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On the Path-connectedness of the Set
of Extreme Points in a Polynomial Space∗

Nikola Naidenov

Let ∆ be the standard simplex in R2. Denote by π2 the set of all real
bivariate algebraic polynomials of total degree at most two. Let B∆ be
the unit ball of the space π2 endowed with the supremum norm on ∆.

In a recent paper (see [13]) the description of the set E∆ of all extreme
points of B∆ was completed. We present here a result from [13] concern-
ing the path-connectedness of E∆. The conclusion is that E∆ \ {±1}
consists of two path-connected components. We also provide graphical
illustrations.
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1. Introduction

Denote by πd
n the set of all real algebraic polynomials of d variables and of

total degree not exceeding n. Let K be a compact set in Rd and ‖f‖C(K) :=
maxX∈K |f(X)| be the uniform norm on K.

We use the notation Bn(K) for the unit ball of πd
n with respect to ‖ · ‖C(K),

i.e., Bn(K) =
{
p ∈ πd

n : ‖p‖C(K) ≤ 1
}
. The set of all extreme points of Bn(K)

will be denoted by En(K). Recall that a point p of a convex set B is said to be
extreme if the equality p = λp1 + (1− λ)p2 for some p1, p2 ∈ B and λ ∈ (0, 1)
implies p = p1 = p2.

An application of the extreme points is the important fact that every convex
functional, defined on a convex set B, attains its maximum at some extreme
point of B. Therefore, the description of the extreme points of Bn(K) can
be useful in solving certain extremal problems for uniformly bounded multi-
variate polynomials. For example: finding of polynomials with minimal de-
viation from zero, deriving the exact constants in inequalities of Markov or
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Bernstein type, etc. Actually our initial motivation comes from studying the
multivariate extensions of the Bernstein-Szegő inequality. We refer to papers
[18, 8, 9, 14, 16, 15, 2, 17, 4]. Our hope is that the optimal constant in the
inequality of the type of Bernstein-Szegő for convex bodies can be obtained for
K = ∆d – the standard simplex in Rd.

In the sequel, we set ∆ = ∆2, i.e.

∆ :=
{
(x, y) ∈ R2 : x ≥ 0, y ≥ 0, x + y ≤ 1

}
.

We denote the vertices of ∆ by O(0, 0), A(1, 0) and B(0, 1). We also use
the notations π2 := π2

2 , ‖ · ‖ := ‖ · ‖C(∆), B∆ := B2(∆), and E∆ := E2(∆).
Next we introduce an important subset of ∆, related to a given polyno-

mial p. Namely, letM(p) be the set of all points X ∈ ∆ such that |p(X)| = ‖p‖.
In papers [11, 12, 13] a full description of the set E∆ was given. The main

results are as follows:

I. Strictly definite extreme points ([11]).
A bivariate polynomial p is a strictly concave extreme point of B∆ if and

only if

p(x, y) = 1 + α(x− x0)2 + 2β(x− x0)(y − y0) + γ(y − y0)2, (1)

where

α =
2(2y0 − 1)

x0(1− x0 − y0)
, β = − (1− 2x0)(1− 2y0)

x0y0(1− x0 − y0)
, γ =

2(2x0 − 1)
y0(1− x0 − y0)

, (2)

and the point (x0, y0) belongs to the interior of the triangle ∆1 with vertices
O1 = ( 1

2 , 1
2 ), A1 = (0, 1

2 ), and B1 = ( 1
2 , 0).

All strictly convex elements of E∆ have the form q = −p, where p is given
by (1) and (2).

II. Indefinite extreme points. ([12])
Let {Ti}6i=1 be the affine transformations from R2 to R2 that map the

triangle ∆ onto itself. In explicit form,

{Ti(x, y)}6i=1 = {(x, y), (y, x), (1−x−y, y), (x, 1−x−y), (1−x−y, x), (y, 1−x−y)}.

It is easy to see that if p ∈ E∆, then the polynomials {±p(Ti(X))}6i=1 also
belong to E∆. We call them symmetrical to p.

