgarian
Ministry of Education and Science. The second author has been supported by NSF Grant
DMS-1211528.
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Spherical polynomials (band-limited functions) f on the 2-d unit sphere S2

in R3 are usually represented in spherical coordinates (θ, λ) in terms of the
standard spherical harmonics basis:

f(θ, λ) =
N∑

n=0

n∑
m=0

(
anmPnm(cos θ) cos mλ + bnmPnm(cos θ) sin mλ

)
, (1.1)

where Pnm are the associated Legendre functions. We shall denote by ΠN the
set of all spherical polynomials of degree N as above.

Traditionally, the problems for evaluation and reconstruction of spherical
polynomials are stated and solved in terms of their spherical harmonic coeffi-
cients, see e.g. [13, 15]. Unlike in the trigonometric case, however, currently
there are no satisfactory practical algorithms (like FFT) for fast, stable and ac-
curate evaluation of high degree (≥ 2000) spherical polynomials given by their
coefficients. The problem is with the instability of the existing algorithms for
evaluation of the associated Legendre functions Pnm. This is our motivation
for putting forward and utilizing the following principle:

A spherical polynomial f ∈ ΠN is better represented by its values f(ξ) at
regular grid points ξ ∈ X rather than by its spherical harmonics coefficients.

This principle underlies the way we state and approach the problems for
evaluation and reconstruction of spherical polynomials.

We deem a set X of grid points on S2 regular if it is well structured and
serves as a nodal set for a cubature with positive and easy to compute weights
which is exact for high degree spherical polynomials. Regular grid points are
typically points that are equally spaced or Gaussian with respect to their spher-
ical coordinates (θ, λ). We shall further precise this notion in Subsection 3.3.

We next state explicitly the problems we consider in this article:

Problem 1 (Evaluation). Given the values f(ξ), ξ ∈ X , of a band-
limited function f ∈ ΠN at the points of a regular set X on S2 compute the
values f(z) at the points z from an arbitrary set Z ⊂ S2.

Problem 2 (Reconstruction). Given the values f(y) of a band-limited
function f ∈ ΠN at irregular sampling points y ∈ Y (Y ⊂ S2) compute its
values f(ξ) at the points ξ from a regular set X ⊂ S2.

Naturally, Problem 2 has a solution only if the density of sampling points
is sufficiently high.

Combining the algorithms for solving Problems 1 and 2 enables us to solve
effectively

Problem 3 (Reconstruction). Given the values f(y) of a band-limited
function f ∈ ΠN on a set of irregular sampling points Y ⊂ S2 compute the
values of f at the points z from an arbitrary set Z ⊂ S2.
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A targeted application and motivation for our interest in Problem 1 is the
task for fast, accurate and memory efficient computation of the values of geo-
detic quantities such as the geoid undulation, determined from the Earth Grav-
itational Model EGM2008 of NGA [19].

Our methods rely on the spherical needlets introduced and used in [17, 18]
for the purposes of harmonic analysis on the sphere. More explicitly, we employ
discrete, reproducing ΠN , operators of the form

ΦNf(x) =
∑

ξ∈X
wξKN (x · ξ)f(ξ), (1.2)

which rely on highly localized kernels (spherical father needlets) KN (x · ξ), and
their truncated versions:

ΦN,δf(x) =
∑

ξ∈X
ρ(x, ξ)≤δ

wξKN (x · ξ)f(ξ). (1.3)

Here x · ξ stands for the inner product of x, ξ ∈ R3 and ρ(·, ·) denotes the
geodesic distance on S2.

Our algorithms for solving Problems 1 & 2 and hence Problem 3 are fast,
local, memory efficient, numerically stable and with guaranteed (prescribed)
accuracy, measured in the uniform norm. In this article we place the emphasis
on the computational feasibility and practical realization of these algorithms.
Robust MATLAB code realizing our algorithms for solving Problems 1 & 2 is
developed and examples of effective evaluation and reconstruction of high de-
gree (≥ 2000) spherical polynomials are demonstrated. A detailed description
with theoretical justification (proofs) and error analysis of our algorithms and
software for evaluation and reconstruction of high degree spherical polynomials
are given in [10, 11].

To put our ideas in prospective we develop in [11] algorithms for solving
Problems 1 & 2 and hence Problem 3 in the general framework of Dirichlet
spaces, proposed in [1, 14]. This allows to extend our methods to various geo-
metric settings, including evaluation and sampling of algebraic polynomials on
the ball and simplex and band-limited functions on Lie groups or homogeneous
spaces with polynomial volume growth and complete Riemannian manifolds
with Ricci curvature bounded from below and satisfying the volume doubling
condition.

We next briefly review the existing in the literature algorithms for eval-
uation and reconstruction of spherical polynomials. A direct evaluation of a
spherical polynomial of degree N given by its coefficients at O(N2) grid points
has computational complexity O(N4). However, by separation of variables
the complexity is reduced to O(N3) and the algorithm is numerically stable.
Driscoll and Healy [2] were the first to develop a fast Fourier method on the
sphere. Mohlenkamp [16] proposed two algorithms for approximate evalua-
tion of spherical polynomials with costs O(N5/2 log N) and O(N2(log N)2).
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Another approach to this problem based on the multi-pole method with com-
plexity O(N2 log N) was proposed by Rokhlin and Tygert [20, 22]. Kunis and
Potts [15] developed a scheme for evaluation of spherical polynomials based
on their representation as trigonometric polynomials in spherical coordinates.
This method relies heavily on the excellent computational properties of the
algorithm for nonequispaced fast Fourier transform developed by Dutt and
Rokhlin in [3]. A common drawback of all these algorithms is that each of
them has some degree of instability, rooted in the instability of the discrete
Legendre function transform. This makes them problematic when applied to
high degree spherical polynomials. In our method we bypass the associated
Legendre functions completely and work only with Legendre polynomials.

There is a considerable body of work on sampling; we shall only review
the relevant papers. In developing our sampling algorithm we borrow from
[4, 5, 6, 7]. The main distinction between our approach to sampling and the
one in these papers is in our usage of discrete operators as in (1.3) with highly
localized kernels and the recovery of the functions at regular grid points. In [13]
the authors apply a least squares approach to the problem for reconstruction of
spherical polynomials from scattered sample values. Their algorithm requires
dealing with high order associated Legendre functions, which creates instabil-
ity. As a result, the practical feasibility of this algorithm is problematic when
applied to high degree (≥ 2000) spherical polynomials. Moreover, to work
properly the algorithms from [13] require much denser sets of scattered points
compared with our reconstruction algorithm.

We next outline the main points in this article. In Section 2 we describe in
general our methods for evaluation and reconstruction of spherical polynomials.
In Section 3 we lay down some of the ground work that is needed for the
development of our algorithms. As already indicated, our solution of both
Problems 1 and 2 is based on the needlet technology. In Section 4 we present
our algorithm for fast, stable and memory efficient solution of Problem 1. The
solution of Problem 2 is more involved; it is given in Section 5. Results from
numerical tests are reported in Section 6.

Useful notation: In the sequel |E| will stand for the cardinality of a finite
set E.

