CONSTRUCTIVE THEORY OF FUNCTIONS, Sozopol 2013: (K. Ivanov, G. Nikolov and R. Uluchev, Eds.), pp. 175-197 Prof. Marin Drinov Academic Publishing House, Sofia, 2014

# On Markov–Duffin–Schaeffer Inequalities with a Majorant. II

GENO NIKOLOV\* AND ALEXEI SHADRIN

We are continuing our studies on the so-called Markov inequalities with a majorant. Inequalities of this type provide an upper bound for the uniform norm in [-1, 1] of the k-th derivative of an algebraic polynomial p of degree n when |p| is bounded on [-1, 1] by a certain curved majorant  $\mu$ . A conjecture is that the exact upper bound  $M_{k,\mu}$  is attained by the kth derivative of the so-called snake-polynomial  $\omega_{\mu}$  which oscillates most between  $\pm \mu$ , i.e., that

$$M_{k,\mu} = \|\omega_{\mu}^{(k)}\|,$$

but it turned out to be a rather difficult question.

In our previous paper [3] we proved that this is true in the case of symmetric majorant  $\mu$  provided the snake-polynomial  $\omega_{\mu}$  has a positive Chebyshev expansion. In this paper, we show that that the conjecture is valid under the assumption that the snake-polynomial has a positive or sign alternating Chebyshev expansion, hence for non-symmetric majorants  $\mu$  as well.

### 1. Introduction

Throughout,  $\mathcal{P}_n$  will stand for the class of real-valued algebraic polynomials of degree not exceeding n.

This paper continues our studies in [3] and it is dealing with the problem of estimating  $||p^{(k)}||$ , the max-norm in [-1, 1] of the k-th derivative of a polynomial  $p \in \mathcal{P}_n$  obeying the restriction

$$|p(x)| \le \mu(x), \qquad x \in [-1, 1],$$

where  $\mu$  is a non-negative majorant. We want to find for which majorants  $\mu$  the supremum of  $\|p^{(k)}\|$  is attained by the so-called snake-polynomial  $\omega_{\mu}$  which

<sup>\*</sup>This author was supported by the Bulgarian National Research Fund under Grant DDVU–02/30.



Figure 1. Markov inequality with a majorant  $\mu$ :  $|p| \le \mu$ ,  $||p^{(k)}|| \to \sup$ 

oscillates most between  $\pm \mu$ , namely by the polynomial  $\omega_{\mu} \in \mathcal{P}_n$  that satisfies the following conditions

a) 
$$|\omega_{\mu}(x)| \le \mu(x), \ x \in [-1,1];$$
 b)  $\omega_{\mu}(\tau_i^*) = (-1)^i \mu(\tau_i^*), \ i = 0, \dots, n$ 

(This  $\omega_{\mu}$  is an analogue of the Chebyshev polynomial  $T_n$  for  $\mu \equiv 1$ , see Fig. 1.)

Actually, we are interested in those  $\mu$  that provide the same supremum for  $\|p^{(k)}\|$  under the weaker assumption

$$|p(x)| \le \mu(x), \qquad x \in \delta^* = (\tau_i^*)_{i=0}^n,$$

where  $\delta^*$  is the set of oscillation points of  $\omega_{\mu}$  (see Fig. 2).

These two problems are generalizations of the classical results for  $\mu \equiv 1$  of Markov [2] and Duffin-Schaeffer [1], respectively.

Problem 1.1 (Markov inequality with a majorant). Given  $n, k \in \mathbb{N}$ ,  $1 \le k \le n$ , and a majorant  $\mu \ge 0$ , find

$$M_{k,\mu} := \sup\{\|p^{(k)}\| : p \in \mathcal{P}_n, \, |p(x)| \le \mu(x), \, x \in [-1,1]\}.$$
(1.1)

Problem 1.2 (Duffin–Schaeffer inequality with a majorant). Given  $n, k \in \mathbb{N}, 1 \leq k \leq n$ , and a majorant  $\mu \geq 0$ , find

$$D_{k,\mu}^* := \sup\{\|p^{(k)}\| : p \in \mathcal{P}_n, |p(x)| \le \mu(x), x \in \delta^*\}.$$
 (1.2)

In this setting, the results of Markov [2] and Duffin–Schaeffer [1] read:

$$\mu \equiv 1 \Rightarrow M_{k,\mu} = D_{k,\mu}^* = ||T_n^{(k)}||, \quad 1 \le k \le n,$$



**Figure 2.** Duffin-Schaeffer inequality with a majorant  $\mu$ :  $|p|_{\delta^*} \leq |\mu|_{\delta^*}, \|p^{(k)}\| \to \sup$ 

so, the question of interest is for which other majorants  $\mu$  the snake-polynomial  $\omega_{\mu}$  is extremal to both Problems 1.1 and 1.2, i.e., when do we have the equalities

$$M_{k,\mu} \stackrel{?}{=} D_{k,\mu}^* \stackrel{?}{=} \|\omega_{\mu}^{(k)}\|.$$
(1.3)

Note that, for any majorant  $\mu$ , we have  $\|\omega_{\mu}^{(k)}\| \leq M_{k,\mu} \leq D_{k,\mu}^*$ , so the question marks in (1.3) will be removed once we show that

$$D_{k,\mu}^* \le \|\omega_{\mu}^{(k)}\|.$$
(1.4)

Ideally, we would also like to know the exact numerical value of  $\|\omega_{\mu}^{(k)}\|$  and that requires some kind of explicit expression for the snake-polynomial  $\omega_{\mu}$ . The latter is available for the class of majorants of the form

$$\mu(x) = \sqrt{R_s(x)},\tag{1.5}$$

where  $R_s$  is a non-negative in [-1, 1] polynomial of degree s, so it is this class that we pay most of our attention to.

