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On Matching Point Configurations∗
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We present an algorithm that verifies if two unlabeled configurations
of N points in Rd are or are not an orthogonal transformation of one
another, and if applicable, explicitly compute that transformation. We
also give a formula for an orthogonal transformation in the case of noisy
measurements.
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1. Introduction

In computer vision applications, it is often necessary to match an unidenti-
fied image to an image from a library of known images such as fingerprints, faces
and others. This process is often done by identifying points (landmarks) on
the incoming image and checking whether they match the point configuration
from an already indexed image in an existing collection.

If we denote by O(d) the group of the d × d orthogonal matrices, and by
SN the group of all permutations of {1, 2, . . . , N}, a rigid motion R in Rd is
defined by

Rx = Ax + b, x ∈ Rd, with A ∈ O(d), b ∈ Rd. (1)

The problem of matching two images can be formulated in the following way.
Given two collections of N points P = {p1, . . . ,pN} and Q = {q1, . . . ,qN}
in Rd, is there an orthogonal matrix A ∈ O(d), a vector b ∈ Rd, and a permu-
tation π ∈ SN , such that in the Euclidean norm ‖ · ‖, the rigid motion defined
by (1), satisfies

‖Rpi − qπ(i)‖ ≤ ε, i = 1, . . . , N, (2)
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for a sufficiently small ε? A positive answer to this question would mean that
we have found a match. The problem of matching two collections of points
has been vastly studied using different approaches. One of them is based on
the Gramians of the point configurations and has the advantage that it retains
the information about the labeling (indexing) of the points. For example, it is
a well known fact that given two point configurations P = {p1, . . . ,pN} and
Q = {q1, . . . ,qN} in Rd, there exists a rigid motion R such that Rpi = qi,
i = 1, . . . , N , if and only if the Gramians PT P = QT Q, where P and Q are
the matrices with columns pi− p̄ and qi− q̄, respectively, with q̄ = 1

N

∑N
i=1 qi

and p̄ = 1
N

∑N
i=1 pi. Another well studied related problem is the orthogonal

Procrustes problem for finding a matrix A ∈ O(d), such that the Frobenius
norm ‖AP −Q‖F is minimized. Its solution, see [4, 5, 6, 9] and the references
therein, is given by the matrix A = UV T , where U and V come form the
singular value decomposition of Z = QPT , QPT = UΣZV T .

In this paper, we first investigate the matching and registration of unlabeled
point configuration using the Gramian approach. We propose and test a new
algorithm that verifies whether two unlabeled configurations of N points in Rd

are or are not an orthogonal transformation of one another, and if applicable,
explicitly compute that transformation. The algorithm is based on ideas used in
variable decorrelation, which is routinely solved by principal component analy-
sis (PCA). Existing algorithms for matching unlabeled point clouds are based
on iterative closest point methods, see [8, 11], and deal with the registration of
unlabeled point clouds of different sizes in the presence of noise. Although quite
useful in practice, these methods often assume certain additional information
about the point cloud. For example, they assume that the rigid motion R is
a small perturbation or it is roughly known, or that the nature of the cloud is
such that there is a fast procedure to label a reasonably large subcloud, and
thus compute the rigid motion based on that labeled subcollection. In contrast
to these techniques, our algorithm does not require any information about the
geometry of the cloud or the the nature of the rigid motion. Note that, com-
pared to the

(
N
2

)
values used in some other approaches (such as the distance

distribution approach), our algorithm uses at most d(1 + d + 2N) values to
process a point configuration, thus reducing the memory cost and the data
access time.