2. Theoretical Underpinning of Our Methods

In this section we present the general principles of our needlet based meth-
ods for evaluation and reconstruction of spherical polynomials.

2.1. Spherical Needlets

Let ϕ be a C∞[0,∞) cutoff function satisfying for some fixed τ > 0 the
conditions:
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



ϕ(t) = 1, 0 ≤ t ≤ 1,

0 ≤ ϕ(t) ≤ 1, 1 < t < 1 + τ,

ϕ(t) = 0, t ≥ 1 + τ.

(2.1)

Consider the univariate kernels

KN (u) :=
∞∑

ν=0

ϕ
( ν

N

)
(2ν + 1)Pν(u), u ∈ [−1, 1], N ≥ 1, (2.2)

where Pν is the ν-th degree Legendre polynomial normalized by Pν(1) = 1.
Then the kernels KN (ξ · η) are termed spherical father needlets.

Two properties of the father needlets make them a valuable tool:

(i) The operator

HNf(ξ) :=
1
4π

∫

S2
KN (ξ · η)f(η) dσ(η) (2.3)

reproduces the spherical harmonics of degree ≤ N , i.e. HNf = f for
f ∈ ΠN , and

(i) The kernels KN (ξ ·η) have nearly exponential localization: For any s > 0
there exists a constant cs > 0 such that

|KN (ξ · η)| ≤ csN

(1 + Nρ(ξ, η))s
, ξ, η ∈ S2, N ≥ 1, (2.4)

where ρ(ξ, η) = arccos(ξ · η) is the geodesic distance between ξ and η.

As shown in [12], for a cutoff function ϕ with“small derivatives” the local-
ization of the father needlets KN (ξ · η) can be improved to sub-exponential.
For more details we refer the reader to [10].

Selecting X to be a regular grid containing sufficiently many points (O(N2)
will do) usually implies the existence of weights wξ > 0, ξ ∈ X , such that

1
4π

∫

S2
f(x) dσ(x) =

∑

ξ∈X
wξf(ξ) ∀f ∈ Π(2+τ)N . (2.5)

This allows to discretize the operator HN from (2.3), namely, set

ΦNf(x) :=
∑

ξ∈X
wξKN (x · ξ)f(ξ). (2.6)

Clearly, ΦNf = f for f ∈ ΠN .
We are now prepared to describe our methods for fast evaluation and re-

construction of spherical polynomials.
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2.2. Fast Evaluation of Spherical Polynomials

Given the values f(ξ) of a band-limited function f ∈ ΠN at the points of
a regular set X as above we compute the values f(z) at the points z from an
arbitrary set Z ⊂ S2 by using that ΦNf = f , which leads to

f(z) =
∑

ξ∈X
wξKN (z · ξ)f(ξ). (2.7)

To make this scheme computationally tractable we truncate the operator ΦN .
Namely, we replace it by the operator

ΦN,δf(x) =
∑

ξ∈X
ρ(x,ξ)≤δ

wξKN (x · ξ)f(ξ). (2.8)

Due to the superb localization of the kernel KN (x · ξ) it can be shown that for
a properly selected (small) value of the parameter δ the operator ΦN,δ from
(2.8) provides an excellent approximation to the operator ΦN in (2.6), which
leads to

f(z) ≈
∑

ξ∈X
ρ(x,ξ)≤δ

wξKN (z · ξ)f(ξ) (2.9)

with guaranteed accuracy as required. It is an important point that our ap-
proach allows to control the error in the uniform norm. Thus, employing (2.7)
and (2.9) we arrive at exact and approximate solutions of Problem 1.

The utilization of the operator ΦN,δ with a kernel of small support opens
the possibility of using simultaneously more than one regular sets X . The point
is that part of the nodes in a particular regular set X are usually not quite well
distributed (e.g. nodes concentrate near the poles), which creates problems.
This inconvenience can be offset by using two or more different regular sets X
for different subregions of S2.

2.3. Reconstruction of Spherical Polynomials

Assume that the values f(y) of a band limited function f ∈ ΠN are given
at irregular sampling points y ∈ Y (Y ⊂ S2). We let A = {Ay : y ∈ Y } be the
Voronoi tessellation of S2 induced by Y , i.e. the points from Ay are closer to y
than to any other point from Y . Write

d := max
y∈Y

sup
x∈Ay

ρ(x, y). (2.10)

Then the caps of radius d centered at the points of Y cover the whole sphere S2.
For every x ∈ S2 denote by yx the closest point from Y . Hence x ∈ Ay.

We shall use the following extension operator for functions g defined on Y :

Eg(x) :=
∑

y∈Y

g(y)1Ay (x), x ∈ S2, (2.11)
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where 1Ay is the characteristic function of Ay.
Let X ⊂ S2 be a regular set with associated cubature formula (2.5) and

let ΦN be the operator from (2.6). It is easy to show the following assertion
(see [11]):

Under the above conditions, assume that

q := d‖ΦN‖(1 + τ)N < 1, (2.12)

where ‖ΦN‖ is the norm of ΦN as an L∞(S2) to L∞(S2) operator. Let us set
R := ΦN − EΦN . Then for every f ∈ ΠN the series

∑∞
k=0Rk(Ef) converges

uniformly to f and its n-th partial sum satisfies

∥∥f −
n−1∑

k=0

Rk(Ef)
∥∥
∞ ≤ qn‖f‖∞. (2.13)

The above statement provides an exact reconstruction algorithm for f ∈ΠN .
Indeed, setting gk = Rk(Ef) we have by (2.13)

f(ξ) =
∞∑

k=0

gk(ξ), ξ ∈ X . (2.14)

Note that the values gk(ξ) for all ξ ∈ X can be iteratively computed by

g0(ξ) = f(yξ), gk+1(ξ) = Rgk(ξ) = ΦNgk(ξ)− ΦNgk(yξ). (2.15)

The key observation is that the evaluation of ΦNg(x) by (2.6) uses only the
values of g at the points from X . Naturally, instead of using the whole series
in practice the values f(ξ), ξ ∈ X , are approximated by

∑n−1
k=0 gk(ξ), where n

is determined by the target accuracy via (2.13). Furthermore, replacing ΦN by
ΦN,δ and using

gk+1(ξ) = R∗gk(ξ) := ΦN,δgk(ξ)− ΦN,δgk(yξ), ξ ∈ X , (2.16)

instead of (2.15) we arrive at an approximate reconstruction algorithm for
f ∈ ΠN . The idea of using two or more different regular sets X for different
subregions of S2 suggested in the previous subsection can be employed for
reconstruction of spherical polynomials as well. In sum, we have algorithms for
exact and approximate solutions of Problem 2.

The general ideas put forward in this section will be elaborated further in
what follows.