In our previous paper [3] we proved that inequality (1.4) is valid if  $\widehat{\omega}_{\mu} := \omega_{\mu}^{(k-1)}$  belongs to the class  $\Omega$ , which is defined by the following three conditions:

$$\begin{aligned} 0) \qquad \widehat{\omega}_{\mu}(x) &= \prod_{i=1}^{\widehat{n}} (x - t_i), \quad t_i \in [-1, 1]; \\ \widehat{\omega}_{\mu} \in \Omega: \quad 1a) \qquad \|\widehat{\omega}_{\mu}\|_{C[0, 1]} = \widehat{\omega}_{\mu}(1); \quad 1b) \quad \|\widehat{\omega}_{\mu}\|_{C[-1, 0]} &= |\widehat{\omega}_{\mu}(-1)|; \quad (1.6) \\ 2) \qquad \widehat{\omega}_{\mu} &= \sum_{i=0}^{\widehat{n}} a_i T_i, \quad a_i \ge 0. \end{aligned}$$

Theorem 1.3 ([3]). Let  $\omega_{\mu}^{(k-1)} \in \Omega$ . Then

$$M_{k,\mu} = D_{k,\mu}^* = \omega_{\mu}^{(k)}(1)$$

Let us make some comments on the polynomial class  $\Omega$  defined in (1.6).

For  $\omega_{\mu}$ , assumption (0) is redundant, as the snake-polynomial  $\omega_{\mu}$  of degree n has n + 1 points of oscillations between  $\pm \mu$ , hence, all of its n zeros lie in the interval [-1, 1], thus the same is true for any of its derivatives. We wrote it down as we use this property repeatedly.

In the case of symmetric majorant  $\mu$ , condition (1) becomes redundant too, as in this case the snake-polynomial  $\omega_{\mu}$  is either even or odd, hence all  $T_i$  in its Chebyshev expansion (2) are of the same parity, and that, coupled with the non-negativity of  $a_i$  in (2), implies (1a) and (1b). Therefore, for symmetric majorants  $\mu$ , we have the following statement.

**Theorem 1.4 ([3]).** Let  $\mu(x) = \mu(-x)$ , and let  $\omega_{\mu}$  be the corresponding snake-polynomial of degree n. If

$$\omega_{\mu}^{(k_0-1)} = \sum_{i=0}^{\widehat{n}} a_i T_i, \quad a_i \ge 0,$$

then

$$M_{k,\mu} = D_{k,\mu}^* = \omega_{\mu}^{(k)}(1), \qquad k \ge k_0.$$

This theorem allowed us to establish in [3] Duffin-Schaeffer (and, thus, Markov) inequalities for various symmetric majorants  $\mu$  of the form (1.5), see the next section for details.

However, for non-symmetric  $\omega_{\mu} \in \Omega$  with a positive Chebyshev expansion, equality (1b) in (1.6) is often not valid for small k, and that did not allow us to bring our Duffin-Schaeffer-type results in [3] to a satisfactory level. For example, (1b) is not fulfilled in the case

$$\mu(x) = x + 1, \qquad k = 1,$$

although intuitively it is clear that the Duffin-Schaeffer inequality with such  $\mu$  should be true, and we show that it is true, see Table 3 in the next section.

Here we show that, as we conjectured in [3], inequality (1.4) is valid under condition (1.6(2)) only, hence, the statement of Theorem 1.4 is true for non-symmetric majorants  $\mu$  as well.

**Theorem 1.5.** Given a majorant  $\mu \geq 0$ , let  $\omega_{\mu}$  be the corresponding snakepolynomial of degree n. If

$$\omega_{\mu}^{(k_0-1)} = \sum_{i=0}^{\hat{n}} a_i T_i, \quad a_i \ge 0,$$

then

$$M_{k,\mu} = D_{k,\mu}^* = \omega_{\mu}^{(k)}(1), \qquad k \ge k_0.$$

A short proof of this theorem is given in Section 3. It is based on a new idea which allows us to "linearize" the problem and reduce it to the following property of the Chebyshev polynomial  $T_n$ .

**Proposition 1.6.** For a fixed  $t \in [-1,1]$ , define a polynomial  $\tau_n(\cdot,t)$  as follows:

$$\tau_n(x,t) := \frac{1 - xt}{x - t} (T_n(x) - T_n(t)).$$
(1.7)

Then

$$\max_{x,t\in[-1,1]} |\tau'_n(x,t)| = T'_n(1).$$
(1.8)

The simple explicit form (1.7) of the polynomials  $\tau_n(\cdot, t)$  enables us to draw the graphs of  $\tau'_n(\cdot, t)$  using symbolic computations and thus to check inequality (1.8) numerically for rather large degrees n. Figure 3 shows that  $\tau'_n(x,t)$ , as a function of two variables, has n-3 local extrema, each of them equals approximately half the value of the global one, namely

$$\max_{x|\leq\cos\frac{\pi}{n}}\max_{|t|\leq 1}|\tau'_n(x,t)|\approx \frac{1}{2}T'_n(1)$$

Those extrema are very close to the extrema of  $\frac{1}{2}(1-x^2)T_n''(x) + xT_n'(x)$ 



**Figure 3.** Graphs of  $\tau'_n(\cdot, t)$  for n = 6 (left) and n = 16 (right)

although they are not the same. The rigorous proof of (1.8) turned out to be relatively long, and it would be interesting to find shorter arguments.

**Organisation of the paper.** In Section 2 we list a set of the majorants  $\mu(x) = \sqrt{R_s(x)}$  to which our Theorem 1.5 is applicable, thus establishing Markov-Duffin-Schaeffer inequalities for those  $\mu$ . Section 3 contains a short proof of Theorem 1.5 that uses Proposition 1.6 as its main ingredient. A proof of Proposition 1.6 is given then in Sections 4–8. Finally, in Section 9 we show that for the majorant  $\mu_m(x) = (1 - x^2)^{m/2}$ , the snake-polynomial  $\omega_{\mu}$  is not extremal for the Duffin-Schaeffer inequality if  $k \leq m$ .

# 2. Markov-Duffin-Schaeffer Inequalities for Various Majorants

1) Before our studies in [3], Markov- or Duffin-Schaeffer-type inequalities were obtained for the following majorants  $\mu$  and derivatives k:

Table 1: Markov-type inequalities:  $M_{k,\mu} = \omega_{\mu}^{(k)}(1)$ 

Table 2: Duffin-Schaeffer-type inequalities:  $M_{k,\mu} = D_{k,\mu}^* = \omega_{\mu}^{(k)}(1)$ 

The next theorem combines results from our previous paper [3] with new results obtained here based on Theorem 1.5. In particular, it shows that, in cases 1<sup>\*</sup> and 4<sup>\*</sup>, Markov-type inequalities with  $M_{k,\mu} = \omega_{\mu}^{(k)}(1)$  are valid also for  $k \geq 2$ , and in case 2<sup>\*</sup> they are valid for  $k \geq m + 1$  independently of  $\ell$ . Moreover, in all our cases we have the stronger Duffin-Schaeffer inequalities.