Here, we also present and test a stability result, see Theorem 3, where we
explicitly compute a matrix A ∈ O(d) for the rigid motion R, see (1), in the
case of noisy labeled point clouds. The question how noise in the data affects
the computed rigid body motion is an important issue in practical applications.
We show that if ε is small enough, and PT P = QT Q + εM , where the entries
of the matrix M are bounded, there is an orthogonal matrix A = A(ε) (which
we construct), such that ‖AP − Q‖ ≤ εc̃N2, with an explicitly computed
constant c̃. The converse statement is not true and we show it by constructing
a counterexample. Note that in [2], an explicit expression of the error in A,
to first order, is given in terms of the errors in P and Q when d = 3. While
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this result is much more specific than general error bounds that have been
established before, it requires the exact values of the matrices P , Q and A.
Our result from Theorem 3 does not require such knowledge and is in the spirit
of the work in [10], where supremum bounds for the perturbation error in the
solution A of the orthogonal Procrustes problem with the additional restriction
that A has a positive determinant are derived.

2. Preliminaries

This section contains well known facts that will be used throughout the
paper, as well as certain Procrustes analysis results, stated for self containment.
Some of the proofs are included for clarity, while the basic results are only
stated.

2.1. Matrices

Let π ∈ SN be a permutation of {1, 2, . . . , N}. Then the N ×N matrix Eπ

with columns {eπ(1), . . . , eπ(N)}, where ej is the j-th element of the canonical
basis of RN is called the permutation matrix associated to π. Multiplying a
matrix A on the right by Eπ permutes the columns of A by π.

Lemma 1. Let Eπ be the permutation matrix associated to π ∈ SN . Let A
and B be two positive semidefinite symmetric matrices such that B = EπAET

π .
Then the set of eigenvalues of A and B are identical, including their algebraic
multiplicity, and there exist eigenvalue decompositions of A = UAΛUT

A and
B = UBΛUT

B , such that Eπ = UBUT
A .

Note that, given arbitrary decompositions A = ŨAΛŨT
A and B = ŨBΛŨT

B

for the positive semidefinite symmetric matrices A and B, the matrix ŨBŨT
A

need not be a permutation matrix.

Lemma 2. Let P and Q be two d×N matrices. Then PT P = QT Q if and
only if there is a d × d orthogonal matrix A such that AP = Q. We call such
a matrix A an equivalence matrix.

Proof. If AP = Q, where A is an orthogonal matrix, we have QT Q =
(AP )T AP = PT (AT A)P = PT P . Conversely, if PT P = QT Q, then P and
Q have the same singular values and the same right singular vectors. Then,
using the singular value decomposition for P and Q, there are d×d orthogonal
matrices UP and UQ such that P = UP ΣV T and Q = UQΣV T , where V is
the N × N orthogonal matrix containing the eigenvectors of PT P . Therefore
Q = UQΣV T = (UQUT

P )UP ΣV T = AP , where A = UQUT
P . ¤
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Finally, in this paper, unless stated otherwise, we use the Euclidean norm
of a vector x ∈ RN and the corresponding induced matrix norm of a d × N
matrix A, ‖A‖ = max‖x‖=1 ‖Ax‖. Note that the induced matrix Euclidean
norm is also the spectral norm of A, namely

‖A‖ =
√

λmax(AT A) =
√

λmax(AAT ) = ‖AT ‖,
where λmax(AT A) is the maximal eigenvalue of AT A, and it is submultiplica-
tive, that is ‖AB‖ ≤ ‖A‖ · ‖B‖.

2.2. Labeled Point Configurations

We fix a coordinate system in Rd and denote by P := {p1, . . . ,pN} and
Q := {q1, . . . ,qN} two collections of N points in Rd, where pi is the coordinate
vector of the i-th point from P with respect to this coordinate system. Let
p̄ = 1

N (p1 + · · · + pN ) and q̄ = 1
N (q1 + · · · + qN ) be the center of mass

of P and Q, respectively, P̄ and Q̄ be the new (centered) collections P̄ :=
{p1 − p̄, . . . ,pN − p̄} and Q̄ := {q1 − q̄, . . . ,qN − q̄}, and P and Q be the
d×N matrices with columns pi − p̄ and qi − q̄, respectively.

If there is a rigid motion R such that Rpi = qi, i = 1, . . . , N , we say that P
and Q are identically equivalent. The following theorem, based on techniques
more extensively discussed in [7], provides a tool to find R if it exists.