3. Technical Infrastructure

3.1. The Cutoff Function

From the description of our evaluation and reconstruction algorithms in
the previous section it becomes clear that the space localization of the father



122 Evaluation and Sampling of Band-limited Functions on the Sphere

needlets KN (ξ · η) plays a crucial role. The following approximate identity for
cubatures on S2 with positive weights provides a reasonable measure of the
localization of KN (ξ · η):

∑

ξ∈X
ξ·x<cos δ

wξ |KN (ξ · x)| ∼= 1
4π

∫

ξ·x<cos δ

|KN (ξ · x)| dσ(x)

=
1
4π

∫ π

δ

|KN (cos θ)| sin θ dθ

∫ 2π

0

1 dλ =
1
2

∫ cos δ

−1

|KN (t)| dt. (3.1)

Given 0 < ε < 1 let δ be determined by

1
2

∫ cos δ

−1

|KN (t)| dt =
ε

2

∣∣∣∣
∫ 1

−1

KN (t) dt

∣∣∣∣ = ε. (3.2)

Here the last equality follows by (2.2) and the orthogonality of Legendre poly-
nomials. The above equation determines δ as a function of ε, N , and ϕ (obeying
(2.1) for some τ > 0). Based on (3.1) it will serve as a criterion for measuring
the quality of different cutoff functions ϕ and the respective father needlets.
The rule will be, for a given accuracy ε, the smaller δ the better the cutoff
function ϕ.

From (2.8), (2.6), (3.1) and (3.2), one can get the following error bound on
the truncated operator

‖ΦNf − ΦN,δf‖L∞(S2) ≤ ε‖f‖`∞(X ) ∀f ∈ L∞(S2). (3.3)

Selection of ϕ. It is a challenging problem to determine the best or a
near best cutoff function ϕ according to the above rule. As we are interested
in cutoff functions ϕ satisfying the conditions: ϕ(t) = 1 for 0 ≤ t ≤ 1 and
ϕ(t) = 0 for t ≥ 1 + τ , we focus on the behavior of ϕ on [1, 1 + τ ]. Write
ϕ(t) = ψ((1 + τ − t)/τ), where ψ(u) is defined for u ∈ [0, 1] and satisfies
ψ(0) = 0, ψ(1) = 1.

Our initial selection of a cutoff function ϕ was based on

ψ(u) =
(2m + 1)!!
2(2m)!!

∫ πu

0

sin2m+1 v dv

=
1
2
− cos πu

2
− cosπu

2

m∑

k=1

(2k − 1)!!
(2k)!!

sin2k πu

(3.4)

with m depending on the accuracy ε. For example, we used m = 5 whenever
10−5 ≤ ε ≤ 10−7. Not long ago, however, we discovered that cutoff functions
induced by the family

ψ(u) = ψb(u) := κ−1

∫ u

0

eb
√

v(1−v) dv with κ :=
∫ 1

0

eb
√

v(1−v) dv (3.5)
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are substantially better than the ones based in ψ from (3.4). In (3.5) b is a
positive parameter, which for 4 < log10(1/ε) < 11 and τ ≥ 1 is given by

b = 4.8 log10(1/ε) + 3.4− 0.2min{τ, 3}. (3.6)

It is straightforward to write code for accurate computation of δ from (3.2)
for given ϕ, ε, and N . Therefore, it is easy to compare the values of δ for
different cutoff functions ϕ’s. It turns out that for δ computed from (3.2)
the product δN varies slightly with N for our two families of cutoff functions,
determined by (3.4) and (3.5). In the following two tables the values of δ are
displayed for N = 1000 and several choices of τ and ε.

τ \ ε 10−5 10−6 10−7 10−8 10−9 10−10

1 0.0386 0.0457 0.0548 0.0624 0.0701 0.0773
2 0.0189 0.0228 0.0268 0.0310 0.0346 0.0386
3 0.0125 0.0150 0.0177 0.0207 0.0232 0.0257
4 0.00935 0.0113 0.0132 0.0154 0.0174 0.0193

Table 1. Values of δ for N = 1000 and cutoff function defined via (3.4)

τ \ ε 10−5 10−6 10−7 10−8 10−9 10−10

1 0.0278 0.0325 0.0372 0.0419 0.0468 0.0515
2 0.0137 0.0162 0.0185 0.0209 0.0232 0.0257
3 0.00917 0.0107 0.0123 0.0138 0.0155 0.0171
4 0.00685 0.00802 0.00919 0.0103 0.0116 0.0128

Table 2. Values of δ for N = 1000 and cutoff function defined via (3.5)

The comparison of Tables 1 and 2 shows definite advantage of using the ψ
from (3.5) over the one from (3.4). As a result, the number of terms entering
the sum in (2.8) (which is a constant multiple of δ2) reduces about two times
when using the new cutoff function. Furthermore, this advantage becomes more
significant when we increase the precision.

3.2. Accurate Kernel Evaluation

The next step in developing our algorithm is the accurate and fast evaluation
of KN (ξ ·η) for given ξ, η ∈ S2, which is a nontrivial task. For every u ∈ [−1, 1]
one can evaluate KN (u) using, for instance, the downward Clenshaw recurrence
formula. It employs the Legendre recurrence relation

(n + 1)Pn+1(u) = (2n + 1)uPn(u)− nPn−1(u), n ≥ 0,

P0(u) = 1, P−1(u) = 0.

This algorithm is numerically stable and fast since it requires only O(N) oper-
ations.
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The straightforward calculation of KN (ξ · η), where u = ξ · η is obtained via
the Spherical Law of Cosines

ξ · η = cos ρ(ξ, η) = cos θ′ cos θ + sin θ′ sin θ cos(λ′ − λ)

and KN (u) is computed by the downward Clenshaw recurrence, looses accuracy
when ξ is close to η, that is exactly the case we are interesting in. In order to
improve the accuracy by several significant digits we perform the calculations
as follows:

(i) We compute the spherical distance ρ between ξ = (θ′, λ′) and η = (θ, λ)
via the Haversine Law of Spherical Trigonometry

sin2 ρ(ξ, η)
2

= sin2 θ′ − θ

2
+ sin θ′ sin θ sin2 λ′ − λ

2
. (3.7)

(ii) We compute KN (ξ · η) = (KN ◦ cos)(ρ) via an approximation of KN ◦ cos.

The Haversine Law (3.7) is well-conditioned for computation of ρ close to 0
and the round-off error is smaller when compared with the Spherical Law of
Cosines. This fact has been known since the XIX century. The haversine
function is defined by hav t := (1− cos t)/2 = sin2(t/2); its latter form is used
in (3.7).

The advantage of using the trigonometric polynomial KN ◦ cos in step (ii)
over the algebraic polynomial KN stems from the fact that the derivative of
KN ◦ cos near the origin is about N times smaller than the derivative of KN

near 1.
In order to get fast and accurate evaluation of (KN ◦ cos)(ρ) for ρ ∈ [0, δ]

we take the equally spaced points tr = δr/R for r = −s,−s + 1, . . . , R + s
and compute t∗r = arccos(cos tr). Note that in general t∗r 6= tr because of
the machine arithmetic, while cos t∗r and cos tr coincide as double precision
numbers. Then KN (ur), determined for ur = cos tr = cos t∗r via the downward
Clenshaw recurrence, is a good approximation to (KN ◦ cos)(t∗r). Thus we have
the values of KN ◦cos at the points t∗r , which are close to equally spaced but not
equally spaced. Now (KN ◦ cos)(ρ) is computed by Lagrange interpolation of
KN ◦ cos with nodes t∗r , r = m−s,m−s+1, . . . ,m+s+1, where m = bρR/δc.
The Lagrange polynomial is of degree 2s + 1.

