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Semidefinite Extreme Points
in a Polynomial Space∗

Lozko Milev

Let ∆ be the standard simplex in R2. Denote by π2 the set of all real
bivariate algebraic polynomials of total degree at most two. Let B∆ be
the unit ball of the space π2 endowed with the supremum norm on ∆.

We present with short proofs two results from [13] which describe the
semidefinite extreme points of B∆. This completes the description of the
set E∆ of all extreme points of B∆, initiated in [11] and [12].

In addition, we give graphical illustrations of some typical semidefinite
polynomials from E∆.
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1. Introduction

Denote by πd
n the set of all real algebraic polynomials of d variables and of

total degree not exceeding n. Let K be a compact set in Rd and ‖f‖C(K) :=
maxX∈K |f(X)| be the uniform norm on K.

We use the notation Bn(K) for the unit ball of πd
n with respect to ‖ · ‖C(K),

i.e., Bn(K) =
{
p ∈ πd

n : ‖p‖C(K) ≤ 1
}
. The set of all extreme points of Bn(K)

will be denoted by En(K). Recall that a point p of a convex set B is said to be
extreme if the equality p = λp1 + (1− λ)p2 for some p1, p2 ∈ B and λ ∈ (0, 1)
implies p = p1 = p2.

According to the Krein-Milman theorem, Bn(K) is the convex hull of En(K).
This result motivates the study of the extreme points of the unit ball of various
polynomial spaces. We refer to papers [8, 3, 5, 1, 6, 18], where also related prob-
lems in the geometry of polynomials are studied. An important consequence
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of Krein-Milman’s theorem is the fact that

max
p∈Bn(K)

F (p) = max
p∈En(K)

F (p),

provided F is a convex function defined on Bn(K). Therefore, the description
of the extreme points of Bn(K) can be useful in deriving the exact constants
in certain inequalities for polynomials.

Recently several authors studied generalizations of the inequality of Bern-
stein for multivariate polynomials on convex bodies (see [20, 9, 10, 14, 16, 15,
2, 19, 4]). If the convex body is non-symmetric, the problem of finding the
sharp Bernstein’s inequality is still open. In this connection, the description of
the extreme points when K is the standard simplex is of special interest.

Let ∆ be the standard simplex in R2, i.e.,

∆ :=
{
(x, y) ∈ R2 : x ≥ 0, y ≥ 0, x + y ≤ 1

}
.

The strictly definite and the indefinite extreme points of B2(∆) were de-
scribed in [11, 12]. In [13] we completed the description of E2(∆), finding its
semidefinite elements.

In what follows, we denote the vertices of ∆ by O(0, 0), A(1, 0) and B(0, 1).
We shall use the abbreviated notations π2 := π2

2 , ‖·‖ := ‖·‖C(∆), B∆ := B2(∆),
and E∆ := E2(∆).

Recall that

p(x, y) = a + b x + c y + d x2 + 2e xy + f y2 (1)

is a semidefinite quadratic polynomial if and only if

det(M) = 0, where M :=
(

d e
e f

)
.

Note that a polynomial p of degree at most one is an extreme point of B∆

if and only if p ≡ 1 or p ≡ −1 (see Section 2). Therefore, we shall consider
only semidefinite polynomials of degree exactly two. For definiteness we shall
suppose that the polynomials are negative semidefinite. In other words, we shall
describe the elements of E∆ ∩ P−2 , where P−2 := {p ∈ π2 : λ1 < 0, λ2 = 0},
and {λi}21 are the eigenvalues of M . It is known ([7]) that a polynomial of the
form (1) belongs to P−2 if and only if det(M) = 0 and (d < 0 or f < 0).

The coordinates of every point of a local extremum X0 = (x0, y0) of a
polynomial p ∈ P−2 satisfy the system

2M(x, y)> = −(b, c)>.

Since the rank of M is equal to 1, the above system either has no solutions or
has a one-dimensional set of solutions. In the first case p has no local extrema
in R2. In the second case every solution is a global maximum of p on R2, which
follows from the representation

p(X) = p(X0) + (X −X0)M(X −X0)>,
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where X = (x, y), and the negative semidefiniteness of M .
Given a polynomial p, we denote by M(p) the set of all points X ∈ ∆ such

that |p(X)| = ‖p‖.
The aim of this paper is to present the following results from [13], which

give a full description of the semidefinite elements of E∆.

