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On Markov–Duffin–Schaeffer Inequalities
with a Majorant. II

Geno Nikolov∗ and Alexei Shadrin

We are continuing our studies on the so-called Markov inequalities
with a majorant. Inequalities of this type provide an upper bound for the
uniform norm in [−1, 1] of the k-th derivative of an algebraic polynomial
p of degree n when |p| is bounded on [−1, 1] by a certain curved majorant
µ. A conjecture is that the exact upper bound Mk,µ is attained by the k-
th derivative of the so-called snake-polynomial ωµ which oscillates most
between ±µ, i.e., that

Mk,µ = ‖ω(k)
µ ‖ ,

but it turned out to be a rather difficult question.
In our previous paper [3] we proved that this is true in the case of

symmetric majorant µ provided the snake-polynomial ωµ has a positive
Chebyshev expansion. In this paper, we show that that the conjecture
is valid under the assumption that the snake-polynomial has a positive or
sign alternating Chebyshev expansion, hence for non-symmetric majorants
µ as well.

1. Introduction

Throughout, Pn will stand for the class of real-valued algebraic polynomials
of degree not exceeding n.

This paper continues our studies in [3] and it is dealing with the problem of
estimating ‖p(k)‖, the max-norm in [−1, 1] of the k-th derivative of a polynomial
p ∈ Pn obeying the restriction

|p(x)| ≤ µ(x), x ∈ [−1, 1],

where µ is a non-negative majorant. We want to find for which majorants µ
the supremum of ‖p(k)‖ is attained by the so-called snake-polynomial ωµ which

∗This author was supported by the Bulgarian National Research Fund under Grant
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Figure 1. Markov inequality with a majorant µ: |p| ≤ µ, ‖p(k)‖ → sup

oscillates most between ±µ, namely by the polynomial ωµ ∈ Pn that satisfies
the following conditions

a) |ωµ(x)| ≤ µ(x), x ∈ [−1, 1] ; b) ωµ(τ∗i ) = (−1)iµ(τ∗i ), i = 0, . . . , n .

(This ωµ is an analogue of the Chebyshev polynomial Tn for µ ≡ 1, see Fig. 1.)
Actually, we are interested in those µ that provide the same supremum for

‖p(k)‖ under the weaker assumption

|p(x)| ≤ µ(x), x ∈ δ∗ = (τ∗i )n
i=0 ,

where δ∗ is the set of oscillation points of ωµ (see Fig. 2).
These two problems are generalizations of the classical results for µ ≡ 1 of

Markov [2] and Duffin-Schaeffer [1], respectively.

Problem 1.1 (Markov inequality with a majorant). Given n, k ∈ N,
1 ≤ k ≤ n, and a majorant µ ≥ 0, find

Mk,µ := sup{‖p(k)‖ : p ∈ Pn, |p(x)| ≤ µ(x), x ∈ [−1, 1]} . (1.1)

Problem 1.2 (Duffin–Schaeffer inequality with a majorant). Given
n, k ∈ N, 1 ≤ k ≤ n, and a majorant µ ≥ 0, find

D∗
k,µ := sup{‖p(k)‖ : p ∈ Pn, |p(x)| ≤ µ(x), x ∈ δ∗} . (1.2)

In this setting, the results of Markov [2] and Duffin–Schaeffer [1] read:

µ ≡ 1 ⇒ Mk,µ = D∗
k,µ = ‖T (k)

n ‖ , 1 ≤ k ≤ n ,
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Figure 2. Duffin-Schaeffer inequality with a majorant µ: |p|δ∗≤|µ|δ∗ , ‖p(k)‖→sup

so, the question of interest is for which other majorants µ the snake-polynomial
ωµ is extremal to both Problems 1.1 and 1.2, i.e., when do we have the equalities

Mk,µ
?= D∗

k,µ
?= ‖ω(k)

µ ‖ . (1.3)

Note that, for any majorant µ, we have ‖ω(k)
µ ‖ ≤ Mk,µ ≤ D∗

k,µ , so the question
marks in (1.3) will be removed once we show that

D∗
k,µ ≤ ‖ω(k)

µ ‖ . (1.4)

Ideally, we would also like to know the exact numerical value of ‖ω(k)
µ ‖ and

that requires some kind of explicit expression for the snake-polynomial ωµ.
The latter is available for the class of majorants of the form

µ(x) =
√

Rs(x), (1.5)

where Rs is a non-negative in [−1, 1] polynomial of degree s, so it is this class
that we pay most of our attention to.

In our previous paper [3] we proved that inequality (1.4) is valid if
ω̂µ := ω

(k−1)
µ belongs to the class Ω, which is defined by the following three

conditions:

ω̂µ ∈ Ω :

0) ω̂µ(x) =
bn∏

i=1

(x− ti), ti ∈ [−1, 1];

1a) ‖ω̂µ‖C[0,1] = ω̂µ(1); 1b) ‖ω̂µ‖C[−1,0] = |ω̂µ(−1)|;

2) ω̂µ =
bn∑

i=0

aiTi , ai ≥ 0.

(1.6)
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Theorem 1.3 ([3]). Let ω
(k−1)
µ ∈ Ω. Then

Mk,µ = D∗
k,µ = ω(k)

µ (1) .

Let us make some comments on the polynomial class Ω defined in (1.6).
For ωµ, assumption (0) is redundant, as the snake-polynomial ωµ of degree

n has n + 1 points of oscillations between ±µ, hence, all of its n zeros lie in
the interval [−1, 1], thus the same is true for any of its derivatives. We wrote
it down as we use this property repeatedly.

In the case of symmetric majorant µ, condition (1) becomes redundant too,
as in this case the snake-polynomial ωµ is either even or odd, hence all Ti in
its Chebyshev expansion (2) are of the same parity, and that, coupled with the
non-negativity of ai in (2), implies (1a) and (1b). Therefore, for symmetric
majorants µ, we have the following statement.

Theorem 1.4 ([3]). Let µ(x) = µ(−x), and let ωµ be the corresponding
snake-polynomial of degree n. If

ω(k0−1)
µ =

bn∑

i=0

ai Ti , ai ≥ 0,

then
Mk,µ = D∗

k,µ = ω(k)
µ (1) , k ≥ k0 .