Theorem 1. The following statements are equivalent.
(i) P and Q are identically equivalent.
(ii) PT P = QT Q.
(iii) There is an orthogonal matrix A such that AP = Q.

Proof. The equivalence for (ii) and (iii) has been proven in Lemma 2. If
there is a rigid motion R, Rx = Ax + b with an orthogonal matrix A and a
vector b, such that Rpi = qi, i = 1, . . . , N , it is easy to verify that Rp̄ = q̄.
Therefore, qi − q̄ = Rpi − Rp̄ = A(pi − p̄) for every i = 1, . . . , N , and
thus AP = Q. Conversely, if AP = Q for an orthogonal matrix A, then
qi−q̄ = A(pi−p̄), and therefore qi = Api+(q̄−Ap̄) = Rpi, with b = q̄−Ap̄,
i = 1, . . . , N . This establishes the equivalence between (i) and (iii). ¤

Note that given PT P = QT Q, the matrix A can be computed directly
if P has rank d. In this case PPT is invertible, and it can be shown that
A = QPT (PPT )−1.

3. Unlabeled Point Configurations

Often, when landmarks are extracted from an image to generate a point
configuration P, it is not possible to apriori enumerate the points in a manner
consistent with the enumeration of an existing point collection Q in our library.
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In this case, if there exist a rigid motion R and a permutation π ∈ SN , such
that Rpi = qπ(i), i = 1, . . . , N , we call the collections P and Q equivalent.
This section explores how, given two point configurations, we decide whether
they are equivalent or not.

Theorem 2. Let P = {p1, . . . ,pN} and Q = {q1, . . . ,qN} be two collec-
tions of N points in Rd. The following statements are equivalent.

(i) P and Q are equivalent.
(ii) There is a permutation matrix Eπ, such that PT P = ET

π QT QEπ.
(iii) There is an orthogonal matrix A, completely determined in Lemma 2

and a permutation matrix Eπ, such that AP = QEπ. Moreover, Eπ = UQUT
P ,

where UP and UQ are orthogonal matrices from an eigenvalue decomposition
of PT P and QT Q, respectively. (Note that one does not know which particular
eigenvalue decomposition will provide the matrices UP and UQ.)

Proof. Let π ∈ SN be the permutation from the definition of equivalence
of the two collections P and Q. We consider the permutation matrix Eπ,
associated with π. We denote by Qπ the re-enumerated collection of points Q
with corresponding matrix Qπ with columns qπ(i) − q̄. Note that Qπ = QEπ.
Then, P and Q are equivalent if and only if P and Qπ are identically equivalent,
which using Theorem 1, is true if and only if

PT P = ET
π QT QEπ = Eπ−1QT QE−1

π−1 .

By Lemma 1, there are orthogonal matrices UP and UQ with PT P = UPΛUT
P

and QT Q = UQΛUT
Q , such that Eπ−1 = UPUT

Q , and therefore Eπ = UQUT
P .

Relation (ii) can be written as PT P = (QEπ)T QEπ. By Lemma 2 this is
true if and only if there is an orthogonal matrix A, described in this lemma,
such that AP = QEπ. ¤

Notice that the matrix QQT does not depend on the permutation of the
columns of Q, since QπQT

π = QEπET
π QT = QQT . The next lemma provides

some insight on whether a suitable matrix A, related to the rigid motion R
exists and if it does, gives another way of its explicit construction.

Lemma 3. Let P = {p1, . . . ,pN} and Q = {q1, . . . ,qN} be two equivalent
collections of N points in Rd. Then the d×d matrices PPT and QQT have the
same eigenvalues 0 ≤ λ1 ≤ . . . ≤ λd, including their algebraic multiplicities.
Let vi and wi be the orthonormal eigenvectors of PPT and QQT corresponding
to λi, i = 1, . . . , d, respectively. Let V and W be the orthogonal matrices with
columns {vi} and {wi}. If the eigenvalues {λi} are distinct, then there are
integers εi = ±1, i = 1, . . . , d, and a permutation π ∈ SN , determined from
Qπ = AP , such that