Theorem 1. Suppose that p ∈ P−2 and there exists a point X0 = (x0, y0) ∈
int∆ such that p(X0) = 1. Then p is an extreme point of B∆ if and only if the
following conditions hold:

(i) p(x, y) = 1− [
α(x− x0) + β(y − y0)

]2, (α, β) 6= (0, 0);
(ii) min{p(O), p(A), p(B)} = −1.

Theorem 2. Suppose that p ∈ P−2 and p(X) 6= 1 for every X ∈ int∆.
Then p is an extreme point of B∆ if and only if p ∈ {pi}6i=1, where

p1(x, y) = 1− 2(x + y)2, p4(x, y) = 1− 2(x + y − 1)2,

p2(x, y) = 1− 2(x− 1)2, p5(x, y) = 1− 2x2,

p3(x, y) = 1− 2(y − 1)2, p6(x, y) = 1− 2y2.

Note that all positive semidefinite elements of E∆ have the form q = −p,
where p ∈ E∆ ∩ P−2 .

Concise proofs of Theorems 1 and 2 are given in Section 2. Section 3 con-
tains graphical illustrations of some typical semidefinite polynomials from E∆.

2. Proofs

We shall use a lemma which is proved in [11].

Lemma A. Suppose that n, d ∈ N and K is a convex body in Rd. Let
p ∈ Bn(K) satisfy ‖p‖C(K) = 1. Suppose that q ≡ 0 is the only polynomial
from πd

n, which satisfies the conditions:
(a) q(X) = 0 for every X ∈M(p);

(b)
∂q

∂
−−→
XM

(X) = 0 if X ∈M(p), M ∈ K, and
∂p

∂
−−→
XM

(X) = 0.

Then p is an extreme point of Bn(K).

Proof of Theorem 1. Necessity. Since p ∈ E∆ we have ‖p‖ = 1. The assump-
tion p(X0) = 1 implies that X0 is a local (and global) extremum of p. Therefore
p has a straight line of global maxima, including X0. Let us denote it by m.
We have p(x, y) ≡ 1 on m which gives

p(x, y)− 1 = m(x, y) l(x, y),
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where m(x, y) = 0 is the equation of m and l ∈ π2
1 . For every X = (x, y) ∈ m

we have

∂p

∂x
(X) =

∂m

∂x
(X) l(X) + m(X)

∂l

∂x
(X) =

∂m

∂x
(X) l(X) = 0.

Similarly,
∂m

∂y
(X) l(X) = 0.

But
(

∂m
∂x (X), ∂m

∂y (X)
) 6= (0, 0) which implies l(X) = 0 for every X ∈ m, i.e.,

l = c m . Thus p(x, y) = 1 + cm2(x, y) and the coefficient c has to be negative.
The last formula proves the representation (i).

To prove (ii) we note that every concave function on ∆ attains its minimum
at some vertex of ∆ and every non-constant polynomial p ∈ E∆ takes the values
±1 in ∆ (see [11, Lemma 1]).

Sufficiency. Suppose that a polynomial p has the form (i) and satisfies (ii).
Since X0 ∈ ∆, conditions (i) and (ii) imply ‖p‖ = 1. It remains to show that
p ∈ E∆.

We shall apply Lemma A. Let us denote by m the straight line with equation
α(x − x0) + β(y − y0) = 0. The set m ∩ ∆ is a subset of M(p). Note that
grad p(X) = 0 for every X ∈ m. Let X1 be a vertex of ∆ such that p(X1) = −1.
Clearly, X1 ∈ M(p). According to Lemma A, it is sufficient to prove that if a
polynomial q ∈ π2 satisfies the conditions

q(X) = 0, grad q(X) = 0, for every X ∈ m,

q(X1) = 0,
(2)

then q ≡ 0.
The condition q(X) = 0 on m implies q(x, y) = m(x, y) l(x, y), where l ∈ π2

1 .
Using the second equality in (2) we obtain

∂q

∂x
(X) =

∂m

∂x
(X) l(X) + m(X)

∂l

∂x
(X) = 0

for every X ∈ m, which implies α l(X) = 0 on m. Similarly, β l(X) = 0 on m.
Since at least one of the coefficients α and β is different from zero, we conclude
that l = c m, where c is a constant.

Finally, it follows from the third condition in (2) that cm2(X1) = 0. But
m(X1) 6= 0 since otherwise we would have p(X1) = 1, a contradiction. Conse-
quently c = 0, i.e., q ≡ 0. The theorem is proved. ¤

The following lemmas are needed for the proof of Theorem 2.