1. A polynomial p ∈ π2 is an indefinite element of E∆, such that M(p) is
an infinite set, if and only if p is symmetrical to

p̄(x, y) = 1− 4
ν

xy +
2
ν2

(1− 2ν)y2, (3)

where ν =
√

2√
2+
√

1+β
and β ∈ [−1, 1].
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2. A polynomial p ∈ π2 is an indefinite element of E∆, such that M(p) is
a finite set, if and only if p is symmetrical to

p̄(x, y) = a + bx + cy + dx2 + 2exy + fy2,

whose coefficients are given by the formulas

a = γ,

b = 2
√

1− γ(
√

1− α +
√

1− γ),

c = 2
√

1− γ(
√

1− β +
√

1− γ),

d = −(
√

1− α +
√

1− γ)2,

e = −1
2
[
(
√

1 + α +
√

1 + β)2 + (
√

1− α +
√

1− γ)2

+ (
√

1− β +
√

1− γ)2
]
,

f = −(
√

1− β +
√

1− γ)2,

(4)

and parameters (α, β, γ) belong to P = ∪4
i=1Pi, where

P1 = {(α, β, γ) : α, β, γ ∈ (−1, 1), α 6= β},
P2 = {(±1, β, γ) : β, γ ∈ (−1, 1)} ∪ {(α,±1, γ) : α, γ ∈ (−1, 1)}

∪ {(α, β,−1) : α, β ∈ (−1, 1)},
P3 = {(α,±1,−1) : α ∈ (−1, 1)} ∪ {(±1, β,−1) : β ∈ (−1, 1)}

∪ {(±1,∓1, γ) : γ ∈ (−1, 1)},
P4 = {(±1,∓1,−1), (1, 1,−1)}.

Remark 1. Note that the polynomials (3) can be obtained from (4) for
α = γ = 1, β ∈ [−1, 1].

III. Semidefinite extreme points. ([13] or [10])
Suppose that p is a negative semidefinite polynomial from π2.

1. If there exists a point X0 = (x0, y0) ∈ int∆ such that p(X0) = 1, then p
is an extreme point of B∆ if and only if the following conditions hold:

(i) p(x, y) = 1− [α(x− x0) + β(y − y0)]
2, (α, β) 6= (0, 0);

(ii) min{p(O), p(A), p(B)} = −1.

2. If p(X) 6= 1 for every X ∈ int∆, then p is an extreme point of B∆ if and
only if p ∈ {pi}6i=1, where

p1(x, y) = 1− 2(x + y)2, p4(x, y) = 1− 2(x + y − 1)2,

p2(x, y) = 1− 2(x− 1)2, p5(x, y) = 1− 2x2,

p3(x, y) = 1− 2(y − 1)2, p6(x, y) = 1− 2y2.
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All positive semidefinite elements of E∆ have the form q = −p, where p is
a negative semidefinite extreme point.

In addition, it was proved in [13] that the only extreme points of B∆ of
degree not exceeding one are the constants ±1.

Here we present some results from [13] concerning the path-connectedness
of E∆. Recall that a set A in a metric space M is path-connected if every
two points in the set can be joined by a continuous path lying in A. A path
component of a set A is a path-connected subset A0 ⊂ A such that there is no
path-connected set in A containing A0 other than A0 itself. Our main result is
the following:

Theorem 1. The set E∆\{±1} consists of two path-connected components,
E+ and E−, which contain the positive semidefinite and negative semidefinite
extreme points, respectively.

We hope that the above result can be applied to construct effective algo-
rithms for numerical solution of extremal problems for multivariate polynomi-
als.

The proof of Theorem 1 is based on a detailed analysis of the interrelations
between the different parts of E∆. Its main steps are given in Section 2.

Section 3 contains graphical illustrations of some typical elements of E∆.

2. Path-connectedness of E∆

We shall use the following properties of the path-connected sets, which
follow easily from the definition.

(P1) If a set A in a metric space M has the form

A = {f(t1, . . . , tn) : (t1, . . . , tn) ∈ D},

where D is a path-connected subset of Rn and f : D 7→ M is a continuous
mapping, then A is a path-connected set, too.

Next we introduce a useful notation. Let p and q be two elements of M ,
E ⊂ M and p ∈ E. We say that p is path-connected in E with q and write
p

E→ q if there is a continuous path ϕ : [a, b] → M such that ϕ(a) = p, ϕ(b) = q,
and ϕ(x) ∈ E for every x ∈ [a, b). Obviously, if E is a path-connected set, then
the same is true for E ∪ {q}.

(P2) Let A and B be subsets of M and let A be path-connected. Suppose
that for every b ∈ B there exists a ∈ A such that b

B→ a. Then A ∪ B is a
path-connected set.

(P3) Let A and B be two path-connected sets in a metric space M . If
A ∩B = ∅, then A ∪B is not a path-connected set.
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We denote by E−
III (resp., E+

III) the set of all negative (resp., positive)
semidefinite extreme points of B∆.

Proposition 1. E−
III and E+

III are path-connected sets in the space π2 en-
dowed with the supremum norm on ∆.