< pk − p̄,vi >= εi < qπ(k) − q̄,wi >, k = 1, . . . , N, i = 1, . . . , d. (3)

Moreover, if E := diag(ε1, . . . , εd), then the equivalence matrix A can be written
as A = WEV T .
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Proof. It follows from Theorem 2 that if P and Q are equivalent, then
there is an orthogonal matrix A, such that AP = QEπ for some permuta-
tion π ∈ SN , with π = id if the points are identically equivalent. Then we
have QQT = APET

π EπPT AT = A(PPT )AT . Since PPT is a real symmet-
ric matrix, and vi, i = 1, . . . , d, are orthonormal eigenvectors of PPT corre-
sponding to the eigenvalues λ1 ≤ . . . ≤ λd, we have PPT = V ΛP V T , with
ΛP = diag(λ1, . . . , λd), and therefore QQT = (AV )ΛP (AV )T . Clearly, AV is
an orthogonal matrix as a product of two orthogonal matrices. Also, QQT and
PPT have the same eigenvalues, including their algebraic multiplicities, and
AV is a matrix whose columns {Avi} are eigenvectors of QQT .

Let us consider now the case when PPT and QQT have d distinct eigenval-
ues λi. Then the dimension of the corresponding eigenspaces Ker(PPT −λiI)
will be one, and therefore if {wi} is an orthonormal system of eigenvectors for
QQT , then εiwi = Avi with εi = ±1. The latter can be written as WE = AV ,
namely A = WEV T . Since Qπ = AP and A is orthogonal matrix, we have
< pk − p̄,vi >=< A(pk − p̄), Avi >= εi < qπ(k) − q̄,wi >, and the proof is
completed. ¤

Note that if < pk − p̄,vi >= 0 for every k = 1, . . . , N , εi cannot be deter-
mined from (3). If this happens, then PT vi = 0, and therefore PPT vi = 0.
This means that vi is the eigenvector that corresponds to the eigenvalue 0,
namely i = 1 and λ1 = 0. Thus, if 0 < λ1 < . . . < λd, which happens if
rank(P ) = d, then there is at least one k which may depend on i, such that
< pk − p̄,vi > 6= 0, and we have εi =< pk − p̄,vi > / < qπ(k) − q̄,wi > .
In this case the matrix E = diag(ε1, . . . , εd), and A = WEV T is completely
determined if π is known.

Since the point collections are not labeled, we do not know π and could
not use the above formula unless we go through all possible N ! choices for π.
But that would be just an application of the well known PCA for each of the
N ! choices of π, which is not computationally efficient. Our goal is to find E,
and therefore A, without an apriori knowledge of the permutation π, under the
assumption that all eigenvalues of PPT are distinct.

Let L−i (P) := {|〈pk − p̄,vi〉| : 1 ≤ k ≤ N, 〈pk − p̄,vi〉 < 0}, i = 1, . . . , d,
be the collection of the absolute values of all negative scalar products, and
L+

i (P) := {〈pk − p̄,vi〉 : 1 ≤ k ≤ N, 〈pk − p̄,vi〉 > 0}, be the collection of all
positive scalar products, including their repetitions. We similarly define L−i (Q)
and L+

i (Q). If rank(P ) = d, at least one of L−i (P) or L+
i (P) will have at least

one element. The same holds for L−i (Q) and L+
i (Q). Let P be equivalent to Q.

Then for any fixed i = 1, . . . , d, if L+
i (P) 6= L−i (P), it follows from (3) that

only one of the following two cases happens:

• either L+
i (P) = L+

i (Q) and L−i (P) = L−i (Q), and thus εi = 1, or

• L+
i (P) = L−i (Q) and L−i (P) = L+

i (Q), and thus εi = −1.