**Theorem 2.1.** Let  $\mu$  be one of the majorant given in Table 3. Then, with the corresponding  $k_0$ , the  $(k_0 - 1)$ -st derivative of its snake-polynomial  $\omega_{\mu}$  satisfies

$$\omega_{\mu}^{(k_0-1)} = \sum_{i} a_i T_i, \qquad a_i \ge 0, \qquad (2.1)$$

hence, by Theorem 1.5,

$$M_{k,\mu} = D_{k,\mu}^* = \omega_{\mu}^{(k)}(1), \qquad k \ge k_0.$$
(2.2)

| 1*    | $\sqrt{ax^2 + bx + 1}, \ b \ge 0, \ a \ge 0$<br>a < 0 | $k \ge 1$ $k \ge 2$ | new | 2* | $(1+x)^{\ell/2}(1-x^2)^{m/2}$            | k > m                             | new |
|-------|-------------------------------------------------------|---------------------|-----|----|------------------------------------------|-----------------------------------|-----|
| 3*    | $\sqrt{1 + (a^2 - 1)x^2}$                             | $k\!\geq\!2$        | [3] | 4* | $\sqrt{\prod_{i=1}^m (1\!+\!c_i^2 x^2)}$ | $k \ge 1$                         | [3] |
| $5^*$ | any $\sqrt{R_m(x^2)}$                                 | k > m               | [3] | 6* | any $\mu(x) = \mu(-x)$                   | $k > \lfloor \frac{n}{2} \rfloor$ | [3] |
| $7^*$ | $\sqrt{(1+c^2x^2)(1+(a^2-1)x^2)}$                     | $k \ge 2$           | [3] | 8* | $\sqrt{1-a^2x^2+a^2x^4}$                 | $k \ge 1$                         | new |

Table 3: Duffin-Schaeffer-type inequalities:  $M_{k,\mu} = D_{k,\mu}^* = \omega_{\mu}^{(k)}(1)$ 

*Proof.* The proof of (2.1) for particular majorants consists of sometimes tedious calculations.

a) The cases  $3^*-7^*$ , with symmetric majorants  $\mu$ , are taken from [3] where we already proved (2.1) and then derived (2.2) from Theorem 1.3.

b) Here, we added one more symmetric case  $8^*$  as an example of the majorant which is not monotonically increasing on [0,1], but which is still providing Duffin-Schaeffer inequality for all  $k \ge 1$ . One can check that its snake-polynomial has the form

$$\omega_{\mu}(x) = \frac{1+b}{2} T_{n+2}(x) + \frac{1-b}{2} T_{n-2}(x), \qquad b = \sqrt{1-(\frac{a}{2})^2}.$$

c) In the non-symmetric case 1<sup>\*</sup>, we proved (2.1) for  $k \ge 1$  if  $a \ge 0$  and for  $k \ge 2$  if a < 0 already in [3]. However, with Theorem 1.3 in [3] we were able to get (2.2) only for  $k \ge 3$  whereas Theorem 1.5 covers the cases  $k = 1, 2, a \ge 0$  and k = 2, a < 0 as well.

d) The second non-symmetric case  $2^*$  is new, but proving (2.1) in this case is relatively easy. For example, in the simplest situation when both m and  $\ell$ are even, say,  $m = 2m_1$  and  $\ell = 2\ell_1$ , we have

$$\omega_{\mu}(x) = (1+x)^{\ell_1} (x^2 - 1)^{m_1} T_n(x) \,,$$

and since  $x^{s}T_{n}(x)$  has a positive Chebyshev expansion, we obtain

$$\omega_{\mu}(x) = (x^2 - 1)^{m_1} \sum_i a_i T_i(x), \qquad a_i \ge 0.$$

We proved in [3] that  $[(x^2-1)^{m_1}T_i(x)]^{(2m_1)}$  has a positive Chebyshev expansion as well, hence (2.1) is true with  $k_0 = 2m_1 + 1 = m + 1$ .

2) There are two particular cases of a majorant  $\mu$  and a derivative k for which Markov-type inequalities have been proved, but they cannot be extended to Duffin-Schaeffer-type within our method, as in those case  $\omega_{\mu}^{(k-1)}$  does not have a positive Chebyshev expansion.

Table 4: Markov- but not Duffin-Schaeffer-type inequalities:  $M_{k,\mu} = \omega_{\mu}^{(k)}(1), D_{k,\mu}^* = ?$ 

| 1° | $\sqrt{ax^2+bx+1},\ a<0,\ b\geq 0$ | k = 1 | $2^{\diamond}$ | $(1-x^2)^{m/2}$ | k = m |
|----|------------------------------------|-------|----------------|-----------------|-------|
|----|------------------------------------|-------|----------------|-----------------|-------|

In this respect, a natural question is whether this situation is due to imperfectness of our method, or whether it is because the equality  $M_{k,\mu} = D_{k,\mu}^*$  is no longer valid. An indication that the latter is likely to be the case was given by the result of Rahman-Schmeisser [5] for the majorant  $\mu_1(x) := \sqrt{1-x^2}$ . Namely, they showed that

$$\mu_1(x) = \sqrt{1 - x^2}, \quad k = 1 \quad \Rightarrow \quad 2n = \omega'_{\mu_1}(1) = M_{1,\mu_1} < D^*_{1,\mu_1} = \mathcal{O}(n \ln n).$$

Here, we show that, in case  $2^{\diamond}$ , i.e., for  $\mu_m := (1 - x^2)^{m/2}$  with any  $m \in \mathbb{N}$ , similar inequalities between Markov and Duffin-Schaeffer constants hold for all  $k \leq m$ .

Theorem 2.2. We have

$$\mu_m(x) = (1 - x^2)^{m/2}, \quad k \le m \quad \Rightarrow \quad \mathcal{O}(n^k) = M_{k,\mu_m} < D^*_{k,\mu_m} = \mathcal{O}(n^k \ln n).$$

As to the remaining case  $1^{\diamond}$ , we believe that if  $\mu(1) > 0$ , i.e., except for the degenerate case  $\mu(x) = \sqrt{1 - x^2}$ , we will have Duffin-Schaeffer inequality at least for large n:

$$\mu(x) = \sqrt{ax^2 + bx + 1}, \ a < 0, \ b \ge 0, \qquad \Rightarrow \quad M_{1,\mu} = D_{1,\mu} = \omega'_{\mu}(1), \ \forall n \ge n_{\mu},$$

where  $n_{\mu}$  depends on  $\mu(1)$  (say,  $n_{\mu} > \frac{1}{\mu(1)}$ ).