The choice of R and s depends on the targeted relative error ε and the degree
Nτ := d(1 + τ)Ne−1 of KN ◦cos. Our experiments show that for ε ≥ 10−11 and
Nτ ≤ 16000 one can take R = 2000 for s = 1 or R = 150 for s = 2. The numbers
KN (ur) are computed in O(NR) operations and stored at the initial stage of
the program. At later stages the evaluation of (KN ◦ cos)(ρ) requires only O(s)
operations. Of course, the third degree Lagrange interpolation (s = 1) is faster
but less accurate than the fifth degree Lagrange interpolation (s = 2).
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3.3. Regular Point Sets on the Sphere

Given M ∈ N we say that X is a set of M -regular points on the sphere if
the following two conditions are verified:

1. There exist non-negative weights wξ, ξ ∈ X , of a cubature formula with
X as a nodal set which is exact for the polynomials from ΠM−1, i.e.

1
4π

∫

S2
f(y) dσ(y) =

∑

ξ∈X
wξf(ξ) ∀f ∈ ΠM−1; (3.8)

2. The set X is structured in the sense that for every x ∈ S2 and δ ∈ (0, π] one
can determine effectively all points in B̄X (x, δ) = {ξ ∈ X : ρ(x, ξ) ≤ δ}
using c|B̄X (x, δ)| operations, where the constant c is independent of x, δ,
M and |X |.

Examples of regular point sets on the sphere are X (i) = {ξ(i)
k,` = (θ(i)

k , λ
(i)
` )},

i = 1, 2, that for given K,L ≥ 1 are defined by

θ
(1)
k =

π

K
k, k = 0, 1, . . . ,K; λ

(1)
` =

2π

L
`, ` = 0, 1, . . . , L− 1;

and

θ
(2)
k =

π

K
k − π

2K
, k = 1, 2, . . . ,K; λ

(2)
` =

2π

L
`, ` = 0, 1, . . . , L− 1.

Here in X (1) we consider only one node for k = 0 (the North Pole) and only one
node for k = K (the South Pole). Another example is the set X (3) generated
by the zeros uk of the K-th degree Legendre polynomial PK . In this case we
write

θ
(3)
k = arccos uk, k = 1, 2, . . . , K; λ

(3)
` =

2π

L
`, ` = 0, 1, . . . , L− 1.

As is well-known the cubatures associated with X (1),X (2),X (3) can be rep-
resented as tensor products of one-dimensional algebraic quadrature in the
co-latitude direction θ and the rectangular trigonometric quadrature in the
latitude direction (see e.g. [10, Subsection 3.4]). The relations between K, L
and M are given by (see [10, Theorem 3.11])

M ≤ L, M ≤
{

2 b(K + 1)/2c , i = 1, 2;
2K, i = 3.

Under the above restrictions the sets X (1),X (2),X (3) are M -regular [10, The-
orems 3.11 and 3.12].

Other regular point sets can be obtained from X (1), X (2), or X (3) by ap-
plying rotations or reflections on the sphere. For example, consider the map
T : R3 → R3 given by

T (x1, x2, x3) = (x1, x3,−x2).
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This is π/2 rotation about the x1-axis. The restriction of T on the sphere
T |S2 : S2 → S2 relates the spherical coordinates (θ, λ) and (θ̃, λ̃) of a point x
and its image x̃ = T (x) by

(sin θ̃ cos λ̃, sin θ̃ sin λ̃, cos θ̃) = (sin θ cosλ, cos θ,− sin θ sin λ).

From the rotation invariance of ΠN it follows that the sets T−1(X (i)) and
T (X(i)), i = 1, 2, 3, are also regular and induce similar cubatures as X (i).

All of the above regular point sets have one disadvantage – their points
congregate near the poles (or the images of the poles). This force us to treat
the points near the poles differently compared to the ones away from the poles.

3.4. Utilization of Two Sets of Regular Points on the Sphere

As already mentioned the regular point sets from Subsection 3.3 have the
deficiency that the points in each of them concentrate around the poles or the
images of the poles via some rotation. This drawback along with the fact that
for a given x the value of ΦNf(x) is obtained by O(|X |) operations makes
an evaluation algorithm based on ΦN impractical. To overcome the second
deficiency we shall use the truncated version ΦN,δ of the operator ΦN defined
in (2.8), and to remedy the first deficiency we shall utilize the rotated version
Φ̃N,δ of ΦN,δ for the regions around the poles. In this way we will decrease
substantially the algorithm’s computational cost.

To realize these ideas we first introduce some notation. Given N ∈ N and
ε > 0 (to be determined) we assume that X ⊂ S2 is one of the M -regular set
points X (1), X (2), or X (3) from Subsection 3.3 with M := d(2 + τ)Ne. In fact,
to us the best choice is X := X (3). Let δ > 0 be a constant such that (3.2) holds
and let ΦN,δ be the operator defined in (2.8). We subdivide S2 into two: The
equatorial area (belt) U1 and its compliment (the polar regions) U2, defined in
spherical coordinates by

U1 := {x ∈ S2 : π/4 ≤ θ(x) ≤ 3π/4}, U2 := S2 \ U1. (3.9)

We also introduce the following sets of nodes on S2:

X1 := X ∩ {π/4− δ0 ≤ θ ≤ 3π/4 + δ0},
X2 := T (X ) ∩ ({0 ≤ θ ≤ π/4 + δ0} ∪ {3π/4− δ0 ≤ θ ≤ π}),
X0 := X1 ∪ X2,

(3.10)

where δ0 := δ + d with d from (2.10) for the reconstruction problem or with
some d ≥ 0 for the fast evaluation problem. We assume δ0 < π/4.

The rotated by T versions Φ̃N , Φ̃N,δ of the operators ΦN , ΦN,δ defined in
(2.6) and (2.8) are given by

Φ̃Nf(x) =
∑

ξ∈T (X )

w̃ξKN (x · ξ)f(ξ), Φ̃N,δf(x) =
∑

ξ∈T (X )
ρ(x, ξ)≤δ

w̃ξKN (x · ξ)f(ξ),

(3.11)
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where w̃ξ = wT−1(ξ) for ξ ∈ T (X ). Due to the rotation invariance of the
spherical harmonic spaces, the operators Φ̃N and Φ̃N,δ have the same properties
as ΦN and ΦN,δ. Observe also that for every x ∈ U1 the value of ΦN,δf(x)
depends only on the nodes ξ ∈ X1 and, similarly, for every x ∈ U2 the value of
Φ̃N,δf(x) depends only on the nodes ξ ∈ X2.

4. Fast Evaluation of Spherical Polynomials

In this section we focus on the needlet based algorithm for fast evaluation of
high degree spherical polynomials, described in Section 2. First, we outline the
properties of the operators ΦN and ΦN,δ from (2.6) and (2.8) that are involved
in this algorithm and, second, we describe in detail the consecutive steps in the
algorithm.