If there is i0 such that L+
i0

(P) = L−i0(P), we cannot make the decision whether
L+

i0
(P) = L+

i0
(Q) or L+

i0
(P) = L−i0(Q), and therefore determine whether εi0 = 1
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or εi0 = −1. In this case, we should consider both cases. In general, we can
have m ≤ d indices i, i1, . . . , im, for which L+

i`
(P) = L−i`

(P), ` = 1, . . . ,m,
and we have to consider 2m matrices E, E1, . . . , E2m , corresponding to the
various cases of ±1 located at the positions described by these m indices. If
Q 6= WEkV T P for k = 1, . . . , 2m, then Q is not equivalent to P. Otherwise, if
there is k, such that Q = WEkV T P , they are equivalent, and A = WEkV T is
the matrix of equivalence.

Let us denote by L := {P} a library of collections of N points in Rd. Let
M be the subset of L that contains all collections P for which the eigenvalues
0 ≤ λ1 ≤ . . . ≤ λd of PPT are distinct. Let Q be a configuration of N points
in Rd that we need to match to a collection from the library L. The algorithm,
described below, is based on the above observations and always determines
whether Q is equivalent to a collection from M and may or may not determine
whether Q is equivalent to a collection from L \M.

We have performed several numerical experiments to test our algorithm. In
our implementation, as it is usually done in practice, the equality in lines 1, 7,
9, 11 and 23 in Algorithm 1 has been substituted by ε-distance. For example,
Q = WEV T P has been substituted by ‖Q − WEV T P‖ ≤ ε, with ε ranging
from 10−6 to 10−10.

Test 1: For each pair (d,N), d ∈ {2, 3, 4}, N ∈ {2n : 3 ≤ n ≤ 10},
we have generated in random a library L = L(d,N) of 4000 collections of N
points in Rd uniformly distributed inside the unit sphere. We next build a set
T = T (d,N) of point collections by first choosing (in random) 2000 collections
from L, each of which is subsequently shuffled and rotated (in random). For
each collection Q ∈ T , we apply Algorithm 1 with P exhausting all elements
from L until a match is found. The algorithm was able to match each Q from
T to its respective collection in L.

Test 2: For each pair (d,N), d ∈ {2, 3, 4},N ∈ {2n : 3 ≤ n ≤ 10}, we
generate in random a library L = L(d,N) of 4000 collections of N points in Rd

uniformly distributed inside the unit sphere. We next generate the same way a
set T = T (d,N) of 2000 point collections, and for each collection Q ∈ T apply
Algorithm 1 with P exhausting all elements from L until a match is found. As
expected, the algorithm was not able to find a match.

Note that the eigenvalues of the matrix PPT cannot be computed exactly,
as they are roots of a degree d polynomial. However, there are high precision
algorithms with complexity O(d3) to compute the eigenvalue decomposition for
Gramians, see [1]. Our algorithm requires the computation of PPT , (complex-
ity O(d2N)), its eigenvalue decomposition (complexity O(d3)), the computation
of the 2d vectors in Rd, (< p1 − p̄,vi >, . . . , < pN − p̄,vi >), i = 1, . . . , d,
and (< q1 − q̄,wi >, . . . , < qN − q̄,wi >), i = 1, . . . , d (complexity O(dN2)),
the computation of at most 2m matrices A, each with complexity at most
O(d3), and the computation of at most 2m matrices AP , each with complexity
O(d2N). Therefore, for large values of N ≈ d2d, our algorithm has complexity
of O(dN2). Note that for every collection P ∈ L the algorithm needs only the d
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Algorithm 1 Decision and Orthogonal Matrix Computation
Require:

P , {λi}, {vi}, {L+
i (P)}, {L−i (P)}.

Q, {γi}, {wi}, {L+
i (Q)}, {L−i (Q)}.

% The eigenvalues should be given in increasing order.
Ensure:

res % Decision value. It may be true, false or inconclusive.
A % Orthogonal transformation, if res is true.