**Remark 2.3.** Obviously,  $\omega_{\mu}(-x)$  is a snake-polynomial for the majorant  $\tilde{\mu}(x) = \mu(-x)$ ; moreover, if  $\omega_{\mu}$  has a positive (or negative) Chebyshev expansion, then  $\omega_{\tilde{\mu}}$  has a sign alternating Chebyshev expansion and vice versa. Hence, the assumption for a positive Chebyshev expansion in Theorems 1.5 and 2.1 can be replaced by the assumption for a sign alternating Chebyshev expansion, in which case we have  $M_{k,\mu} = D_{k,\mu}^* = |\omega_{\mu}^{(k)}(-1)|$ . We therefore have the following supplement to Table 3:

Table 3': Duffin-Schaeffer-type inequalities:  $M_{k,\mu} = D_{k,\mu}^* = |\omega_{\mu}^{(k)}(-1)|$ 

| 1' | $\sqrt{ax^2 + bx + 1}, \ b < 0, \ a \ge 0$ | $k \ge 1$    | new | 2' | $(1-x)^{\ell/2}(1-x^2)^{m/2}$ | k > m | new |
|----|--------------------------------------------|--------------|-----|----|-------------------------------|-------|-----|
|    | a < 0                                      | $k\!\geq\!2$ |     |    |                               |       |     |

### 3. Proof of Theorem 1.5

In [3], we used the following intermediate estimate as an upper bound for  $D_{k,\mu}^*$ .

**Proposition 3.1 ([3]).** Given a majorant  $\mu$ , let  $\omega_{\mu}$  be its snake-polynomial, let  $\widehat{\omega}_{\mu}(x) := \omega_{\mu}^{(k-1)}(x)$ , and let

$$\phi_{\widehat{\omega}}(x,t_i) := \frac{1 - xt_i}{x - t_i} \,\widehat{\omega}_{\mu}(x), \qquad \text{where } t_i \text{ are the zeros of } \widehat{\omega}_{\mu}. \tag{3.1}$$

Then

$$D_{k,\mu}^* \le \max\Big\{ \|\widehat{\omega}_{\mu}'\|, \max_{x,t_i \in [-1,1]} |\phi_{\widehat{\omega}}'(x,t_i)| \Big\}.$$
(3.2)

We showed then in [3] that if  $\hat{\omega}_{\mu}$  belongs to the class  $\Omega$  defined in (1.6), then  $|\phi'_{\widehat{\omega}}(x,t_i)| \leq \hat{\omega}'_{\mu}(1) = \omega_{\mu}^{(k)}(1)$ , and that led to Theorem 1.3.

Here, we prove a similar estimate that uses a continuous (with respect to t) analogue of (3.1).

**Proposition 3.2.** Given a majorant  $\mu$ , let  $\omega_{\mu}$  be its snake-polynomial, let  $\widehat{\omega}_{\mu} = \omega_{\mu}^{(k-1)}$ , and let

$$\tau_{\widehat{\omega}}(x,t) := \frac{1-xt}{x-t} \big( \widehat{\omega}_{\mu}(x) - \widehat{\omega}_{\mu}(t) \big), \qquad t \in [-1,1].$$
(3.3)

Then

$$D_{k,\mu}^* \le \max\left\{ \|\widehat{\omega}_{\mu}'\|, \max_{x,t \in [-1,1]} |\tau_{\widehat{\omega}}'(x,t)| \right\}.$$
(3.4)

*Proof.* Comparing definitions (3.1) and (3.3), we see that, since  $\hat{\omega}_{\mu}(t_i) = 0$ , we have

$$\tau_{\widehat{\omega}}(x,t_i) = \frac{1 - xt_i}{x - t_i} (\widehat{\omega}_{\mu}(x) - \widehat{\omega}_{\mu}(t_i)) = \frac{1 - xt_i}{x - t_i} \,\widehat{\omega}_{\mu}(x) = \phi_{\widehat{\omega}}(x,t_i) \,.$$

Therefore,

$$\max_{x,t_i \in [-1,1]} |\phi'_{\widehat{\omega}}(x,t_i)| = \max_{x,t_i \in [-1,1]} |\tau'_{\widehat{\omega}}(x,t_i)| \le \max_{x,t \in [-1,1]} |\tau'_{\widehat{\omega}}(x,t)|,$$

and (3.4) follows from (3.2).

**Proof of Theorem 1.5.** We want to show that if 
$$\hat{\omega}_{\mu} := \omega_{\mu}^{(k-1)}$$
 has a positive Chebyshev expansion, i.e.,

$$\widehat{\omega}_{\mu} = \sum_{i=0}^{\widehat{n}} a_i T_i, \qquad a_i \ge 0, \qquad (3.5)$$

then

$$D_{k,\mu}^* \le \omega_\mu^{(k)}(1) \,.$$

By (3.4), we are done if we prove that

x

$$\max_{t \in [-1,1]} |\tau'_{\widehat{\omega}}(x,t)| \le \widehat{\omega}'_{\mu}(1) \quad \left(=\omega_{\mu}^{(k)}(1)\right).$$

We have

$$\begin{aligned} \tau_{\widehat{\omega}}(x,t) &:= \quad \frac{1-xt}{x-t} (\widehat{\omega}_{\mu}(x) - \widehat{\omega}_{\mu}(t)) = \frac{1-xt}{x-t} \sum_{i=1}^{\widehat{n}} a_i \Big( T_i(x) - T_i(t) \Big) \\ &= \quad \sum_{i=1}^{\widehat{n}} a_i \frac{1-xt}{x-t} \Big( T_i(x) - T_i(t) \Big) = \sum_{i=1}^{\widehat{n}} a_i \tau_i(x,t) \,, \end{aligned}$$

where

$$\tau_i(x,t) := \frac{1-xt}{x-t} \left( T_i(x) - T_i(t) \right).$$

Respectively,

$$|\tau_{\widehat{\omega}}'(x,t)| \leq \sum_{i=1}^{\widehat{n}} |a_i| \cdot |\tau_i'(x,t)| \stackrel{(a)}{=} \sum_{i=1}^{\widehat{n}} a_i |\tau_i'(x,t)| \stackrel{(b)}{\leq} \sum_{i=1}^{\widehat{n}} a_i T_i'(1) \stackrel{(c)}{=} \widehat{\omega}_{\mu}'(1).$$

In the last display, equality (a) is due to assumption  $a_i \ge 0$  in (3.5), equality (c) also follows from (3.5), and inequality (b) is the matter of Proposition 1.6 (which we are going to prove in the rest of the paper).