4.1. Properties of ΦN and ΦN,δ

Assume that X is a set of ν-regular points on S2 with ν ≥ N and let ΦN

and ΦN,δ be the operators defined in (2.6) and (2.8) using K from (2.2). Then
ΦN has these properties:

ΦN : C(S2) → C(S2) is a bounded linear operator; (4.1)
‖ΦN‖ ≤ C, where C > 0 is a constant independent of N ; (4.2)

ΦNf ∈ Π(1+τ)N ∀f ∈ C(S2). (4.3)

Moreover, if
ν ≥ (2 + τ)N, (4.4)

then

ΦNf = f ∀f ∈ ΠN , (4.5)

‖f − ΦNf‖∞ ≤ (‖ΦN‖+ 1)EN (f)∞ ∀f ∈ C(S2). (4.6)

Here EN (f)∞ denotes the best approximation of f from ΠN in the uniform
norm and C(S2) stands for the space of all continuous functions on S2.

Let δ be determined by (3.2). Then ΦN,δ satisfies:

ΦN,δ : C(S2) → L∞(S2) is a bounded linear operator; (4.7)
‖f − ΦN,δf‖∞ ≤ ε‖f‖`∞(X ) ∀f ∈ ΠN ; (4.8)

‖f − ΦN,δf‖∞ ≤ (C + 1)EN (f)∞ + ε‖f‖`∞(X ) ∀f ∈ C(S2), (4.9)

where C is the constant from (4.2). For more details and proofs we refer the
reader to [10].

The values of the L∞ → L∞ norms ‖ΦN‖ and ‖ΦN,δ‖ are given in Subsec-
tion 6.3. Inequality (4.8) provides the relative error estimate for band-limited
function evaluation by ΦN,δ.
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4.2. Fast Evaluation Algorithm

Here we describe our algorithm for fast evaluation when the values f(ξ) of
a polynomial f ∈ ΠN are given at the points of the set X0 from Subsection 3.4.

Input:

1. Degree N of f and the target accuracy ε.

2. Number of knots K, L and the type of one-dimensional latitude quadra-
ture.

3. Parameter δ0 for the sets X1 and X2 in (3.10).

4. Values f(ξ), ξ ∈ X0.

Pre-computation:

1. Compute the knots and weights of the one-dimensional quadratures.

2. Compute the degree of exactness ν of cubature (3.8) and its weights wξ

as tensor product of the one-dimensional quadratures weights.

3. For the given ν,N determine the largest possible τ satisfying (4.4).

4. For N, ε, τ compute δ from (3.2).

5. For ε, τ compute b, the values of ψb from (3.5) and the values ϕ(k/N)
from Subsection 3.1.

6. Compute KN (cos t∗r), r = −s,−s+1, . . . , R+s with downward Clenshaw
recurrence (see Subsection 3.2).

Computation:
For every z ∈ Z:
If z is in the equatorial belt U1, i.e. 0.25π ≤ θ(z) ≤ 0.75π:

1. Find the indexes of the points ξ in D1 := {ξ ∈ X1 : ρ(ξ, z) ≤ δ}.
2. Compute hξ = KN (z · ξ) for ξ ∈ D1.

3. Compute F (z) =
∑

ξ∈D1

wξhξf(ξ)

else (i.e. if z is in the polar regions U2)

1. Find the indexes of the points ξ in D2 := {ξ ∈ X2 : ρ(ξ, z) ≤ δ}.
2. Compute hξ = KN (z · ξ) for ξ ∈ D2.

3. Compute F (z) =
∑

ξ∈D2

w̃ξhξf(ξ).

Output: The approximate values F (z) of f(z) at z ∈ Z.
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The algorithm works under the following conditions on the parameters:
δ ≤ δ0, 0 < ε < 1 and ν > 2N .

The relative error of the output satisfies

‖F − f‖`∞(X )/‖f‖`∞(X ) < ε

provided ε ≥ N10−15 in double precision arithmetic.

Complexity of the algorithm. We next determine the complexity of the
Computation part in the typical case when K = O(N), L = O(N). The number
of operations for step (1) is O(δ2KL) = O(δ2N2) (see the structure condition
(2) for regular points in (3.8) from Subsection 3.3). Steps (2) and (3) require
O(δ2N2) operations as for single ξ and z the computation of t = z ·ξ and KN (t)
requires O(1) operations. Thus, the number of operations at a single point z
is O(δ2N2). Now from δ = O(log(1/ε)/N) we get O(δ2N2) = O(log2(1/ε)).
Thus, the total complexity of the Computation part is O(|Z| log2(1/ε)).

One of the most demanding steps in the Pre-computation part is step (6)
which requires O((R + s)N) operations. For the numeric computation of the
knots and weights of the Gaussian quadrature in step (1) we use the MATLAB
function legpts from Chebfun software system [21]. It utilizes a fast and
accurate algorithm from [9], which shows excellent results for algebraic degree
of exactness up to one million. Step (2) is executed in O(N2) operations and the
remaining steps in the Pre-computation part require at most O(N) operations.

5. Reconstruction of Spherical Polynomials

This section is devoted to our algorithm for reconstruction of high degree
spherical polynomials. We first describe briefly the algorithm for approximate
solution of the problem, and then give the details.

5.1. Approximate Solution of Problem 2

We shall employ the linear operator

Rg(x) := (I − E)ΦN,δg(x) · 1U1(x) + (I − E)Φ̃N,δg(x) · 1U2(x), (5.1)

where E is the extension operator from (2.11), the operator ΦN,δ is defined
in (2.8), and Φ̃N,δ is from (3.11). The observations we made in the end of
Subsection 3.4 imply that the above operator uses only the values of g at
points in X0. Indeed, if x ∈ U1 then EΦN,δg(x) = ΦN,δg(yx) uses the values
g(ξ) for ξ ∈ X with ρ(yx, ξ) ≤ δ, yilding ρ(x, ξ) ≤ δ + d = δ0, i.e. ξ ∈ X1. Let
us point out that for such an x the value of ΦN,δg at yx is determined by values
of g on X1 even in the case when yx itself belongs to U2. Similar considerations
are valid for x ∈ U2.
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Our algorithm for approximate solution of Problem 2 is based on the fol-
lowing assertion (see [11, Theorem 4.2]): Using the notation from above with δ
determined by (3.2) for some ε > 0 assume in addition that

q := d(1 + τ)N‖ΦN‖+ 2ε < 1. (5.2)

Then for any f : Y → R the series
∑∞

k=0Rk(Ef) converges uniformly and for
any f ∈ ΠN ∥∥∥f −

n−1∑

k=0

Rk(Ef)
∥∥∥
∞
≤

(
qn +

2ε

1− q

)
‖f‖∞. (5.3)

This statement provides an effective reconstruction algorithm for spherical
polynomials f ∈ ΠN .