1: if {λi} 6= {γi} then
2: return res ← false
3: else if λ1 < · · · < λd then
4: f ← 1, i ← 0
5: while i < d and f = 1 do
6: i ← i + 1
7: if {L+

i (P)} = {L−i (P)} = {L+
i (Q)} = {L−i (Q)} then

8: εi = ±1
9: else if {L+

i (P)} = {L+
i (Q)} and {L−i (P)} = {L−i (Q)} then

10: εi = +1
11: else if {L+

i (P)} = {L−i (Q)} and {L−i (P)} = {L+
i (Q)} then

12: εi = −1
13: else
14: f ← 0
15: end if
16: end while
17: if f = 0 then
18: return res ← false
19: else
20: W ← [w1, . . . ,wd]
21: V ← [v1, . . . ,vd]
22: E ← diag(ε1, . . . , εd)
23: if Q = WEV T P then
24: return res ← true, A ← WEV T

25: else
26: return res ← false
27: end if
28: end if
29: else
30: return res ← inconclusive
31: end if
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eigenvalues of PPT , and when they are distinct, the d×N matrix P , the d×d
matrix V , and the d vectors (< p1− p̄,vi >, . . . , < pN − p̄,vi >), i = 1, . . . , d,
which in total is at most d(1 + d + 2N) numbers.

4. Robustness

In this section we investigate the problem of matching two labeled point
configurations P and Q in Rd in the presence of noise. The collections P =
{p1, . . . ,pN} and Q = {q1, . . . ,qN} are said to be ε-identically equivalent, if∣∣‖pi − pj‖2 − ‖qi − qj‖2

∣∣ ≤ ε for all i, j = 1, . . . , N . The following statement,
whose proof we omit, holds.

Lemma 4. (i) If P and Q are ε-identically equivalent, then

| < pi − p̄,pj − p̄ > − < qi − q̄,qj − q̄ > | ≤ 2ε, ∀ 1 ≤ i, j ≤ N. (4)

(ii) If the Gramians for P and Q satisfy

| < pi − p̄,pj − p̄ > − < qi − q̄,qj − q̄ > | ≤ ε, ∀ 1 ≤ i, j ≤ N, (5)

then P and Q are 4ε-identically equivalent.

Lemma 4 shows that if P andQ are Cε-identically equivalent with C being a
fixed constant, then their Gramians are close, namely PT P = QT Q+εM , where
the entries mij of M are bounded by some positive constant c0, |mij | ≤ c0,
and vice versa.

Next, we investigate whether a statement similar to Lemma 2 holds in the
presence of noise, that is whether two point configurations P and Q are Cε-
equivalent if and only if there is an orthogonal matrix A for which AP is close
to Q. The answer to this question is given in Theorem 3 and Theorem 4.

Theorem 3. Let P = {p1, . . . ,pN} and Q = {q1, . . . ,qN} be two collec-
tions of N points in Rd, such that rank(P ) = d, ‖pi− p̄‖ ≤ c and ‖qi− q̄‖ ≤ c,
i = 1, . . . , N , c = const. Let

PT P = QT Q + εM, (6)

where M = (mij) is a matrix with bounded entries, |mij | ≤ c0, c0 = const, and

0 < ε ≤ (1− δ)
(‖(PPT )−1‖Nc0

)−1 (7)

for some 0 < δ < 1. Then there exists an orthogonal matrix A = A(ε), such
that ‖AP −Q‖ ≤ εc̃N2, with a constant c̃,

c̃ = cc0‖(PPT )−1‖(2 + c‖(PPT )−1‖1/2δ−1/2
)
.
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Proof. First, we will derive estimates for the norms of some of the matrices
we consider. It is easily seen that ‖P‖ ≤ c

√
N (and similarly, ‖Q‖ ≤ c

√
N),

since

‖P‖2 = λmax(PT P ) ≤ trace(PT P ) =
N∑

i=1

‖pi − p̄‖2 ≤ c2N,

and that ‖M‖ ≤ c0N . Note that PPT is invertible since d = rank(P ) =
rank(PPT ), and we can consider the matrices PT (PPT )−1 and (PPT )−1P .
We have (PPT )−1P = (PT (PPT )−1)T , thus ‖(PPT )−1P‖ = ‖PT (PPT )−1‖.
Clearly, (PT (PPT )−1)T (PT (PPT )−1) = (PPT )−1, and we have

‖PT (PPT )−1‖2 = λmax[(PPT )−1].