# 4. Auxiliary Results

For a polynomial

$$\omega(x) = c \prod_{i=1}^{n} (x - t_i), \quad -1 \le t_n \le \dots \le t_1 \le 1, \quad c > 0,$$

with all its zeros in the interval [-1, 1] (and counted in the reverse order), set

$$\phi(x, t_i) := \frac{1 - xt_i}{x - t_i} \,\omega(x) \,, \qquad i = 1, \dots, n.$$
(4.1)

For each *i*, we would like to estimate the norm  $\|\phi'(\cdot, t_i)\|_{C[-1,1]}$ , i.e., the maximum value of  $|\phi(\cdot, t_i)|$ , and the latter is attained either at the end-points  $x = \pm 1$ , or at the points *x* where  $\phi''(x, t_i) = 0$ .

In [3] we introduced two functions,

$$\psi_1(x,t) := \frac{1}{2}(1-xt)\,\omega''(x) - t\,\omega'(x)\,,\tag{4.2}$$

$$\psi_2(x,t) := \frac{1}{2}(1-x^2)\,\omega''(x) + \frac{x-t}{1-xt}\,\omega'(x) - \frac{x(1-t^2)}{(x-t)(1-xt)}\,\omega(x)\,. \tag{4.3}$$

In [3, Section 4] we obtained the following results.

Claim 4.1 ([3]). We have

$$|\phi'(\pm 1, t_i)| \le |\omega'(\pm 1)|.$$

Claim 4.2 ([3]). For each *i*, both  $\psi_{1,2}(\cdot, t_i)$  interpolate  $\phi'(\cdot, t_i)$  at the points of its local extrema,

$$\phi''(x,t_i) = 0 \Rightarrow \phi'(x,t_i) = \psi_{1,2}(x,t_i),$$
(4.4)

therefore

$$\|\phi'(\cdot, t_i)\|_* \le \|\psi_{1,2}(\cdot, t_i)\|,$$

where  $||f(\cdot)||_*$  stands for the maximal critical value of f on [-1, 1].

Claim 4.3 ([3]). With some specific functions  $f_{\nu}(\omega, \cdot), 1 \leq \nu \leq 4$ , we have

1)  $|\psi_1(x,t_i)| \le \max_{\nu=1,2,3} |f_{\nu}(x)|, \quad 0 \le x \le 1, \quad -1 \le \frac{x-t_i}{1-xt_i} \le \frac{1}{2};$ 2)  $|\psi_2(x,t_i)| \le \max_{\nu=1,2} |f_{\nu}(x)|, \quad t_1 \le x \le 1; \quad \frac{1}{2} \le \frac{x-t_i}{1-xt_i} \le 1;$ 

and, under the additional assumption that  $|\omega(x)| \leq \omega(1)$  for  $x \in [0, 1]$ ,

3) 
$$|\psi_2(x,t_i)| \le \max_{\nu=1,2,4} |f_\nu(x)|, \quad 0 \le x \le t_1, \quad \frac{1}{2} \le \frac{x-t_i}{1-xt_i} \le 1.$$

Claim 4.4 ([3]). Let

$$\omega = \sum_{i=0}^{n} a_i T_i, \qquad a_i \ge 0,$$

Then

$$\max_{1 \le \nu \le 4} |f_{\nu}(\omega, x)| \le \omega'(1) \,.$$

The next theorem follows immediately from Claims 4.1 - 4.4:

**Theorem 4.5 ([3, Theorem 3.1]).** Let  $\omega \in \Omega$  (see (1.6)), i.e., it satisfies the following three conditions

0) 
$$\omega(x) = c \prod_{i=1}^{n} (x - t_i), \quad t_i \in [-1, 1];$$
  
1a)  $\|\omega\|_{C[0,1]} = \omega(1), \quad 1b) \quad \|\omega\|_{C[-1,0]} = |\omega(-1)|;$   
2)  $\omega = \sum_{i=0}^{n} a_i T_i, \quad a_i \ge 0.$ 

Then

$$\max_{x,t_i \in [-1,1]} |\phi'(x,t_i)| \le \omega'(1) \,.$$

This theorem coupled with Proposition 3.1 gives Theorem 1.3, which was the main result in [3]. However, the main purpose of quoting here Claims 4.1 - 4.4 is to apply them to the particular polynomial  $\omega(x) = c_0 + T_n(x)$ .

Firstly, we make a refinement of Claim 4.4, which is just a more accurate statement of what we proved in [3].

Claim 4.6. Let

$$\omega = c_0 + \sum_{i=1}^n a_i T_i, \qquad a_i \ge 0,$$

Then

$$\max_{1 \le \nu \le 4} |f_{\nu}(\omega, x)| \le \omega'(1) \,.$$

*Proof.* The functions  $f_{\nu}(\omega; \cdot)$  are of the form

$$|f_{\nu}(\omega, x)| = |a_{\nu}(x)\omega''(x) + b_{\nu}(x)\omega'(x)| + c_{\nu} \|\omega'\|,$$

i.e., they depend on  $\omega'$  rather than on  $\omega$ , hence they are independent of the free term of the polynomial  $\omega$ .

Now, we formulate the statement that we will use in the next sections. It is a straightforward corollary of Claims 4.1-4.3 and Claim 4.6.