This theorem allowed us to establish in [3] Duffin-Schaeffer (and, thus,
Markov) inequalities for various symmetric majorants µ of the form (1.5), see
the next section for details.

However, for non-symmetric ωµ ∈ Ω with a positive Chebyshev expansion,
equality (1b) in (1.6) is often not valid for small k, and that did not allow
us to bring our Duffin-Schaeffer-type results in [3] to a satisfactory level. For
example, (1b) is not fulfilled in the case

µ(x) = x + 1, k = 1,

although intuitively it is clear that the Duffin-Schaeffer inequality with such µ
should be true, and we show that it is true, see Table 3 in the next section.

Here we show that, as we conjectured in [3], inequality (1.4) is valid under
condition (1.6(2)) only, hence, the statement of Theorem 1.4 is true for non-
symmetric majorants µ as well.

Theorem 1.5. Given a majorant µ ≥ 0, let ωµ be the corresponding snake-
polynomial of degree n. If

ω(k0−1)
µ =

bn∑

i=0

ai Ti , ai ≥ 0,

then
Mk,µ = D∗

k,µ = ω(k)
µ (1) , k ≥ k0 .
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A short proof of this theorem is given in Section 3. It is based on a new
idea which allows us to ”linearize” the problem and reduce it to the following
property of the Chebyshev polynomial Tn.

Proposition 1.6. For a fixed t ∈ [−1, 1], define a polynomial τn(·, t) as
follows:

τn(x, t) :=
1− xt

x− t
(Tn(x)− Tn(t)) . (1.7)

Then
max

x,t∈[−1,1]
|τ ′n(x, t)| = T ′n(1). (1.8)

The simple explicit form (1.7) of the polynomials τn(·, t) enables us to draw
the graphs of τ ′n(·, t) using symbolic computations and thus to check inequality
(1.8) numerically for rather large degrees n. Figure 3 shows that τ ′n(x, t),
as a function of two variables, has n − 3 local extrema, each of them equals
approximately half the value of the global one, namely

max
|x|≤cos π

n

max
|t|≤1

|τ ′n(x, t)| ≈ 1
2
T ′n(1) .

Those extrema are very close to the extrema of 1
2 (1 − x2)T ′′n (x) + xT ′n(x)

Figure 3. Graphs of τ ′n(·, t) for n = 6 (left) and n = 16 (right)

although they are not the same. The rigorous proof of (1.8) turned out to be
relatively long, and it would be interesting to find shorter arguments.

Organisation of the paper. In Section 2 we list a set of the majorants
µ(x) =

√
Rs(x) to which our Theorem 1.5 is applicable, thus establishing

Markov-Duffin-Schaeffer inequalities for those µ. Section 3 contains a short
proof of Theorem 1.5 that uses Proposition 1.6 as its main ingredient. A proof
of Proposition 1.6 is given then in Sections 4–8. Finally, in Section 9 we show
that for the majorant µm(x) = (1 − x2)m/2, the snake-polynomial ωµ is not
extremal for the Duffin-Schaeffer inequality if k ≤ m.
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2. Markov-Duffin-Schaeffer Inequalities for Various
Majorants

1) Before our studies in [3], Markov- or Duffin-Schaeffer-type inequalities
were obtained for the following majorants µ and derivatives k:

Table 1: Markov-type inequalities: Mk,µ = ω
(k)
µ (1)

1◦
√

ax2+bx+1, b≥0 k=1 [7] 2◦ (1+x)`/2(1−x2)m/2 k≥m+ `
2

[4]

3◦
p

1+(a2−1)x2 all k [7] 4◦
pQm

i=1(1+c2
i x

2) k = 1 [8]

Table 2: Duffin-Schaeffer-type inequalities: Mk,µ = D∗
k,µ = ω

(k)
µ (1)

2∗1
√

1− x2 k ≥ 2 [5] 2∗2 1− x2 k ≥ 3 [6]

The next theorem combines results from our previous paper [3] with new
results obtained here based on Theorem 1.5. In particular, it shows that, in
cases 1∗ and 4∗, Markov-type inequalities with Mk,µ = ω

(k)
µ (1) are valid also

for k ≥ 2, and in case 2∗ they are valid for k ≥ m + 1 independently of `.
Moreover, in all our cases we have the stronger Duffin-Schaeffer inequalities.

Theorem 2.1. Let µ be one of the majorant given in Table 3. Then,
with the corresponding k0, the (k0 − 1)-st derivative of its snake-polynomial
ωµ satisfies

ω(k0−1)
µ =

∑

i

ai Ti, ai ≥ 0 , (2.1)

hence, by Theorem 1.5,

Mk,µ = D∗
k,µ = ω(k)

µ (1) , k ≥ k0 . (2.2)

Table 3: Duffin-Schaeffer-type inequalities: Mk,µ = D∗
k,µ = ω

(k)
µ (1)

1∗
√

ax2 + bx + 1, b≥0,
a≥0

a<0

k≥1

k≥2
new 2∗ (1+x)`/2(1−x2)m/2 k>m new

3∗
p

1+(a2−1)x2 k≥2 [3] 4∗
pQm

i=1(1+c2
i x

2) k≥1 [3]

5∗ any
p

Rm(x2) k>m [3] 6∗ any µ(x)=µ(−x) k>bn
2
c [3]

7∗
p

(1+c2x2)(1+(a2−1)x2) k≥2 [3] 8∗
√

1−a2x2+a2x4 k≥1 new
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Proof. The proof of (2.1) for particular majorants consists of sometimes
tedious calculations.

a) The cases 3∗-7∗, with symmetric majorants µ, are taken from [3] where
we already proved (2.1) and then derived (2.2) from Theorem 1.3.

b) Here, we added one more symmetric case 8∗ as an example of the
majorant which is not monotonically increasing on [0, 1], but which is still
providing Duffin-Schaeffer inequality for all k ≥ 1. One can check that its
snake-polynomial has the form

ωµ(x) =
1 + b

2
Tn+2(x) +

1− b

2
Tn−2(x), b =

√
1− (a

2 )2 .

c) In the non-symmetric case 1∗, we proved (2.1) for k ≥ 1 if a ≥ 0 and for
k ≥ 2 if a < 0 already in [3]. However, with Theorem 1.3 in [3] we were able to
get (2.2) only for k ≥ 3 whereas Theorem 1.5 covers the cases k = 1, 2, a ≥ 0
and k = 2, a < 0 as well.

d) The second non-symmetric case 2∗ is new, but proving (2.1) in this case
is relatively easy. For example, in the simplest situation when both m and `
are even, say, m = 2m1 and ` = 2`1, we have

ωµ(x) = (1 + x)`1(x2 − 1)m1Tn(x) ,

and since xsTn(x) has a positive Chebyshev expansion, we obtain

ωµ(x) = (x2 − 1)m1
∑

i

aiTi(x) , ai ≥ 0 .