This result, combined with the fact that

‖(PPT )−1‖2 = λmax

[
((PPT )−1)T (PPT )−1

]

= λmax

[
((PPT )−1)2

]
= (λmax

[
(PPT )−1

])2
,

gives

‖(PPT )−1P‖ = ‖PT (PPT )−1‖ =
√
‖(PPT )−1‖. (8)

It follows from (6) that

I = (PPT )−1PQT QPT (PPT )−1 + ε(PPT )−1PMPT (PPT )−1.

As it was done in Lemma 2, we construct the matrix B := QPT (PPT )−1, set
L := (PPT )−1PMPT (PPT )−1, and rewrite the above representation of I as

I = BT B + εL. (9)

Using the bounds for the norms of Q and M and (8), we obtain

‖B‖ ≤ ‖Q‖ · ‖PT (PPT )−1‖ ≤ c
√

N‖(PPT )−1‖1/2 (10)

and
‖L‖ ≤ ‖PT (PPT )−1‖2 · ‖M‖ ≤ c0N‖(PPT )−1‖. (11)

Notice that B is not an orthogonal matrix, and thus cannot be a candidate
for an equivalence matrix. However, we can modify B in order to obtain an
orthogonal matrix. Let 0 ≤ β1(ε) ≤ . . . ≤ βd(ε) be the eigenvalues of BT B and
UB be the orthogonal matrix such that

UT
BBT BUB = diag (β1(ε), . . . , βd(ε)) .

If xi ∈ Rd, ‖xi‖ = 1 is the eigenvector corresponding to βi(ε), then

βi(ε) = ‖BT Bxi‖ = ‖xi − εLxi‖ ≥ ‖xi‖ − ‖εLxi‖ ≥ ‖xi‖ − ε‖L‖ · ‖xi‖
= 1− ε‖L‖ ≥ 1− (1− δ)

(
c0N‖(PPT )−1‖)−1 · c0N‖(PPT )−1‖ = δ,
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where we have used (11) and the inequality for ε.
Next, we give an explicit construction of the equivalence matrix A. First,

we set
Λ = Λ(ε) := diag

(
β1(ε)−1/2, . . . , βd(ε)−1/2

)
,

and consider the matrix

A = A(ε) := BUBΛUT
B . (12)

Note that A is orthogonal since

AT A = UBΛUT
BBT BUBΛUT

B = UBΛ diag(β1(ε), . . . , βd(ε)) ΛUT
B = I.

Moreover, we will show that ‖AP − Q‖ ≤ εc̃N2 for the constant c̃ defined in
the theorem. We write

AP −Q = (A−B)P + (BP −Q) = BUB(Λ− I)UT
BP + (BP −Q), (13)

and compute BP − Q. Multiplication of (6) on the right by PT leads to
PT PPT = QT QPT + εMPT , which gives PT = QT B + εMPT (PPT )−1. We
have

P = BT Q + ε(PPT )−1PMT ,

and therefore

BP−Q = (BBT −I)Q+εB(PPT )−1PMT = ε(B(PPT )−1PMT −LQ), (14)

where in the last equality we have used (9). It follows from (13) and (14) that

‖AP −Q‖ ≤ ‖BUB(Λ− I)UT
BP‖+ ε‖B(PPT )−1PMT − LQ‖. (15)

We next estimate each of the norms on the right-hand side. Note that using
the lower bound for βi(ε) and (11), we have

‖Λ− I‖ = max
i=1,...,d

∣∣∣βi(ε)−1/2 − 1
∣∣∣

≤ δ−1/2 · max
i=1,...,d

|1− βi(ε)| ≤ δ−1/2‖I −BT B‖

= ε‖L‖δ−1/2 ≤ εc0N‖(PPT )−1‖δ−1/2,

and therefore

‖BUB(Λ− I)UT
BP‖ ≤ ‖B‖ · ‖Λ− I‖ · ‖P‖ ≤ εδ−1/2c0c

2N2‖(PPT )−1‖3/2.