Proof. It relies on the property (P1) and the following continuous repre-
sentation of the elements from E−

III,1, which is the part of E−
III , described in

III.1:

p(x, y) = 1− ρ2[(x− x0) cos θ + (y − y0) sin θ]2, (5)

with ρ > 0 and θ ∈ [0, 2π). The condition (ii) from III.1 is equivalent to

ρ =

√
2

max
{
d2

O(x0, y0, θ), d2
A(x0, y0, θ), d2

B(x0, y0, θ)
} , (6)

where dX(x0, y0, θ) := |(x − x0) cos θ + (y − y0) sin θ| is the distance from the
point X = (x, y) to the straight line m consisting of the global maxima of p.

Every polynomial from E−
III,2 := {p1, . . . , p6}, where {pi}6i=1 are the poly-

nomials from III.2, can be continuously joined with a polynomial from E−
III,1.

Then, by (P2), E−
III = E−

III,1 ∪ E−
III,2 is a path-connected set. The proof for

E+
III is similar. ¤

We denote by EII the set of all indefinite elements of E∆.

Proposition 2. Every polynomial from EII can be path-connected in EII

with a polynomial from EIII := E−
III ∪ E+

III .

Proof. a) Let F ⊂ EII be the set of all polynomials

p(α, β, γ; x, y) = a + bx + cy + dx2 + 2exy + fy2,

where the coefficients are given by (4) and (α, β, γ) ∈ P . It is easily seen
that the parametric set P is path-connected. Then according to (P1), F is
path-connected, too.

Next we prove that every polynomial p = p(α0, β0, γ0; ·) ∈ F can be path-
connected in F with p1 = p(−1,−1, 1; ·) ∈ E−

III .
b) Let G be the subset of all polynomials p from EII , given by (3). Since

G is a subset of ∂F , we easily obtain the relation p
F∪G−→ p1 ∈ E−

III .
c) Suppose now that q is an arbitrary polynomial from EII . It has the

form q(X) = σp(Ti(X)), where σ ∈ {−1, 1}, p ∈ F ∪ G, and Ti is defined in
Section 1. Then Proposition 2 follows from

q
EII−→ q1 := σp1(Ti(·)) ∈ EIII ,

using the invariance of E∆ with respect to the symmetries. ¤
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Let us set

E∓
II := {f = ±p(Ti(·)) : p ∈ F ∪G, i ∈ {1, . . . , 6}}.

It follows from the proof of Proposition 2 that every f ∈ E−
II can be path-

connected in E−
II with a polynomial from E−

III . Since, by Proposition 1, E−
III

is a path-connected set, (P2) implies that E−
II ∪ E−

III is path-connected, too.
The same conclusion holds true for E+

II ∪ E+
III .

We denote by E−
I (resp., E+

I ) the set of all strictly negative (resp., positive)
definite extreme points. Formulas (1), (2) and (P1) imply that E−

I and E+
I are

path-connected sets.

Proposition 3. Every polynomial from E−
I (E+

I ) can be path-connected in
E−

I (E+
I ) with a polynomial from E−

III (E+
III).

Proof. Let p(x0, y0; ·) be a polynomial of the form (1). If (x0, y0) → ( 1
2 , y0) ∈

∂∆1 then p(x0, y0; ·) tends to 1− 8(x− 1
2 )2, which belongs to E−

III . ¤
Let us set

E± := E±
I ∪ E±

II ∪ E±
III .

The above results immediately imply the following

Corollary 1. We have

E∆ \ {±1} = E+ ∪ E−.

Moreover, E+ and E− are path-connected sets.

Our next goal is to prove that E+ ∪ E− is not a path-connected set. To
this end we shall need an important additional result.

Proposition 4. E+ and E− are disjoint sets.

The proof is based on the following Lemmas 1–4.

Lemma 1.
(i) Every polynomial from E−

I is strictly concave or negative semidefinite.
(ii) Every polynomial from E−

III is negative semidefinite.

Remark 2. Similarly, the elements of E+
I are strictly convex or positive

semidefinite polynomials, while the elements of E+
III are positive semidefinite.

Lemma 2. Every polynomial from E−
II is indefinite or negative semidefinite.

Remark 3. The elements of E+
II are indefinite or positive semidefinite

polynomials.
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Remark 4. It follows from Lemmas 1 and 2 that the polynomials from
E+ ∪ E− do not belong to π2

1 .

We set l1 = [OA], l2 = [OB], l3 = [AB], ~l1 =
−→
OA, ~l2 =

−−→
OB, ~l3 =

−−→
AB.

Definition. Let p ∈ π2. Suppose that there exist points Xi ∈ li, i = 1, 2, 3,
such that |p(Xi)| = 1 and ∂p

∂~li
(Xi) = 0 for i = 1, 2, 3. The signature of p is the

vector S(p) = (σ1, σ2, σ3), where σi := sign p(Xi), i = 1, 2, 3.