5.2. Approximate Reconstruction Algorithm

In solving Problem 2, we would like to find approximate values F (ξ) to the
unknown values f(ξ), ξ ∈ X0, with prescribed error ε0, i.e. |F (ξ)− f(ξ)| ≤ ε0.
We determine the relative error ε1 = ε0/‖f‖`∞(Y ) and split it into two parts
ε1 = ε2 +2ε/(1−q), where ε2 will be the iteration accuracy and ε – the needlet
accuracy.

We next describe the consecutive steps in our algorithm for approximate
reconstruction. If we consider Problem 2 as a first step in the solution of
Problem 3, then we are free to choose the set X0 from (3.10) in Subsection 3.4.
This case is described below. In the case of fixed X0 in Problem 2 step (1) from
the Pre-computation part has to be moved to the Input part.

Input:

1. Values f(y), y ∈ Y , at an irregular sampling set Y .

2. Degree N of f , the needlet parameter τ , the target relative accuracy ε1,
the iteration accuracy ε2 and the needlet accuracy ε.

Pre-computation:

1. Compute the number of knots K, L so that the cubature be exact for
polynomials of degree M − 1 with M = d(2 + τ)Ne.

2. Compute the knots and weights of the one-dimensional quadratures.

3. Compute the nodes of the set X = X (3) (see Subsection 3.3).

4. Compute the weights wξ of the cubature (3.8) as tensor product of the
one-dimensional quadratures weights.

5. For every ξ ∈ X ∪ T (X ) find the closest point yξ in Y .

6. Compute δ for the given N, ε, τ and a cutoff function ϕ from (3.5)–(3.6).
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7. Compute the values ϕ(k/N) for the given N, ε, τ and ϕ from (3.5)–(3.6).

8. Compute KN (cos t∗r), r = −s,−s+1, . . . , R+s with downward Clenshaw
recurrence (see [10, Subsection 3.3]).

9. Compute d = maxξ∈X ρ(ξ · yξ) and form the sets Xi, i = 0, 1, 2, with
parameter δ0 = δ + d (see (3.10)).

10. Compute the matrices:

V (1) =
{
v
(1)
ξ,η : ξ ∈ X1∩U1, η ∈ X

}
, V (2) =

{
v
(2)
ξ,η : ξ ∈ X2∩U2, η ∈ T (X )

}
,

V (3) =
{
v
(3)
ξ,η : ξ ∈ X1∩U2, η ∈ T (X )

}
, V (4) =

{
v
(4)
ξ,η : ξ ∈ X2∩U1, η ∈ X

}
,

defined by

v
(j)
ξ,η = wη

(K̃N (ξ · η)− K̃N (yξ · η)
)
, j = 1, 4,

v
(j)
ξ,η = w̃η

(K̃N (ξ · η)− K̃N (yξ · η)
)
, j = 2, 3,

(5.4)

where K̃N (t) = KN (t) for t ≥ cos δ and K̃N (t) = 0 for t < cos δ.

Iterations:

1. Initial values: g0(ξ) = f(yξ), F (ξ) = g0(ξ), ξ ∈ X0.

2. Iteration steps: For k = 0, 1, . . . do

(a)
gk+1(ξ) =

∑

η∈X1

v
(1)
ξ,ηgk(η), ξ ∈ X1 ∩ U1; (5.5)

(b)
gk+1(ξ) =

∑

η∈X2

v
(2)
ξ,ηgk(η), ξ ∈ X2 ∩ U2; (5.6)

(c)
gk+1(ξ) =

∑

η∈X2

v
(3)
ξ,ηgk(η), ξ ∈ X1 ∩ U2; (5.7)

(d)
gk+1(ξ) =

∑

η∈X1

v
(4)
ξ,ηgk(η), ξ ∈ X2 ∩ U1; (5.8)

(e)
F (ξ) = F (ξ) + gk+1(ξ), ξ ∈ X0;

3. Stopping criterion: ‖gk+1‖ ≤ ε2‖g0‖.
Output: The approximate values F (ξ) of f(ξ) at all points ξ ∈ X0.
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The only condition imposed on the parameters is (5.2). Under this condi-
tion the algorithm converges at a geometric rate and we have (see [11, Propo-
sition 5.1])

Proposition 5.1. The relative error of the algorithm output is given by

‖F − f‖`∞(X0)

‖f‖`∞(Y )
< ε2 +

2ε

1− q
= ε1, (5.9)

max
{‖ΦN,δF − f‖`∞(Y ∩U1)

‖f‖`∞(Y )
,
‖Φ̃N,δF − f‖`∞(Y ∩U2)

‖f‖`∞(Y )

}
< ‖ΦN,δ‖ε1. (5.10)

Inequality (5.9) shows that the prescribed accuracy is achieved by the algo-
rithm, while (5.10) give us a tool to verify whether the computed values F (ξ),
ξ ∈ X0, reconstruct the spherical polynomial f , known by its values at the
scattered points y ∈ Y .

Complexity of the algorithm. We determine the complexity for the
best choice of K and L in step (1), which means K = O(N), L = O(N).
Steps (1)–(4) and (6)–(8) are analyzed in [10, Subsection 3.7]. On account of
the structure condition for regular points in Subsection 3.3 step (5) requires
O(N2 + |Y |) operations. The complexity of step (9) is O(N2).

Step (10) is the most demanding one on both memory and number of op-
erations (i.e. speed) in the whole algorithm. The “matrices of influence” V (j),
j = 1, 2, 3, 4, express the relative distances between the elements of the two sets
X0 and Y . Their size is huge: V (1) and V (2) have O(N4) elements and V (3) and
V (4) have O(N4δ0) elements. If one works with the complete “matrices of in-
fluence” then polynomial degrees exceeding 200 will be practically prohibitive.
For comparison, for degree 1000 we work with a set X0 with close to 6 000 000
points and the nodal sets X = X (3) and T (X ) contain 8 000 000 points each.
This makes a total of 4.8 × 1013 elements in the “matrices of influence” and
only the storage of such amount of data on a “hard disk” as 8 bytes numbers
will require 350 TB of memory!

Using the superb localization of the father needlet kernel KN (x · ξ) we
make the “matrices of influence” sparse by setting K̃N (t) = 0 for t < cos δ
in (5.4). Thus, the total number of non-zero elements in these matrices is
O(N2n̄) = O(N4δ2) = O(N2 ln2(1/ε)), where n̄ is the average number per
point ξ of non-zero elements in (5.4). Several values of n̄ are given in Table 4
of Subsection 6.2. For τ = 2 they range from 267 for ε = 10−5 to 1150 for
ε = 10−11. Other important parameters of the problem as memory require-
ments and time of execution are also given in Subsection 6.2. In sum, step (10)
requires O(N2 ln2(1/ε)) operations but the O constant is quite large.