We proved in [3] that [(x2−1)m1Ti(x)](2m1) has a positive Chebyshev expansion
as well, hence (2.1) is true with k0 = 2m1 + 1 = m + 1. ¤

2) There are two particular cases of a majorant µ and a derivative k for
which Markov-type inequalities have been proved, but they cannot be extended
to Duffin-Schaeffer-type within our method, as in those case ω

(k−1)
µ does not

have a positive Chebyshev expansion.

Table 4:Markov- but not Duffin-Schaeffer-type inequalities: Mk,µ=ω
(k)
µ (1), D∗

k,µ=?

1¦
√

ax2 + bx + 1, a < 0, b ≥ 0 k = 1 2¦ (1− x2)m/2 k=m

In this respect, a natural question is whether this situation is due to imperfectness
of our method, or whether it is because the equality Mk,µ = D∗

k,µ is no longer
valid. An indication that the latter is likely to be the case was given by the
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result of Rahman-Schmeisser [5] for the majorant µ1(x) :=
√

1− x2. Namely,
they showed that

µ1(x) =
√

1− x2, k = 1 ⇒ 2n = ω′µ1
(1) = M1,µ1 < D∗

1,µ1
= O(n ln n) .

Here, we show that, in case 2¦, i.e., for µm := (1 − x2)m/2 with any m ∈ N,
similar inequalities between Markov and Duffin-Schaeffer constants hold for all
k ≤ m.

Theorem 2.2. We have

µm(x) = (1− x2)m/2, k ≤ m ⇒ O(nk) = Mk,µm < D∗
k,µm

= O(nk ln n) .

As to the remaining case 1¦, we believe that if µ(1) > 0, i.e., except for
the degenerate case µ(x) =

√
1− x2, we will have Duffin-Schaeffer inequality

at least for large n:

µ(x) =
√

ax2 + bx + 1, a < 0, b ≥ 0, ⇒ M1,µ = D1,µ = ω′µ(1), ∀n ≥ nµ ,

where nµ depends on µ(1) (say, nµ > 1
µ(1) ).

Remark 2.3. Obviously, ωµ(−x) is a snake-polynomial for the majorant
µ̃(x) = µ(−x); moreover, if ωµ has a positive (or negative) Chebyshev expansion,
then ωeµ has a sign alternating Chebyshev expansion and vice versa. Hence, the
assumption for a positive Chebyshev expansion in Theorems 1.5 and 2.1 can
be replaced by the assumption for a sign alternating Chebyshev expansion, in
which case we have Mk,µ = D∗

k,µ = |ω(k)
µ (−1)|. We therefore have the following

supplement to Table 3:

Table 3′: Duffin-Schaeffer-type inequalities: Mk,µ = D∗
k,µ = |ω(k)

µ (−1)|

1′
√

ax2 + bx + 1, b<0,
a≥0

a<0

k≥1

k≥2
new 2′ (1−x)`/2(1−x2)m/2 k>m new

3. Proof of Theorem 1.5

In [3], we used the following intermediate estimate as an upper bound for
D∗

k,µ.

Proposition 3.1 ([3]). Given a majorant µ, let ωµ be its snake-polynomial,
let ω̂µ(x) := ω

(k−1)
µ (x), and let

φbω(x, ti) :=
1− xti
x− ti

ω̂µ(x), where ti are the zeros of ω̂µ. (3.1)

Then
D∗

k,µ ≤ max
{
‖ω̂′µ‖, max

x,ti∈[−1,1]
|φ′bω(x, ti)|

}
. (3.2)
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We showed then in [3] that if ω̂µ belongs to the class Ω defined in (1.6), then
|φ′bω(x, ti)| ≤ ω̂′µ(1) = ω

(k)
µ (1), and that led to Theorem 1.3.

Here, we prove a similar estimate that uses a continuous (with respect to
t) analogue of (3.1).

Proposition 3.2. Given a majorant µ, let ωµ be its snake-polynomial, let
ω̂µ = ω

(k−1)
µ , and let

τbω(x, t) :=
1− xt

x− t

(
ω̂µ(x)− ω̂µ(t)

)
, t ∈ [−1, 1]. (3.3)

Then
D∗

k,µ ≤ max
{
‖ω̂′µ‖, max

x,t∈[−1,1]
|τ ′bω(x, t)|

}
. (3.4)

Proof. Comparing definitions (3.1) and (3.3), we see that, since ω̂µ(ti) = 0,
we have

τbω(x, ti) =
1− xti
x− ti

(ω̂µ(x)− ω̂µ(ti)) =
1− xti
x− ti

ω̂µ(x) = φbω(x, ti) .

Therefore,

max
x,ti∈[−1,1]

|φ′bω(x, ti)| = max
x,ti∈[−1,1]

|τ ′bω(x, ti)| ≤ max
x,t∈[−1,1]

|τ ′bω(x, t)| ,

and (3.4) follows from (3.2). ¤

Proof of Theorem 1.5. We want to show that if ω̂µ := ω
(k−1)
µ has a positive

Chebyshev expansion, i.e.,

ω̂µ =
bn∑

i=0

ai Ti, ai ≥ 0 , (3.5)

then
D∗

k,µ ≤ ω(k)
µ (1) .

By (3.4), we are done if we prove that

max
x,t∈[−1,1]

|τ ′bω(x, t)| ≤ ω̂′µ(1)
(
= ω(k)

µ (1)
)

.