The second norm in (15) is evaluated, using (8), (10), (11) and the bounds
for the norms of M and Q, as follows:

‖B(PPT )−1PMT −LQ‖ ≤ ‖B(PPT )−1PMT ‖+ ‖LQ‖ ≤ 2cc0N
2‖(PPT )−1‖.
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The last two inequalities result in

‖AP −Q‖ ≤ εcc0‖(PPT )−1‖(cδ−1/2‖(PPT )−1‖1/2 + 2
)
N2,

and the proof is completed. ¤

Unfortunately, the converse of this theorem is in general false. The following
theorem holds.

Theorem 4. For any positive constants c, c0, c̃, and for any 0 < ε ≤
1
2c2c−1

0 , we can find d, N , two collections of N points P = {p1, . . . ,pN} and
Q = {q1, . . . ,qN} in Rd and an orthogonal matrix A, such that rank(P ) = d,
‖pi − p̄‖ ≤ c and ‖qi − q̄‖ ≤ c for i = 1, . . . , N , ‖AP − Q‖ ≤ εc̃N2, but
PT P = QT Q + εM , where M is a matrix for which for at least one entry
|mij | ≥ c0.

Proof. Consider any constants c, c0, c̃, d a positive integer, and N = 2d. Let
{e1, . . . , ed} be the canonical basis for Rd, and let P = {p1, . . . ,pN} be the
collections of points, where p2i−1 = c√

2
ei and p2i = − c√

2
ei for i = 1, . . . , d,

and Q = {q1, . . . ,qN} be such that q1 = q2 = 0 and qj = pj , j = 2, . . . , N .
A simple computation yields p̄ = q̄ = 0, and therefore ‖pi − p̄‖ = ‖pi‖ =
c/
√

2 < c. Similarly, ‖qi − q̄‖ = ‖qi‖ < c. If A = I, then AP −Q = P −Q,

(P −Q)T (P −Q) =
c2

2




1 −1 0 · · · 0
−1 1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




,

and therefore λmax

(
(P −Q)T (P −Q)

)
= c2, which gives that ‖P − Q‖ = c.

We compute directly that

PT P −QT Q =
c2

2




1 −1 0 · · · 0
−1 1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




= εM.

For any ε ≤ 1
2c2c−1

0 , we have that |m11| = c2

2ε ≥ c0, but if 2d = N is large
enough, namely 2d = N ≥ c1/2(εc̃)−1/2

, we have that εc̃N2 ≥ c = ‖AP −Q‖,
and the proof is completed. ¤

Finally, we verify the theoretical results from Theorem 3 by performing
a series of numerical experiments. For each pair (d,N), d ∈ {2, 3, 4}, N ∈
{2n : 3 ≤ n ≤ 10}, we choose in random 1000 collections P of N uniformly
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N d = 2 d = 3 d = 4
8 0.9468 0.7066 0.5333

16 0.8403 0.6470 0.4670
32 0.6114 0.5323 0.3984
64 0.4622 0.4595 0.3724

128 0.3829 0.3626 0.2839
256 0.2709 0.2327 0.2128
512 0.2002 0.1760 0.1566

1024 0.1415 0.1295 0.1182

Table 1. Simulation results.

distributed points inside the unit sphere and 1000 collections P of N uni-
formly distributed points on the unit sphere. We select δ = 0.9, c0 = 1,
ε = 1

2 (1 − δ)
(‖(PPT )−1‖Nc0

)−1 = 0.05
(‖(PPT )−1‖N)−1. The matrix Q is

then generated so that (6) holds, the matrix A is computed according to (12),
and c := max

i=1,...,N

{‖pi − p̄‖, ‖qi − q̄‖}. For each pair (d,N) the biggest ratio

‖AP −Q‖/(εc̃N2) (among the 2000 choices) is recorded in Table 1. It is clearly
seen that the empirical results confirm our theoretical bound.
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