### Proposition 4.7. Let

$$\omega(x) = c_0 + T_n(x) = c \prod_{i=1}^n (x - t_i), \quad |c_0| \le 1, \quad 1 \ge t_1 \ge \dots \ge t_n \ge -1,$$

and let a pair of points  $(x, t_i)$  satisfy any of the following conditions:

1) 
$$0 \le x \le 1$$
,  $-1 \le \frac{x - t_i}{1 - x t_i} \le \frac{1}{2}$ ;  
2)  $t_1 \le x \le 1$ ;  $\frac{1}{2} \le \frac{x - t_i}{1 - x t_i} \le 1$ ; (4.5)  
3)  $0 \le x \le t_1$ ,  $\frac{1}{2} \le \frac{x - t_i}{1 - x t_i} \le 1$  and  $|\omega(x)| \le \omega(1)$ .

Then

$$\phi''(x,t_i) = 0 \quad \Rightarrow \quad |\phi'(x,t_i)| \le \omega'(1) \,. \tag{4.6}$$

# 5. Proof of Proposition 1.6

Here, we will prove Proposition 1.6, namely that the polynomial

$$\tau(x,t) := \tau_n(x,t) := \frac{1-xt}{x-t} \left( T_n(x) - T_n(t) \right), \tag{5.1}$$

considered as a polynomial in x (of degree n), admits the estimate

$$|\tau'(x,t)| \le T'_n(1), \qquad x,t \in [-1,1], \qquad n \in \mathbb{N}.$$
 (5.2)

We prove it similarly to the techniques we used in [3] by considering, for a fixed t, the points x of local extrema of  $\tau'(x,t)$  and the end-points  $x = \pm 1$ , and showing that at those points  $|\tau'(x,t)| \leq T'_n(1)$ .

**Lemma 5.1.** If  $x = \pm 1$ , then  $|\tau'(x,t)| \le T'_n(1)$ .

*Proof.* This inequality follows from the straightforward calculations:

$$\tau'(1,t) = T'_n(1) - \frac{1+t}{1-t} \left( T_n(1) - T_n(t) \right).$$

The last term is non-negative, hence  $\tau'(1,t) \leq T'_n(1)$ . Also, since  $1+t \leq 2$  and  $\frac{T_n(1)-T_n(t)}{1-t} \leq T'_n(1)$ , it does not exceed  $2T'_n(1)$ , hence  $\tau'(1,t) \geq -T'_n(1)$ .

It remains to consider the local maxima of  $|\tau'(\cdot, t)|$ , i.e., the points (x, t)where  $\tau''(x, t) = 0$ . Note that local maxima of the polynomial  $\tau'_n(\cdot, t)$  exist only if  $\tau_n(\cdot, t)$  is of degree  $n \ge 3$ ; moreover, since  $\tau(x, t) = \pm \tau(-x, -t)$ , it is sufficient to prove the inequality (1.8) only on the half of the square  $[-1, 1] \times [-1, 1]$ . So, we have to deal only with the case

$$\mathcal{D}: x \in [0,1], t \in [-1,1]; n \ge 3$$

We split the domain  $\mathcal{D}$  into two main subdomains:  $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2$ , where

 $\mathcal{D}_1: \quad x \in [0,1], \qquad t \in [-1,1], \qquad -1 \le \frac{x-t}{1-xt} \le \frac{1}{2}; \\ \mathcal{D}_2: \quad x \in [0,1], \qquad t \in [-1,1], \qquad \frac{1}{2} \le \frac{x-t}{1-xt} \le 1;$ 

with a further subdivision of  $\mathcal{D}_2$ :  $\mathcal{D}_2 = \mathcal{D}_2^{(1)} \cup \mathcal{D}_2^{(2)} \cup \mathcal{D}_2^{(3)}$ , where

| $\mathcal{D}_{2}^{(1)}$ : | $x \in [0,1],$                   | $t \in [\cos \frac{3\pi}{2n}, 1],$ | $\frac{1}{2} \le \frac{x-t}{1-xt} \le 1;$ |
|---------------------------|----------------------------------|------------------------------------|-------------------------------------------|
| $\mathcal{D}_2^{(2)}$ :   | $x \in [0, \cos \frac{\pi}{n}],$ | $t\in [-1,\cos\tfrac{3\pi}{2n}],$  | $\frac{1}{2} \le \frac{x-t}{1-xt} \le 1;$ |
| $\mathcal{D}_2^{(3)}$ :   | $x \in [\cos \frac{\pi}{n}, 1],$ | $t \in [-1, \cos\frac{3\pi}{2n}],$ | $\frac{1}{2} \le \frac{x-t}{1-xt} \le 1.$ |

Now, Proposition 1.6 follows from the following statement.

**Proposition 5.2.** Let  $n \ge 3$ , and  $\tau(x,t) := \tau_n(x,t)$  be defined by (5.1).

- a) If  $(x,t) \in \mathcal{D}_1 \cup \mathcal{D}_2^{(1)}$  and  $\tau''(x,t) = 0$ , then  $|\tau'(x,t)| \le T'_n(1)$ .
- b) If  $(x,t) \in \mathcal{D}_2^{(2)}$  and  $\tau''(x,t) = 0$ , then  $|\tau'(x,t)| \le T'_n(1)$ .
- c) If  $(x,t) \in \mathcal{D}_{2}^{(3)}$ , then  $\tau''(x,t) \neq 0$ .

Proofs of parts (a)-(c) are given in the next sections. Parts (b) and (c) are relatively simple and their proofs are independent of our results in [3]. For (a), we could not find similarly simple arguments, and chose to use our results from [3], namely Proposition 4.7, instead.

## 6. Proof of Proposition 5.2.a

The next statement is an adjustment of Proposition 4.7 to our needs.

**Proposition 6.1.** For a fixed  $t \in [-1, 1]$ , let  $t_1$  be the rightmost zero of the polynomial

$$\omega_*(\cdot) = T_n(\cdot) - T_n(t) \,,$$

and let a pair of points (x, t) satisfy any of the following conditions:

1') 
$$0 \le x \le 1$$
,  $-1 \le \frac{x-t}{1-xt} \le \frac{1}{2}$ ;  
2')  $t_1 \le x \le 1$ ;  $\frac{1}{2} \le \frac{x-t}{1-xt} \le 1$ ; (6.1)  
3')  $0 \le x \le t_1$ ,  $\frac{1}{2} \le \frac{x-t}{1-xt} \le 1$  and  $T_n(t) \le 0$ .