We have

τbω(x, t) :=
1− xt

x− t
(ω̂µ(x)− ω̂µ(t)) =

1− xt

x− t

bn∑

i=1

ai

(
Ti(x)− Ti(t)

)

=
bn∑

i=1

ai
1− xt

x− t

(
Ti(x)− Ti(t)

)
=

bn∑

i=1

aiτi(x, t) ,
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where
τi(x, t) :=

1− xt

x− t

(
Ti(x)− Ti(t)

)
.

Respectively,

|τ ′bω(x, t)| ≤
bn∑

i=1

|ai| · |τ ′i(x, t)| (a)
=

bn∑

i=1

ai |τ ′i(x, t)|
(b)

≤
bn∑

i=1

ai T ′i (1)
(c)
= ω̂′µ(1).

In the last display, equality (a) is due to assumption ai ≥ 0 in (3.5), equality
(c) also follows from (3.5), and inequality (b) is the matter of Proposition 1.6
(which we are going to prove in the rest of the paper). ¤

4. Auxiliary Results

For a polynomial

ω(x) = c

n∏

i=1

(x− ti) , −1 ≤ tn ≤ · · · ≤ t1 ≤ 1, c > 0,

with all its zeros in the interval [−1, 1] (and counted in the reverse order), set

φ(x, ti) :=
1− xti
x− ti

ω(x) , i = 1, . . . , n. (4.1)

For each i, we would like to estimate the norm ‖φ′(·, ti)‖C[−1,1], i.e., the
maximum value of |φ(·, ti)|, and the latter is attained either at the end-points
x = ±1, or at the points x where φ′′(x, ti) = 0.

In [3] we introduced two functions,

ψ1(x, t) :=
1
2
(1− xt) ω′′(x)− t ω′(x) , (4.2)

ψ2(x, t) :=
1
2
(1− x2) ω′′(x) +

x− t

1− xt
ω′(x)− x(1− t2)

(x− t)(1− xt)
ω(x) . (4.3)

In [3, Section 4] we obtained the following results.

Claim 4.1 ([3]). We have

|φ′(±1, ti)| ≤ |ω′(±1)| .
Claim 4.2 ([3]). For each i, both ψ1,2(·, ti) interpolate φ′(·, ti) at the points

of its local extrema,

φ′′(x, ti) = 0 ⇒ φ′(x, ti) = ψ1,2(x, ti) , (4.4)

therefore
‖φ′(·, ti)‖∗ ≤ ‖ψ1,2(·, ti)‖ ,

where ‖f(·)‖∗ stands for the maximal critical value of f on [−1, 1].
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Claim 4.3 ([3]). With some specific functions fν(ω, ·), 1 ≤ ν ≤ 4, we have

1) |ψ1(x, ti)| ≤ max
ν=1,2,3

|fν(x)|, 0 ≤ x ≤ 1, −1 ≤ x−ti

1−xti
≤ 1

2 ;

2) |ψ2(x, ti)| ≤ max
ν=1,2

|fν(x)|, t1 ≤ x ≤ 1; 1
2 ≤ x−ti

1−xti
≤ 1;

and, under the additional assumption that |ω(x)| ≤ ω(1) for x ∈ [0, 1],

3) |ψ2(x, ti)| ≤ max
ν=1,2,4

|fν(x)|, 0 ≤ x ≤ t1,
1
2 ≤ x−ti

1−xti
≤ 1.

Claim 4.4 ([3]). Let

ω =
n∑

i=0

ai Ti, ai ≥ 0 ,

Then
max

1≤ν≤4
|fν(ω, x)| ≤ ω′(1) .

The next theorem follows immediately from Claims 4.1 – 4.4:

Theorem 4.5 ([3, Theorem 3.1]). Let ω ∈ Ω (see (1.6)), i.e., it satisfies
the following three conditions

0) ω(x) = c

n∏

i=1

(x− ti) , ti ∈ [−1, 1];

1a) ‖ω‖C[0,1] = ω(1), 1b) ‖ω‖C[−1,0] = |ω(−1)|;

2) ω =
n∑

i=0

aiTi, ai ≥ 0 .

Then
max

x,ti∈[−1,1]
|φ′(x, ti)| ≤ ω′(1) .

This theorem coupled with Proposition 3.1 gives Theorem 1.3, which was
the main result in [3]. However, the main purpose of quoting here Claims 4.1
– 4.4 is to apply them to the particular polynomial ω(x) = c0 + Tn(x).

Firstly, we make a refinement of Claim 4.4, which is just a more accurate
statement of what we proved in [3].

Claim 4.6. Let

ω = c0 +
n∑

i=1

ai Ti, ai ≥ 0 ,

Then
max

1≤ν≤4
|fν(ω, x)| ≤ ω′(1) .
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Proof. The functions fν(ω; ·) are of the form

|fν(ω, x)| = |aν(x)ω′′(x) + bν(x)ω′(x)|+ cν‖ω′‖ ,

i.e., they depend on ω′ rather than on ω, hence they are independent of the
free term of the polynomial ω. ¤

Now, we formulate the statement that we will use in the next sections. It
is a straightforward corollary of Claims 4.1-4.3 and Claim 4.6.

Proposition 4.7. Let

ω(x) = c0 + Tn(x) = c

n∏

i=1

(x− ti), |c0| ≤ 1, 1 ≥ t1 ≥ · · · ≥ tn ≥ −1,

and let a pair of points (x, ti) satisfy any of the following conditions:

1) 0 ≤ x ≤ 1, −1 ≤ x−ti

1−xti
≤ 1

2 ;

2) t1 ≤ x ≤ 1; 1
2 ≤ x−ti

1−xti
≤ 1;

3) 0 ≤ x ≤ t1,
1
2 ≤ x−ti

1−xti
≤ 1 and |ω(x)| ≤ ω(1).

(4.5)

Then
φ′′(x, ti) = 0 ⇒ |φ′(x, ti)| ≤ ω′(1) . (4.6)

5. Proof of Proposition 1.6

Here, we will prove Proposition 1.6, namely that the polynomial

τ(x, t) := τn(x, t) :=
1− xt

x− t

(
Tn(x)− Tn(t)

)
, (5.1)

considered as a polynomial in x (of degree n), admits the estimate

|τ ′(x, t)| ≤ T ′n(1) , x, t ∈ [−1, 1] , n ∈ N . (5.2)

We prove it similarly to the techniques we used in [3] by considering, for a
fixed t, the points x of local extrema of τ ′(x, t) and the end-points x = ±1, and
showing that at those points |τ ′(x, t)| ≤ T ′n(1).