Note that if a polynomial from π2 has a signature, it is uniquely determined.
Indeed, the assumption that for some i there exist points Xi, Yi ∈ li such that
p(Xi) = ±1, p(Yi) = ∓1, ∂p

∂~li
(Xi) = ∂p

∂~li
(Yi) = 0 leads to an inconsistent

system for the restriction p
∣∣
li
. In addition, if Xi, Yi ∈ li satisfy the conditions

p(Xi) = p(Yi) = ±1 and ∂p

∂~li
(Xi) = ∂p

∂~li
(Yi) = 0, then either Xi = Yi or p ≡ ±1

on li.
It was proved in [12, Lemma 4] that every indefinite element of E∆ has a

signature.
We say that a signature S(p) = (σ1, σ2, σ3) is positive (negative) if exactly

two of its components are positive (negative). We denote by EII(−) (resp.,
EII(+)) the set of all indefinite extreme points, whose signature is negative
(resp., positive).

Lemma 3. We have E−
II = EII(+) and E+

II = EII(−).

Proof. Let f ∈ E−
II . By the definition, f = p(Ti(·)) where p ∈ F ∪ G and

i ∈ {1, . . . , 6}. The analysis in [12, Sections 3,4] shows that p has a positive
signature. This can also be checked directly. For example, if p ∈ F one can
use (4) and the points X1 = (λ, 0), X2 = (0, µ), X3 = (1− ν, ν), where

λ =
√

1− γ√
1− γ +

√
1− α

, µ =
√

1− γ√
1− γ +

√
1− β

, ν =
√

1 + α√
1 + α +

√
1 + β

.

We just proved that E−
II ⊂ EII(+). Analogously, E+

II ⊂ EII(−). The
uniqueness of the signature shows that EII(−)∩EII(+) = ∅. Since by definition
EII = E+

II ∪ E−
II , we conclude that E−

II = EII(+) and E+
II = EII(−). The

proof is completed. ¤
A limiting process yields the validity of the next

Lemma 4. If p ∈ E−
II (resp., p ∈ E+

II), then p has positive (resp., nega-
tive) signature.

Corollary 2. The sets E−
II and E+

II are disjoint.

Proof of Proposition 4. Clearly E± = E±
I ∪E±

II ∪E±
III . Let us consider a

polynomial p ∈ E−. It follows from Lemmas 1 and 2 that there are three cases.
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Case 1: p is a strictly concave polynomial. Then p /∈ E+ since the elements
of E+ are either strictly convex, or indefinite, or positive semidefinite.

Case 2: p is a negative semidefinite polynomial. As in Case 1, we conclude
that p /∈ E+.

Case 3: p is an indefinite polynomial. This implies p ∈ E−
II . The indefi-

niteness of p shows that p /∈ E+
I ∪ E+

III . In addition, by Corollary 2 we have
p /∈ E+

II , which implies p /∈ E+.

Based on Cases 1–3, we obtain E−
II ∩ E+

II = ∅. Proposition 4 is proved. ¤
Finally, the proof of Theorem 1 is completed by using Corollary 1 and

Proposition 4 in view of Property (P3). ¤

3. Graphical Illustrations

Here we present the graphs of some typical polynomials from E∆.
Figure 1 depicts the graph of a strictly concave extreme polynomial p with

parameters x0 = 0.43 and y0 = 0.35 (see I). This polynomial attains its norm
at the points X0 = (x0, y0), O, A, and B. Actually, p(X0) = 1, while p(O) =
p(A) = p(B) = −1. The peak of p is denoted by Z0 = (X0, 1).

Figure 1. A strictly definite extreme polynomial from B∆.

Figure 2 illustrates an indefinite polynomial q of type II.1, with β = 0.6.
As it is seen, M(q) = [OA]∪ {X3}, where X3 ∈ [AB]. We have q

∣∣
[OA]

≡ 1 and
q(X3) = −1.

Finally, a polynomial r of type II.2 is shown in Figure 3. It has parameters
α = 0.4, β = −0.3, and γ = 0.2 . In this case M(r) consists of three points:
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Figure 2. An indefinite extreme polynomial of type II.1.

X1 ∈ [OA], X2 ∈ [OB], and X3 ∈ [AB]. The signature of r is positive since
r(X1) = r(X2) = 1 and r(X3) = −1.

Note that graphs of semidefinite extreme polynomials are given in [10].�
�

�
� �

�
Figure 3. An indefinite extreme polynomial of type II.2.
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