Then

$$\tau''(x,t) = 0 \quad \Rightarrow \quad |\tau'(x,t)| \le T'_n(1) \,. \tag{6.2}$$

Proof. For a fixed  $t \in [-1, 1]$ , the polynomial  $\omega_*(\cdot) = T_n(\cdot) - T_n(t)$  has n zeros inside [-1, 1] counting possible multiplicities, i.e.  $\omega_*(x) = c \prod (x - t_i)$ , and x = t is one of them, i.e.,  $t = t_i$  for some i. Therefore, conditions (1')-(3') for (x,t) in (6.1) are equivalent to the conditions (1)-(3) for  $(x,t_i)$  in (4.5), in particular, the inequality  $|\omega_*(x)| < \omega_*(1)$  in 4.5(3) follows from  $T_n(t) \leq 0$ . Hence, the implication (4.6) for  $\phi_*$  is valid. But, since  $t = t_i$ , we have

$$\tau(x,t) = \frac{1-xt}{x-t} \left( T_n(x) - T_n(t) \right) = \frac{1-xt_i}{x-t_i} \,\omega_*(x) = \phi_*(x,t_i),$$

so (6.2) is identical to (4.6).

**Lemma 6.2.** Let  $(x,t) \in \mathcal{D}_1 = \{x \in [0,1], t \in [-1,1], -1 \le \frac{x-t}{1-xt} \le \frac{1}{2}]\}.$ Then  $\tau''(x,t) = 0 \implies |\tau'(x,t)| \le T'_n(1).$ 

*Proof.* Condition 
$$(x, t) \in \mathcal{D}_1$$
 is identical to condition  $(1')$  in Proposition 6.1, hence the conclusion.

**Lemma 6.3.** Let  $(x,t) \in \mathcal{D}_2^{(1)} = \{x \in [0,1], t \in [\cos \frac{3\pi}{2n}, 1], \frac{1}{2} \le \frac{x-t}{1-xt} \le 1]\}.$ Then  $\tau''(x,t) = 0 \implies |\tau'(x,t)| < T'_r(1).$ 

$$(x,y,y) = n(x,y,y) = n(x,y,y)$$

*Proof.* We split  $\mathcal{D}_2^{(1)}$  into two further subsets:

$$2a) \quad t \in \left[\cos\frac{3\pi}{2n}, \cos\frac{\pi}{2n}\right], \qquad 2b) \quad t \in \left[\cos\frac{\pi}{2n}, 1\right].$$

2a) For  $t \in [\cos \frac{3\pi}{2n}, \cos \frac{\pi}{2n}]$  we have  $T_n(t) \leq 0$ , so we apply Proposition 6.1 where we use condition (3') if  $x < t_1$ , and condition (2') otherwise.

2b) For  $t \in [\cos \frac{\pi}{2n}, 1]$ , the Chebyshev polynomial  $T_n(t)$  is increasing, hence t is the rightmost zero  $t_1$  of the polynomial  $\omega_*(x) = T_n(x) - T_n(t)$ . Now, we use the inequality  $\frac{1}{2} \leq \frac{x-t}{1-xt} \leq 1$  for  $(x,t) \in \mathcal{D}_2^{(1)}$ . Since  $t = t_1$ , we have

$$\frac{1}{2} \leq \frac{x-t_1}{1-xt_1} \leq 1 \quad \Rightarrow \quad t_1 \leq x \leq 1,$$

so we apply Proposition 6.1 with condition (2').

188

# 7. Proof of Proposition 5.2.b

**Lemma 7.1.** Let  $(x,t) \in \mathcal{D}_2^{(2)} = \{x \in [0, \cos \frac{\pi}{n}], t \in [-1, \cos \frac{3\pi}{2n}], \frac{1}{2} \le \frac{x-t}{1-xt} \le 1\}.$ Then  $\tau''(x,t) = 0 \implies |\tau'(x,t)| \le T'_n(1).$ 

*Proof.* We note that the assumption  $t \in [-1, \cos \frac{3\pi}{2n}]$  is not used in the proof. With  $\omega_*(x) = T_n(x) - T_n(t)$ , we have  $\tau(x, t) = \phi_*(x, t_i)$ , hence by Claim 4.2,

$$\tau''(x,t) = 0 \quad \Rightarrow \quad |\tau'(x,t)| = |\psi_2(x,t)|,$$

where

$$\psi_2(x,t) := \frac{1}{2}(1-x^2)\,\omega_*''(x) + \frac{x-t}{1-xt}\,\omega_*'(x) - \frac{x(1-t^2)}{(x-t)(1-xt)}\,\omega_*(x)\,. \tag{7.1}$$

Let us prove that

$$\max_{(x,t)\in\mathcal{D}_2^{(2)}} |\psi_2(x,t)| \le T'_n(1).$$
(7.2)

Making the substitution  $\gamma := \frac{x-t}{1-xt}$  into (7.1), so that  $\gamma \in [\frac{1}{2}, 1]$ , we obtain

$$\psi_2(x,t) = \frac{1}{2}(1-x^2)\,\omega_*''(x) + \gamma\,\omega_*'(x) - \frac{1-\gamma^2}{\gamma}\,\frac{x}{1-x^2}\,\omega_*(x)$$
  
=:  $g_\gamma(x) - h_\gamma(x)$ , (7.3)

where  $g_{\gamma}(x)$  is the sum of the first two terms, and  $h_{\gamma}(x)$  is the third one, so that

$$|\psi_2(x,t)| \le |g_\gamma(x)| + |h_\gamma(x)|.$$
(7.4)

Let us evaluate both  $g_{\gamma}$  and  $h_{\gamma}$ .