Lemma 5.1. If x = ±1, then |τ ′(x, t)| ≤ T ′n(1).

Proof. This inequality follows from the straightforward calculations:

τ ′(1, t) = T ′n(1)− 1 + t

1− t

(
Tn(1)− Tn(t)

)
.
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The last term is non-negative, hence τ ′(1, t) ≤ T ′n(1). Also, since 1+ t ≤ 2 and
Tn(1)−Tn(t)

1−t ≤ T ′n(1), it does not exceed 2T ′n(1), hence τ ′(1, t) ≥ −T ′n(1). ¤
It remains to consider the local maxima of |τ ′(·, t)|, i.e., the points (x, t)

where τ ′′(x, t) = 0. Note that local maxima of the polynomial τ ′n(·, t) exist only
if τn(·, t) is of degree n ≥ 3; moreover, since τ(x, t) = ±τ(−x,−t), it is sufficient
to prove the inequality (1.8) only on the half of the square [−1, 1]× [−1, 1]. So,
we have to deal only with the case

D : x ∈ [0, 1], t ∈ [−1, 1] ; n ≥ 3.

We split the domain D into two main subdomains: D = D1 ∪ D2, where

D1 : x ∈ [0, 1], t ∈ [−1, 1], −1 ≤ x−t
1−xt ≤ 1

2 ;

D2 : x ∈ [0, 1], t ∈ [−1, 1], 1
2 ≤ x−t

1−xt ≤ 1 ;

with a further subdivision of D2: D2 = D(1)
2 ∪ D(2)

2 ∪ D(3)
2 , where

D(1)
2 : x ∈ [0, 1], t ∈ [cos 3π

2n , 1], 1
2 ≤ x−t

1−xt ≤ 1;

D(2)
2 : x ∈ [0, cos π

n ], t ∈ [−1, cos 3π
2n ], 1

2 ≤ x−t
1−xt ≤ 1;

D(3)
2 : x ∈ [cos π

n , 1], t ∈ [−1, cos 3π
2n ], 1

2 ≤ x−t
1−xt ≤ 1.

Now, Proposition 1.6 follows from the following statement.

Proposition 5.2. Let n ≥ 3, and τ(x, t) := τn(x, t) be defined by (5.1).

a) If (x, t) ∈ D1 ∪ D(1)
2 and τ ′′(x, t) = 0, then |τ ′(x, t)| ≤ T ′n(1) .

b) If (x, t) ∈ D(2)
2 and τ ′′(x, t) = 0, then |τ ′(x, t)| ≤ T ′n(1) .

c) If (x, t) ∈ D(3)
2 , then τ ′′(x, t) 6= 0 .

Proofs of parts (a)-(c) are given in the next sections. Parts (b) and (c) are
relatively simple and their proofs are independent of our results in [3]. For (a),
we could not find similarly simple arguments, and chose to use our results from
[3], namely Proposition 4.7, instead.

6. Proof of Proposition 5.2.a

The next statement is an adjustment of Proposition 4.7 to our needs.

Proposition 6.1. For a fixed t ∈ [−1, 1], let t1 be the rightmost zero of the
polynomial

ω∗(·) = Tn(·)− Tn(t) ,
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and let a pair of points (x, t) satisfy any of the following conditions:

1′) 0 ≤ x ≤ 1, −1 ≤ x−t
1−xt ≤ 1

2 ;

2′) t1 ≤ x ≤ 1; 1
2 ≤ x−t

1−xt ≤ 1;

3′) 0 ≤ x ≤ t1,
1
2 ≤ x−t

1−xt ≤ 1 and Tn(t) ≤ 0 .

(6.1)

Then
τ ′′(x, t) = 0 ⇒ |τ ′(x, t)| ≤ T ′n(1) . (6.2)

Proof. For a fixed t ∈ [−1, 1], the polynomial ω∗(·) = Tn(·) − Tn(t) has n
zeros inside [−1, 1] counting possible multiplicities, i.e. ω∗(x) = c

∏
(x − ti),

and x = t is one of them, i.e., t = ti for some i. Therefore, conditions (1′)-(3′)
for (x, t) in (6.1) are equivalent to the conditions (1)-(3) for (x, ti) in (4.5),
in particular, the inequality |ω∗(x)| < ω∗(1) in 4.5(3) follows from Tn(t) ≤ 0.
Hence, the implication (4.6) for φ∗ is valid. But, since t = ti, we have

τ(x, t) =
1− xt

x− t
(Tn(x)− Tn(t)) =

1− xti
x− ti

ω∗(x) = φ∗(x, ti),

so (6.2) is identical to (4.6). ¤

Lemma 6.2. Let (x, t) ∈ D1 = {x ∈ [0, 1], t ∈ [−1, 1],−1 ≤ x−t
1−xt ≤ 1

2 ]}.
Then

τ ′′(x, t) = 0 ⇒ |τ ′(x, t)| ≤ T ′n(1) .

Proof. Condition (x, t) ∈ D1 is identical to condition (1′) in Proposition 6.1,
hence the conclusion. ¤

Lemma 6.3. Let (x, t) ∈ D(1)
2 = {x ∈ [0, 1], t ∈ [cos 3π

2n , 1], 1
2 ≤ x−t

1−xt ≤ 1]}.
Then

τ ′′(x, t) = 0 ⇒ |τ ′(x, t)| ≤ T ′n(1) .

Proof. We split D(1)
2 into two further subsets:

2a) t ∈ [cos 3π
2n , cos π

2n ] , 2b) t ∈ [cos π
2n , 1] .

2a) For t ∈ [cos 3π
2n , cos π

2n ] we have Tn(t) ≤ 0, so we apply Proposition 6.1
where we use condition (3′) if x < t1, and condition (2′) otherwise.