Lemma 1. Suppose that p ∈ P−2 ∩ E∆ and p(X1) = p(X2) = 1 for some
X1, X2 ∈ ∆, X1 6= X2. Then p ≡ 1 on the line X1X2.
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Proof. It is an easy consequence of the concavity of p. ¤
It follows from Lemma 1 that if a polynomial p ∈ P−2 ∩E∆ attains the value

one only at ∂∆ then there are two possibilities:
Case 1. There exists a unique point X1 ∈ ∂∆ such that p(X1) = 1;
Case 2. There exists a side l of ∆ such that p ≡ 1 on l. (In fact, by

Lemma 1, l is unique.)
It turns out that Case 1 divides into two essentially different subcases,

namely X1 is a vertex of ∆ or X1 is an interior point for a side of ∆. We begin
with the first subcase.

Lemma 2. Suppose that p ∈ P−2 ∩ E∆, p(O) = 1, and p(X) < 1 for every
X ∈ ∆ \ {O}. Then p ≡ −1 on the closed segment [AB].

Proof. The concavity of p and the fact that p attains the value −1 in ∆
(see [11, Lemma 1]) imply that

min
X∈∆

p(X) = min{p(O), p(A), p(B)} = −1.

Let us suppose for definiteness that p(A) = −1. It remains to prove that
p(X) = −1 for every X belonging to the semi-closed segment (AB]. Assume
the contrary, i.e., there exists a point X0 ∈ (AB] such that p(X0) > −1. We
shall construct a nonzero polynomial q ∈ π2 such that f := p ± εq ∈ B∆ for
every sufficiently small positive number ε. This will be in contradiction to
p ∈ E∆.

It is easily seen that M(p) ⊂ {O,A, B}. By virtue of Lemma A, we choose
a nonzero q ∈ π2 which satisfies the conditions:

q(O) = q(A) = q(B) = 0 and
∂q

∂x
(O) =

∂q

∂y
(O) = 0.

For definiteness, we take q(x, y) = xy. We establish the following properties
of f , provided ε is sufficiently small:

(a)
∂f

∂
−−→
OM

(O) ≤ 0 for every M ∈ ∆, M 6= O;

(b)
∂f

∂
−−→
AM

(A) > 0 for every M ∈ ∆, M 6= A.

Using (a) and (b), we prove the inequality |f(X)| ≤ 1 first for X ∈ ∂∆ and
then for X ∈ int∆. ¤

Lemma 3. Suppose that p ∈ P−2 , p(O) = 1, and p(X) < 1 for every
X ∈ ∆ \ {O}. Then p ∈ E∆ if and only if p(x, y) = 1− 2(x + y)2.

Proof. Necessity. Suppose that p ∈ E∆. Using Lemma 2 and the semidefi-
niteness of p, we obtain that p has the form pa(x, y) = [a(x+y)−2](x+y−1)−1.
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Furthermore, it is seen that pa ∈ P−2 ∩B∆ if and only if a ∈ [−2, 0). The rep-
resentation pa = λp−2 + (1 − λ)p0, λ = −a

2 ∈ (0, 1), shows that pa /∈ E∆ for
a ∈ (−2, 0), hence p = p−2 = 1− 2(x + y)2.

Sufficiency. It is proved by applying Lemma A to the polynomial p−2. ¤
Recall that the second possibility is that X1 belongs to the interior of a side

of ∆. We prove the following

Lemma 4. Suppose that p ∈ P−2 , ‖p‖ = 1, p(X1) = 1 for some point
X1 ∈ (AB), and p(X) < 1 for every X ∈ ∆ \ {X1}. Then p is not an extreme
point of B∆.

Proof. Note first that p cannot be identically equal to −1 on [OA] ∪ [OB].
Without loss of generality we can suppose that p

∣∣
OB

6≡ −1. We set q(x, y) :=
y(x + y − 1) and shall prove that f := p ± εq ∈ B∆ for every sufficiently
small positive number ε, which implies p /∈ E∆. To this end, we show that
grad p(X) 6= 0 for every X ∈ ∆. Hence, the same holds true for f , provided ε
is sufficiently small. Therefore ‖f‖ = ‖f‖C(∂∆) and a careful examination of f
on ∂∆ completes the proof. ¤

Next we consider Case 2 for p, namely p is identically equal to one on a side
of ∆ (see the remark after Lemma 1).

Lemma 5. Suppose that p ∈ P−2 , ‖p‖ = 1, and p(X) ≡ 1 for all X ∈ [AB].
If maxX∈R2 p(X) > 1 or p does not have local extrema in R2, then p is not an
extreme point of B∆.