Every step in the Iterations part executes a matrix-times-vector multipli-
cation, where every non-zero element of the “matrices of influence” is used
once. This requires O(N2 ln2(1/ε)) operations. The number of iterations is
ln(1/ε2)/ ln(1/q). Hence the choice ε2 = ε1/3 and ε = (1 − q)ε1/3 will result
in O(N2 ln3(1/ε1)) operations for the complexity of the algorithm.
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Memory requirements. For N = 1000 and ε = 10−7 the values of the
elements of the sparse “matrices of influence” will occupy some 21 GB memory
(see Table 4). With additional 12 GB for the indexes of the non-zero elements
we arrive at 33 GB of memory for storage of these matrices. This fact made us
decide to save the “matrices of influence” in pieces on the hard disk. Then the
operations in (5.5)–(5.8) are executed by reading one piece at a time from HD,
performing the multiplication and clearing the matrix piece from the memory
before reading another piece. In this way the execution time for 20 iterations
is comparable to the time necessary to compute matrix element values in (5.4)
and to save them on HD (see Table 5 in Subsection 6.2).

Each of the other input, work, and output variables as F , old and new g
(i.e. gk and gk+1), spherical coordinates of the irregular sample points and
the polynomial values requires O(N2) bites of memory. In view of the small
number of such variables this is easily manageable for N in the range of a
several thousand.

Optimal choice of the needlet parameter τ . For M = d(2 + τ)Ne,
K = dM/2e, L = M we have:

• The number of nodes in X0 is proportional to M2;

• The average number of nodes from X0 in a δ neighborhood is proportional
to δ2M2.

Hence, both the size of the “matrices of influence” and the number of opera-
tion in (5.5)–(5.8) for a single iteration step is O(δ2M4). Using the estimate
δ = O(ln(1/ε)τ−1N−1) we get δ2M4 = O((2 + τ)4τ−2N2) and the minimal
value of the last expression is attained for τ = 2. Therefore, the best choice of
the needlet parameter τ relative to memory usage as well as speed is τ = 2.

6. Numerical Examples

The algorithms described in this article have been implemented in software
written in MATLAB with double-precision variables. The code does not relay
on variable precision arithmetic. It was intensively tested for degrees between
60 and 4000.

6.1. Undulation

The geoid undulation G is approximated by a spherical polynomial of de-
gree and order N = 2189, computed in the official Earth Gravitational Model
EGM2008 and publicly released by the U.S. National Geospatial-Intelligence
Agency (NGA). The polynomial coefficients have been taken from

http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html.
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This website also contains the values of the geoid undulation on two mesh grids
of type X (1) (see Subsection 3.3): 2.5′ × 2.5′ (i.e. K = 4320, L = 8640) and
1′ × 1′ (i.e. K = 10800, L = 21600). The 1′ × 1′ grid points are 233, 301, 600.
The geoid undulation values as single precision numbers occupy 890MB on the
hard disk and range from −106.9 m to 85.8 m.

The table given below summarizes the results of the testing on a 2.4 GHz
PC with 16 GB of RAM. The following programs are compared:

• hsynth_WGS84 – the NGA spherical harmonic synthesis program comput-
ing G directly from its coefficients; written in FORTRAN; for comparison
purposes assumed to be exact, so the error reported in Table 3 is 0.

• interp_1min – the NGA spherical harmonic synthesis program comput-
ing G by spline interpolation of the 1′ × 1′ undulation data; written in
FORTRAN.

• interp_2p5min – the NGA spherical harmonic synthesis program com-
puting G by spline interpolation of the 2.5′×2.5′ undulation data; written
in FORTRAN.

• needlet3 – implementation of our algorithm which uses the 3′ × 3′ un-
dulation data; written in MATLAB.

• needlet4 – implementation of our algorithm which uses the 4′ × 4′ un-
dulation data; written in MATLAB.

Program Size HD
(MB)

Size RAM
(MB)

Values/
second

Error
(mm)

hsynth_WGS84 71.2 53.9 16 0
interp_1min 890.0 1 814.0 640 000 0.84
interp_2p5min 142.5 287.6 630 000 8.65
needlet3 70.9 132.4 11 000 0.40
needlet4 41.1 100.2 4 400 0.36

Table 3. Program comparison by memory size, speed (on a 2.4 GHz PC) and error

The NGA programs interp_1min and interp_2p5min require approxi-
mately 20 and 7 seconds for loading into the memory and initialization, while
each of needlet3 or needlet4 requires approximately 2 seconds. The total
run time should be formed as the sum of these values plus the time for proper
point evaluation computed using column “values/second” above.

The sampling interval for the Nyquist frequency is π/2160 = 5′ and pro-
grams needlet3 and needlet4 work with 3′×3′ and 4′×4′ mesh grids producing
results with relative errors approximately 4 · 10−6. The programs demonstrate
how the needlets can also be successfully used as an approximation tool for
data compression.
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The test results described in Table 3 show that needlet3 and needlet4
are memory efficient and, therefore, they can be effectively used for fast com-
pressed and accurate computation of the geoid undulation at scattered points
on the sphere. This is the main advantage of needlet3 and needlet4 over
interp_1min. Of course, as usual here there is a trade-off between memory
size and speed.

6.2. Reconstruction

We have implemented our reconstruction algorithm in a MATLAB R2012b
code and have extensively tested it on a 2.4 GHz PC, CPU Intel Core i7 with
16 GB of RAM. The code does not relay on variable precision arithmetic.

For irregular points we have taken the HEALPix pixel centers and their
rotations on the sphere.

The optimal speed and memory requirements were achieved for τ = 2 ac-
cording to the theory. Hence, we report in this subsection results only for this
value of the needlet parameter. In the latitude direction the quadrature is
Gaussian.

For K = 2N , L = 4N and ϕ from (3.5)–(3.6) we get the following values
for the size of the “influence matrices”, i.e. number of points in X0 and average
number of non-zero elements in (5.4).

N \ ε 10−5 10−7 10−9 10−11

250 384728× 270 396300× 494 408016× 786 419836× 1150
500 1470932× 268 1493560× 488 1516332× 773 1539128× 1127

1000 5749660× 267 5794400× 485 5839244× 767 5884128× 1117

Table 4. Size of the “influence matrices”: number of points in X0 and average

number of non-zero elements

For different irregular sampling sets Y the average number of non-zero el-
ements may slightly vary. The number of points in X0 grows slowly when ε
decreases due to the log ε enlargement of the adjacent sets X1∩U2 and X2∩U1.

The polynomial values were provided by several low and high degree poly-
nomials including the polynomials GN and G̃N , which are given by

GN (θ, λ) :=
N∑

m=1

m−1/3qm,NPm,N (cos θ) sin mλ

+
N−3∑
m=1

m−1/3qm,N−3Pm,N−3(cos θ) sin mλ,

G̃N (θ, λ) := q0,NP0,N (cos θ) + 2
N∑

m=1

qm,NPm,N (cos θ) cos mλ,
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where Pm,n are the associated Legendre functions and the coefficients qm,n are
selected so that they normalize to 1 in L2(S2, 1

4π dσ) each spherical harmonic
term.

The uniform norms of GN and G̃N for selected values of N are given in
Tables 6 and 7, respectively. The global extrema of GN and G̃N are localized
around the points (π

2 , π
2 ) and (π

2 , 3π
2 ). We believe that polynomials GN and G̃N

are good for testing of our reconstruction algorithm since they have relatively
large spherical harmonic coefficients and highly oscillatory behavior.