2b) For t ∈ [cos π
2n , 1], the Chebyshev polynomial Tn(t) is increasing, hence

t is the rightmost zero t1 of the polynomial ω∗(x) = Tn(x) − Tn(t). Now, we
use the inequality 1

2 ≤ x−t
1−xt ≤ 1 for (x, t) ∈ D(1)

2 . Since t = t1, we have

1
2
≤ x− t1

1− xt1
≤ 1 ⇒ t1 ≤ x ≤ 1,

so we apply Proposition 6.1 with condition (2′). ¤
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7. Proof of Proposition 5.2.b

Lemma 7.1. Let (x, t)∈D(2)
2 ={x∈ [0, cos π

n ], t∈ [−1, cos 3π
2n ], 1

2 ≤ x−t
1−xt ≤1}.

Then
τ ′′(x, t) = 0 ⇒ |τ ′(x, t)| ≤ T ′n(1) .

Proof. We note that the assumption t ∈ [−1, cos 3π
2n ] is not used in the proof.

With ω∗(x) = Tn(x)− Tn(t), we have τ(x, t) = φ∗(x, ti), hence by Claim 4.2,

τ ′′(x, t) = 0 ⇒ |τ ′(x, t)| = |ψ2(x, t)| ,
where

ψ2(x, t) :=
1
2
(1− x2)ω′′∗ (x) +

x− t

1− xt
ω′∗(x)− x(1− t2)

(x− t)(1− xt)
ω∗(x) . (7.1)

Let us prove that
max

(x,t)∈D(2)
2

|ψ2(x, t)| ≤ T ′n(1). (7.2)

Making the substitution γ := x−t
1−xt into (7.1), so that γ ∈ [ 12 , 1], we obtain

ψ2(x, t) =
1
2
(1− x2)ω′′∗ (x) + γ ω′∗(x)− 1− γ2

γ

x

1− x2
ω∗(x)

=: gγ(x)− hγ(x) ,

(7.3)

where gγ(x) is the sum of the first two terms, and hγ(x) is the third one, so
that

|ψ2(x, t)| ≤ |gγ(x)|+ |hγ(x)| . (7.4)

Let us evaluate both gγ and hγ .

1) Since ω∗(x) = Tn(x)− Tn(t), we have

2gγ(x) = (1− x2)T ′′n (x) + 2γT ′n(x) = (x + 2γ)T ′n(x)− n2Tn(x) ,

so that, using Cauchy’s inequality and the well-known identity for Chebyshev
polynomials, we obtain

2|gγ(x)| = n

∣∣∣∣nTn(x)− x + 2γ

n
√

1− x2

√
1− x2T ′n(x)

∣∣∣∣

≤ n
(
n2Tn(x)2 + (1− x2)T ′n(x)2

)1/2
(

1 +
(x + 2γ)2

n2(1− x2)

)1/2

= n2

(
1 +

(x + 2γ)2

n2(1− x2)

)1/2

,

so that

|gγ(x)| ≤ n2 1
2

(
1 +

(x + 2γ)2

n2(1− x2)

)1/2

. (7.5)
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2) For the function hγ in (7.3), since ω∗(x) = Tn(x)−Tn(t) does not exceed
2 in the absolute value, we have the trivial estimate

|hγ(x)| ≤ 1− γ2

γ

2x

1− x2
= n2 1− γ2

γ

2x

n2(1− x2)
. (7.6)

3) So, from (7.4), (7.5) and (7.6), we have

max
x,t∈D(2)

2

|ψ2(x, t)| ≤ T ′n(1)max
x,γ

F (x, γ) ,

where

F (x, γ) :=
1
2

(
1 +

(x + 2γ)2

n2(1− x2)

)1/2

+
1− γ2

γ

2x

n2(1− x2)
,

and the maximum is taken over γ ∈ [ 12 , 1] and x ∈ [0, xn], where xn = cos π
n .

Clearly, F (x, γ) ≤ F (xn, γ), so we are done with (7.2) once we prove that
F (xn, γ) ≤ 1. We have

F (xn, γ) =
1
2

(
1 +

(cos π
n + 2γ)2

n2 sin2 π
n

)1/2

+
1− γ2

γ

2 cos π
n

n2 sin2 π
n

≤ 1
2

(
1 +

(1 + 2γ)2

42 sin2 π
4

)1/2

+
1− γ2

γ

2 · 1
42 sin2 π

4

=: G(γ), n ≥ 4,

where we have used that cos π
n < 1 and the fact that the sequence (n2 sin2 π

n )
is increasing. Hence, F (xn, γ) ≤ 1 for all n ≥ 3 if

F (x3, γ) ≤ 1, G(γ) ≤ 1 , γ ∈ [ 12 , 1] .

The latter is seen to be true on Figure 4. Formally, it is easy to show that

Figure 4. The graphs of F (x3, γ) (left) and G(γ) (right), γ ∈ [ 1
2
, 1].
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G′(γ) ≤ G′(1) < 0, F ′(x3, γ) ≤ F ′(x3, 1) < 0, γ ∈ [ 12 , 1],

i.e., both functions are decreasing on [ 12 , 1], and then verify that G( 1
2 ) < 1 and

F (x3,
1
2 ) < 1. ¤

8. Proof of Proposition 5.2.c

Lemma 8.1. Let x ∈ D(3)
2 = {x ∈ [cos π

n , 1], t ∈ [−1, cos 3π
2n ], 1

2 ≤ x−t
1−xt ≤1}.

Then
τ ′′(x, t) 6= 0 .

We prove this statement in several steps, and the restriction 1
2 ≤ x−t

1−xt ≤ 1
is irrelevant to the proof.

Lemma 8.2. a) If t ∈ [−1, 0], then τ ′′(x, t) 6= 0 for x ∈ [cos π
n ,∞).

b) If t ∈ (0, 1], then τ ′′(x, t) has at most one zero in [cos π
n ,∞), and

τ ′′(x, t)<0 for large x.

Proof. By definition,

τ(x, t) =
1− xt

x− t
(Tn(x)− Tn(t)) .