Proof. It is similar to that of Lemma 4. Here M(p) = {O} ∪ [AB]. By
virtue of Lemma A, we consider the polynomial q(x, y) := x(x + y − 1) which
vanishes on M(p) and prove that f := p± εq ∈ B∆ for every sufficiently small
ε > 0. ¤

Lemma 6. Suppose that a polynomial p ∈ P−2 satisfies p(X) = 1 for every
X ∈ [AB]. Then p ∈ E∆ if and only if p(x, y) = 1− 2(x + y − 1)2.

Proof. Necessity. Using Lemma 5 and a reasoning similar to that in the
beginning of the proof of Theorem 1, we obtain p(x, y) = 1 + c(x + y − 1)2.
The concavity of p and [11, Lemma 1] imply p(O) = −1, hence p(x, y) =
1− 2(x + y − 1)2.

Sufficiency. It is based on Lemma A. We have M(p) = {O} ∪ [AB].
Therefore, the conditions of the type (a) for q are

q(X) = 0, for every X ∈ [AB], (3)

and
q(O) = 0. (4)
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Since grad p(X) = 0 for every X ∈ [AB] a condition of the type (b) for q is

grad q(X) = 0, for every X ∈ [AB]. (5)

We prove that q ≡ 0 is the only polynomial from π2 which satisfies (3)–(5).
By Lemma A, the proof is completed. ¤

Proof of Theorem 2. Necessity. Assume that p ∈ P−2 ∩ E∆ and p(X) < 1
for every X ∈ int∆. As it was mentioned above, either there exists a unique
point X1 ∈ ∂∆ such that p(X1) = 1, or there exists a unique side l of ∆ such
that p ≡ 1 on l.

In the first case, by Lemma 4, X1 is a vertex of ∆. If X1 = O the explicit
form of p is given by Lemma 3 and this is p1(x, y) = 1 − 2(x + y)2. The
polynomials p2(x, y) = 1 − 2(x − 1)2 and p3(x, y) = 1 − 2(y − 1)2 correspond
to X1 = A and X1 = B, respectively.

In the second case, if l = [AB] then the explicit form of p(x, y) = p4(x, y) =
1 − 2(x + y − 1)2 is obtained in Lemma 6. The remaining two polynomials
(p5 and p6) correspond to l = [OB] and l = [OA].

Sufficiency. It follows form Lemmas 3 and 6 that pi ∈ P−2 ∩ E∆, for every
i = 1, . . . , 6. Theorem 2 is proved. ¤

Remark. ([13, Section 3]) The only extreme points of B∆ of degree at
most one are the constants ±1.

Indeed, note first that if p ∈ π2
0 ∩E∆ then p = ±1. It remains to prove that

E∆ does not contain affine functions. To this end, let p ∈ (π2
1 \ π2

0) ∩B∆. We
set α = p(A), β = p(B), γ = p(O). If α = β = γ then p is a constant, which is a
contradiction. Therefore, without loss of generality we can suppose that α 6= β.
We consider the indefinite polynomials f±ε := p± εq, where q(x, y) := xy and
ε > 0 and prove that f±ε ∈ B∆ provided ε is sufficiently small. Consequently,
p is not an extreme point of B∆.

3. Graphical Illustrations

We provide some graphs which illustrate the results of Theorem 1 and
Theorem 2.

Figure 1 presents the graph of a semidefinite extreme polynomial of the
type described in Theorem 1. This polynomial corresponds to the parameters
X0 = (x0, y0) = (0.6, 0.1) ∈ int∆, α = 2.232, β = 0.744, and satisfies the
condition p(O) = −1. The straight line of global maxima m has the equation
α(x−x0)+β(y−y0) = 0. Let us note that [PQ] = {(x, y, 1) : (x, y) ∈ m∩∆}.

Figures 2 and 3 show the graphs of the polynomials p1 and p4 of Theo-
rem 2. The remaining four polynomials can be obtained from p1 and p4 by
affine transformations from R2 to R2 that map the triangle ∆ onto itself. The
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Figure 1. The polynomial p(x, y) of the type in Theorem 1 with x0 = 0.6, y0 = 0.1,

α = 2.232, β = 0.744.�
�

�� ��
Figure 2. The polynomial p1(x, y) = 1− 2(x + y)2 in Theorem 2.
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Figure 3. The polynomial p4(x, y) = 1− 2(x + y − 1)2 in Theorem 2.

polynomials p1 and p4 represent the first and the second case in the proof of
Theorem 2, respectively.

Graphs of strictly definite and indefinite polynomials from E∆ are given
in [17].
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