Degree N 250 500 1000 2000
Pre-computation part 6.2 23.0 92.7 363.5
Iterations part (20 iterations) 6.2 24.2 96.1 384.4
Total 12.4 47.2 188.8 747.9

Table 5. Execution times (in minutes) of the reconstruction algorithm

Table 5 contains the execution times of the Pre-computation and Iterations
parts of the reconstruction algorithm. The Pre-computation time is the total of
the times for execution of all steps of Pre-computation from Subsection 4.2 plus
the “matrices of influence” saving time on HD. The Iterations time includes
the execution times for 20 steps of Iterations plus the “matrices of influence”
loading time from HD. The number of irregular sampling points is approxi-
mately 8 times larger than the number of points in X0, but their influence on
the times reported below is minimal (apart from the influence on the number
of iterations for achieving the target accuracy). The values of the other para-
meters are ε = 10−7, K = 2N , L = 4N , and the number of iterations in the
table is 20.

We see that the execution times are proportional to N2 according to the
theory given in Subsection 4.2. The saving time is approximately 27% of the
Pre-computation time, while the loading time is approximately 63% of the
Iterations time.

The relative errors defined in (5.9) for f = GN and f = G̃N at the points
X0 are given in Tables 6 and 7, respectively. These errors are obtained from the
algorithm in Subsection 4.2 with accuracy parameters ε = 10−7 and ε2 = 10−8.

Degree N 250 500 1000 2000
‖GN‖∞ 76.45 121.35 192.65 305.86
Relative error 8.4667e-09 7.8133e-09 5.7893e-09 5.8170e-09

Table 6. Uniform norms and relative errors from (5.9) for GN

As a rule the observed relative errors are 10 to 15 times smaller than the
target relative accuracy ε1! Our experiments also show that the relative errors
from (5.10) at the sampling points Y are very close to the respective errors at
the points X0.
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Degree N 250 500 1000 2000
‖G̃N‖∞ 480.60 958.99 1915.4 3828.0
Relative error 5.6226e-09 5.6581e-09 5.4573e-09 5.3932e-09

Table 7. Uniform norms and relative errors from (5.9) for eGN

6.3. Norms of Operators

The operator norms in this subsection are ∞ → ∞ norms. The norm of
the integral needlet operator (2.3) is given by

‖HN‖ = sup
x∈S2

1
4π

∫

S2
|KN (x · y)| dσ(y) =

1
2

∫ 1

−1

|KN (t)| dt. (6.1)

For ϕ from (3.5)–(3.6) and for various τ and ε the numerical values of the norm
from (6.1) for N = 40, N = 400, N = 4000 are displayed in Table 8.

τ N \ ε 10−5 10−7 10−9 10−11

40 3.1364 3.4067 3.6306 3.8230
1 400 3.1280 3.3996 3.6251 3.8194

4000 3.1267 3.3982 3.6236 3.8179
40 2.4559 2.6774 2.8613 3.0197

2 400 2.4487 2.6700 2.8538 3.0123
4000 2.4478 2.6691 2.8529 3.0114

40 2.1905 2.3927 2.5606 2.7054
3 400 2.1849 2.3867 2.5545 2.6991

4000 2.1842 2.3861 2.5538 2.6984
40 2.0510 2.2421 2.4010 2.5380

4 400 2.0465 2.2373 2.3960 2.5328
4000 2.0460 2.2368 2.3954 2.5323

Table 8. Numerical evaluation of norm from (6.1)

As Table 8 shows the norm practically does not depend on the degree N .
This fact is in compliance with the theory which states that these norms have
majorants, which are independent of N . The slight decrease of the norm with
N is predictable and is due to the increased smoothness of the kernel KN . The
variations of the norm with τ and ε are due to the different functions ϕ defined
in (3.5)–(3.6).

The norms of the discrete operators ΦN and ΦN,δ are given by

‖ΦN‖ = sup
x∈S2

∑

ξ∈X
wξ|ΦN (x · ξ)| (6.2)

and
‖ΦN,δ‖ = sup

x∈S2

∑

ξ∈X
ρ(x, ξ)≤δ

wξ|ΦN (x · ξ)|. (6.3)
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Let us recall that due to (3.3) the two norms are quite close, namely,

0 < ‖ΦN‖ − ‖ΦN,δ‖ ≤ ε.

The norms in (6.2) and (6.3) depend on N , δ, ϕ, τ , ε, K, L, and the type of the
regular nodes used. As in the case of the norm in (6.1) the relative variation
of these norms with respect to N is less than one percent.

For N = 500 and for various τ and ε the numerical values of the norm from
(6.2) are displayed in Table 9. The other parameters for the computations
are: Gaussian quadrature with K = 2 d(2 + τ)N/4e, L = 2K, and ϕ from
(3.5)–(3.6).

τ \ ε 10−5 10−7 10−9 10−11

1 4.2324 4.6610 5.0166 5.3227
2 3.1562 3.5077 3.7990 4.0497
3 2.7355 3.0577 3.3245 3.5540
4 2.5137 2.8193 3.0724 3.2901

Table 9. Numerical evaluation of ‖ΦN‖ for X = X (3)

In the solution of Problem 1 we in fact use the operators ΦN,δ ·1U1+Φ̃N,δ ·1U2

instead of ΦN,δ. Their norms are given by

‖ΦN,δ · 1U1 + Φ̃N,δ · 1U2‖ = sup
x∈S2

π/4≤θ≤3π/4

∑

ξ∈X
ρ(x,ξ)≤δ

wξ|ΦN (x · ξ)|. (6.4)

For the same values of the parameters as in Table 9 we have these norms:

τ \ ε 10−5 10−7 10−9 10−11

1 3.7265 4.0423 4.3022 4.5245
2 2.9159 3.1833 3.4026 3.5898
3 2.5899 2.8396 3.0438 3.2178
4 2.4152 2.6549 2.8507 3.0174

Table 10. Numerical evaluation of ‖ΦN,δ · 1U1 + Φ̃N,δ · 1U2‖ for X = X (3)

According to (6.3) and (6.4) the inequality

‖ΦN,δ · 1U1 + Φ̃N,δ · 1U2‖ ≤ ‖ΦN,δ‖ (6.5)

holds. For the nodes X = X (3) generated by the Gaussian quadrature one has
strict inequality in (6.5) as evidenced by Tables 9 and 10. The reason for this
is that the supremums in (6.2) and (6.3) are attained for x at one of the poles,
while the supremum in (6.4) is attained for x at the equator.

For X = X (1) or X = X (2) all supremums above are attained for x’s at the
equator and, hence, in (6.5) we have an equality. For these types of nodes and
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minimal possible K and L the norm values are approximately in the middle
between the norm in (6.1) given in Tables 8 and the norm in (6.4) given in
Table 10. The main reason for the decrease of the norm is that the number of
knots in latitude direction is doubled. The general rule is that for a fixed cutoff
function ϕ whenever the nodes get denser then the norm becomes smaller and
tends to the value given in Table 8. Note that the parameters K and L are
optimized for speed, but not to minimize ‖ΦN‖.

The results in this subsection show that the norms of our needlet-type
operators are quite small, which in turn guarantees the stability of the described
algorithms.
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