For a fixed t ∈ [−1, 1], the polynomial ω∗(·) = Tn(·)− Tn(t) has n zeros inside
[−1, 1], say (ti), one of them at x = t, so t = ti0 for some i0. From definition,
we see that the polynomial τ(·, t) has the same zeros as ω∗(·) except ti0 which
is replaced by 1/ti0 . So, if (si)n

i=1 and (ti)n
i=1 are the zeros of τ(·, t) and ω∗(·, t)

respectively, counted in the reverse order, then

1) si ≤ ti ≤ si−1, if t ≤ 0, 2) si+1 ≤ ti ≤ si, if t > 0 .

That means that zeros of τ(·, t) and ω∗(·) interlace, hence, by Markov’s lemma,
the same is true for the zeros of any of their derivatives. In particular, if (s′′i )n−2

i=1

and (t′′i )n−2
i=1 are the zeros of τ ′′(·, t) and ω′′∗ (·, t), respectively, counted in the

reverse order, then

1′′) s′′1 < t′′1 , if t ≤ 0, 2′′) s′′2 < t′′1 < s′′1 , if t > 0 .

Since ω′′∗ = T ′′n , its rightmost zero t′′1 satisfies t′′1 < cos π
n as the latter is the

rightmost zero of T ′n.
Hence, if t ≤ 0, then the rightmost zero s′′1 of τ ′′(·, t) satisfies s′′1 < cos π

n ,
and that proves claim a) of the lemma. On the other hand, if t > 0, then
there is at most one zero of τ ′′(·, t) on [cos π

n ,∞), and that proves the first part
of claim b) of the lemma. The second part of b) follows from the observation
that, for t > 0, the polynomial τ(·, t) has a negative leading coefficient, hence
τ ′′(x, t) < 0 for large x. ¤
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Corollary 8.3. If, for a fixed t ∈ [0, 1], τ ′′(x, t) ≥ 0 at x = 1, then
τ ′′(x, t) > 0 for all x ∈ [cos π

n , 1) .

Proof. By Lemma 8.2, there is at most one zero of τ ′′(·, t) on [cos π
n ,∞),

and τ ′′(x, t) < 0 for large x. Hence, if τ ′′(x, t) ≥ 0 at x = 1, then τ ′′(·, t) does
not change its sign on [cos π

n , 1). ¤

Lemma 8.4. If t ∈ [0, cos 3π
2n ], then τ ′′(x, t) > 0 for x ∈ [cos π

n , 1].

Proof. By Corollary 8.3, it suffices to prove that τ ′′(x, t) ≥ 0 at x = 1
provided t ∈ [0, cos 3π

2n ]. By direct calculations, we have

τ ′′(x, t) =
1− xt

x− t
T ′′n (x)− 2

1− t2

(x− t)2
T ′n(x) + 2

1− t2

(x− t)3
(Tn(x)− Tn(t)) ,

so we need to prove that

τ ′′(1, t) =
n2(n2 − 1)

3
− 2

1 + t

1− t
n2 + 2

1 + t

(1− t)2
(1− Tn(t)) ≥ 0 , (8.1)

where we have used that Tn(1) = 1, T ′n(1) = n2, and T ′′n (1) = n2(n2−1)
3 .

1) Since the last term in (8.1) is non-negative for t ∈ [−1, 1), this inequality
will certainly be true if

n2(n2 − 1)
3

− 2
1 + t

1− t
n2 ≥ 0 ⇒ t ≤ n2 − 7

n2 + 5
.

We have

cos
3π

2n
<

n2 − 7
n2 + 5

, 3 ≤ n ≤ 6 , and cos
2π

n
<

n2 − 7
n2 + 5

< cos
3π

2n
, n ≥ 7 .

That proves (8.1), and hence the lemma, for all t ∈ [0, cos 3π
2n ] if 3 ≤ n ≤ 6,

and for all t ∈ [0, cos 2π
n ] if n ≥ 7.

2) So, it remains to prove that (8.1) is valid for t ∈ [cos 2π
n , cos 3π

2n ] and
n ≥ 7. To this end, we consider the function

f(t) := (1− t)τ ′′(1, t)

= (1− t)
n2(n2 − 1)

3
− 2(1 + t)n2 + 2 (1 + t)

1− Tn(t)
1− t

.

Clearly, f(1) = 0 and it is easy to see that f(cos 2π
n ) > 0.

Let us prove next that f is convex on I = [cos 2π
n ,∞). Indeed, the first two

terms are linear in t whereas the last term consists of two factors, both convex,
positive and increasing on I. The latter claim is obvious for the factor 1 + t,
and it is also true for the factor Pn(t) := 1−Tn(t)

1−t , since this Pn is a polynomial
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with a positive leading coefficient whose rightmost zero is the double zero at
t = cos 2π

n .
Thus, f is convex on [cos 2π

n ,∞), and it also satisfies f(cos 2π
n ) > 0 and

f(1) = 0. Therefore, if f(t∗) > 0 for some t∗ ∈ (cos 2π
n , 1), then f(t) > 0 for

all t ∈ [cos 2π
n , t∗]. Hence, it suffices to show that τ ′′(1, t∗) > 0 for t∗ = cos 3π

2n .
Putting this t∗ into (8.1) and noting that Tn(t∗) = 0, we obtain

τ ′′(1, t∗) =
n2(n2 − 1)

3
− 2n2u +

2
1 + cos 3π

2n

u2 ?
> 0, u := cot2

3π

4n
. (8.2)

Inequality (8.2) will certainly be true if n2(n2−1)
3 −2n2u+u2 > 0, and a sufficient

condition for the latter is the inequality

cot2
3π

4n
= u < n2

(
1−

√
2
3

+
1

3n2

)
.

Since cotα < α−1 for 0 < α < π
2 , this condition is fulfilled if

( 4
3π

)2

< 1−
√

2
3

+
1

3n2
,

and that is true for n ≥ 8. For n = 7, one can verify (8.2) directly. ¤

9. Proof of Theorem 2.2

In this section, we prove that, for the majorant

µm(x) = (1− x2)m/2, (9.1)

its snake-polynomial ωµ is not extremal for the Duffin-Schaeffer inequality for
k ≤ m, precisely that for the value

D∗
k,µm

:= sup
|p(x)|δ∗≤|µm(x)|δ∗

‖p(k)‖

where δ∗ = (τ∗i ) is the set of points of oscillation of ωµm between ±µm, we have

D∗
k,µm

> ‖ω(k)
µ ‖, k ≤ m.

The snake-polynomial for µm in (9.1) is given by the formula

ωµm(x) =





(x2 − 1)s Tn(x), m = 2s,

1
n

(x2 − 1)s T ′n(x), m = 2s− 1 ,
(9.2)



194 On Markov–Duffin–Schaeffer Inequalities with a Majorant. II

so its oscillation points are the sets

δ
(1)
n :=

(
cos πi

n

)n

i=0
, δ

(2)
n :=

(
cos π(i−1/2)

n

)n

i=1
,

at which |Tn(x)| = 1 and |T ′n(x)| = n√
1−x2 , respectively, with additional

multiple points at x = ±1.
Now, we introduce the pointwise Duffin-Schaeffer function:

d∗k,µ(x) := sup
|p|δ∗≤|µm|δ∗

|p(k)(x)| =





sup
|q|

δ
(1)
n
≤|Tn|

δ
(1)
n

|(x2 − 1)sq(x)](k)| , m = 2s

sup
|q|

δ
(2)
n
≤ 1

n |T ′n|δ(2)
n

|(x2−1)sq(x)](k)| , m=2s−1

and note that
D∗

k,µ = ‖d∗k,µ(·)‖ ≥ d∗k,µ(0) .

Proposition 9.1. We have

D∗
k,µm

≥ O(nk ln n) .

Proof. We split the proof into two cases, for even and for odd m in (9.2),
respectively.

Case 1 (m = 2s). Let us show that, for a fixed k ∈ N, and for all large
n 6≡ k (mod 2), there is a polynomial q1 of degree n such that

1) |q1(x)|
δ
(1)
n
≤ 1, 2)

∣∣[(x2 − 1)sq1(x)](k)
∣∣
|x=0

= O(nk ln n) .

1) Set

P (x) := (x2 − 1)T ′n(x) = n

n∏

i=0

(x− ti) , (ti)n
i=0 = (cos πi

n )n
i=0 = δ(1)

n , (9.3)

and, having in mind that tn−i = −ti, define the polynomial of degree n

q1(x) :=
1
n2

P (x)
(n−1)/2∑

i=1

( 1
x− ti

− 1
x + ti

)
=:

1
n2

P (x)U(x) . (9.4)

This polynomial vanishes at those ti that do not appear under the sum, i.e.,
at t0 = 1, tn = −1 and, for even n, at tn/2 = 0. At all other ti it has
the absolute value |q(ti)| = 1

n2 |P ′(ti)| = 1, by virtue of the equality P ′(x) =
n2Tn(x) + xT ′n(x). Hence,

|q1(ti)| ≤ |Tn(ti)| = 1, ∀ti ∈ δ(1)
n .
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2) We see from (9.4) that U is an even function, P (x) = (x2 − 1)T ′n(x) is
either even or odd polynomial, and for their non-vanishing derivatives at x = 0
we have

|P (r)(0)| = |T (r+1)
n (0)− r(r − 1)T (r−1)

n (0)| = O(nr+1) , n 6≡ r (mod 2) ,

|U (r)(0) = 2 r!
(n−1)/2∑

j=1

1
(sin πj

n )r+1
=




O(n ln n), r = 0,

O(nr+1), r=2r1 ≥ 2.

Respectively, in the Leibnitz formula for q
(k)
1 (0),

q
(k)
1 (0) =

1
n2

[P (x)U(x)](k)
|x=0 =

1
n2

k∑
r=0

(
k

r

)
P (k−r)(0)U (r)(0) ,

if k 6≡ n(mod 2) then the term P (k)(0)U(0) = O(nk+2 ln n) dominates, hence

q
(k)
1 (0) = O(nk ln n) ⇒ [(x2−1)sq1(x)](k)

|x=0 = O(nk ln n) , k 6≡ n(mod 2).

Case 2 (m = 2s − 1). Similarly, for a fixed k, and for all large n ≡
k (mod 2), the polynomial q2 of degree n− 1 defined as

q2(x) :=
1
n2

Tn(x)
(n−1)/2∑

i=1

( 1
x− ti

− 1
x + ti

)
, (ti)n

i=1 = (cos π(i−1/2)
n )n

i=1 = δ(2)
n ,

satisfies

1) |q2(x)|
δ
(2)
n
≤ 1

n
|T ′n(x)|

δ
(2)
n

, 2) |(x2 − 1)sq
(k)
2 (x)||x=0 = O(nk ln n) .

Proposition 9.1 is proved. ¤

Proposition 9.2. Let µm(x) = (1− x2)m/2. Then

Mk,µm := sup
|p(x)|≤|µm(x)|

‖p(k)‖ = O(nk), k ≤ m. (9.5)

Proof. Pierre and Rahman [4] proved that

Mk,µm = max
(
‖ω(k)

N ‖, (‖ω(k)
N−1‖

)
, k ≥ m, (9.6)

where ωN and ωN−1 are the snake-polynomial for µm of degree N and N − 1,
respectively. However, they did not investigate which norm is bigger and at
what point x ∈ [−1, 1] it is attained. We proved in [3] that, for functions

f(x) := (x2 − 1)sTn(x) , g(x) :=
1
n

(x2 − 1)sT ′n(x)
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we have

‖f (k)‖ = f (k)(1), k ≥ 2s, ‖g(k)‖ = g(k)(1), k ≥ 2s− 1.

Since f and g are exactly the snake-polynomials for µm(x) = (1 − x2)m/2 for
m = 2s and m = 2s − 1, respectively, we can refine the result of Pierre and
Rahman in (9.6) as

Mk,µm = ω
(k)
N (1) = ω(k)

µ (1), k ≥ m.

It is easy to find that f (k)(1) = O(n2(k−s)) and g(k)(1) = O(n2(k−s)+1), hence
ω

(k)
µ (1) = O(n2k−m), in particular,

Mm,µm = ω(m)
µ (1) = O(nm) , (9.7)

and that proves (9.5) for k = m. For k < m, we observe that

k < m ⇒ µm ≤ µk ⇒ Mk,µm ≤ Mk,µk

(9.7)
= O(nk) ,

and that completes the proof. ¤
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