1) Since  $\omega_*(x) = T_n(x) - T_n(t)$ , we have

$$2g_{\gamma}(x) = (1 - x^2)T_n''(x) + 2\gamma T_n'(x) = (x + 2\gamma)T_n'(x) - n^2T_n(x),$$

so that, using Cauchy's inequality and the well-known identity for Chebyshev polynomials, we obtain

$$2|g_{\gamma}(x)| = n \left| nT_{n}(x) - \frac{x + 2\gamma}{n\sqrt{1 - x^{2}}} \sqrt{1 - x^{2}} T'_{n}(x) \right|$$
  

$$\leq n \left( n^{2}T_{n}(x)^{2} + (1 - x^{2})T'_{n}(x)^{2} \right)^{1/2} \left( 1 + \frac{(x + 2\gamma)^{2}}{n^{2}(1 - x^{2})} \right)^{1/2}$$
  

$$= n^{2} \left( 1 + \frac{(x + 2\gamma)^{2}}{n^{2}(1 - x^{2})} \right)^{1/2},$$

so that

$$|g_{\gamma}(x)| \le n^2 \frac{1}{2} \left( 1 + \frac{(x+2\gamma)^2}{n^2(1-x^2)} \right)^{1/2}.$$
(7.5)

2) For the function  $h_{\gamma}$  in (7.3), since  $\omega_*(x) = T_n(x) - T_n(t)$  does not exceed 2 in the absolute value, we have the trivial estimate

$$|h_{\gamma}(x)| \le \frac{1-\gamma^2}{\gamma} \frac{2x}{1-x^2} = n^2 \frac{1-\gamma^2}{\gamma} \frac{2x}{n^2(1-x^2)}.$$
 (7.6)

3) So, from (7.4), (7.5) and (7.6), we have

$$\max_{x,t \in \mathcal{D}_{2}^{(2)}} |\psi_{2}(x,t)| \leq T'_{n}(1) \max_{x,\gamma} F(x,\gamma),$$

where

$$F(x,\gamma) := \frac{1}{2} \left( 1 + \frac{(x+2\gamma)^2}{n^2(1-x^2)} \right)^{1/2} + \frac{1-\gamma^2}{\gamma} \frac{2x}{n^2(1-x^2)}$$

and the maximum is taken over  $\gamma \in [\frac{1}{2}, 1]$  and  $x \in [0, x_n]$ , where  $x_n = \cos \frac{\pi}{n}$ . Clearly,  $F(x, \gamma) \leq F(x_n, \gamma)$ , so we are done with (7.2) once we prove that  $F(x_n, \gamma) \leq 1$ . We have

$$F(x_n, \gamma) = \frac{1}{2} \left( 1 + \frac{(\cos\frac{\pi}{n} + 2\gamma)^2}{n^2 \sin^2 \frac{\pi}{n}} \right)^{1/2} + \frac{1 - \gamma^2}{\gamma} \frac{2 \cos\frac{\pi}{n}}{n^2 \sin^2 \frac{\pi}{n}}$$
  
$$\leq \frac{1}{2} \left( 1 + \frac{(1 + 2\gamma)^2}{4^2 \sin^2 \frac{\pi}{4}} \right)^{1/2} + \frac{1 - \gamma^2}{\gamma} \frac{2 \cdot 1}{4^2 \sin^2 \frac{\pi}{4}} =: G(\gamma), \qquad n \ge 4$$

where we have used that  $\cos \frac{\pi}{n} < 1$  and the fact that the sequence  $(n^2 \sin^2 \frac{\pi}{n})$  is increasing. Hence,  $F(x_n, \gamma) \leq 1$  for all  $n \geq 3$  if

$$F(x_3, \gamma) \le 1, \qquad G(\gamma) \le 1, \qquad \gamma \in \left[\frac{1}{2}, 1\right].$$

The latter is seen to be true on Figure 4. Formally, it is easy to show that



**Figure 4.** The graphs of  $F(x_3, \gamma)$  (left) and  $G(\gamma)$  (right),  $\gamma \in [\frac{1}{2}, 1]$ .

$$G'(\gamma) \le G'(1) < 0, \qquad F'(x_3, \gamma) \le F'(x_3, 1) < 0, \qquad \gamma \in [\frac{1}{2}, 1],$$

i.e., both functions are decreasing on  $[\frac{1}{2}, 1]$ , and then verify that  $G(\frac{1}{2}) < 1$  and  $F(x_3, \frac{1}{2}) < 1$ .

### 8. Proof of Proposition 5.2.c

**Lemma 8.1.** Let  $x \in \mathcal{D}_2^{(3)} = \{x \in [\cos \frac{\pi}{n}, 1], t \in [-1, \cos \frac{3\pi}{2n}], \frac{1}{2} \le \frac{x-t}{1-xt} \le 1\}.$ Then  $\tau''(x, t) \neq 0.$ 

We prove this statement in several steps, and the restriction  $\frac{1}{2} \leq \frac{x-t}{1-xt} \leq 1$  is irrelevant to the proof.

**Lemma 8.2.** a) If  $t \in [-1,0]$ , then  $\tau''(x,t) \neq 0$  for  $x \in [\cos \frac{\pi}{n}, \infty)$ . b) If  $t \in (0,1]$ , then  $\tau''(x,t)$  has at most one zero in  $[\cos \frac{\pi}{n}, \infty)$ , and  $\tau''(x,t) < 0$  for large x.

Proof. By definition,

$$\tau(x,t) = \frac{1-xt}{x-t} \left( T_n(x) - T_n(t) \right)$$

For a fixed  $t \in [-1, 1]$ , the polynomial  $\omega_*(\cdot) = T_n(\cdot) - T_n(t)$  has *n* zeros inside [-1, 1], say  $(t_i)$ , one of them at x = t, so  $t = t_{i_0}$  for some  $i_0$ . From definition, we see that the polynomial  $\tau(\cdot, t)$  has the same zeros as  $\omega_*(\cdot)$  except  $t_{i_0}$  which is replaced by  $1/t_{i_0}$ . So, if  $(s_i)_{i=1}^n$  and  $(t_i)_{i=1}^n$  are the zeros of  $\tau(\cdot, t)$  and  $\omega_*(\cdot, t)$  respectively, counted in the reverse order, then

1)  $s_i \le t_i \le s_{i-1}$ , if  $t \le 0$ , 2)  $s_{i+1} \le t_i \le s_i$ , if t > 0.

That means that zeros of  $\tau(\cdot, t)$  and  $\omega_*(\cdot)$  interlace, hence, by Markov's lemma, the same is true for the zeros of any of their derivatives. In particular, if  $(s''_i)_{i=1}^{n-2}$  and  $(t''_i)_{i=1}^{n-2}$  are the zeros of  $\tau''(\cdot, t)$  and  $\omega''_*(\cdot, t)$ , respectively, counted in the reverse order, then

 $1'') \quad s_1'' < t_1'', \quad \text{if} \quad t \leq 0, \qquad 2'') \quad s_2'' < t_1'' < s_1'', \quad \text{if} \quad t > 0\,.$ 

Since  $\omega_*'' = T_n''$ , its rightmost zero  $t_1''$  satisfies  $t_1'' < \cos \frac{\pi}{n}$  as the latter is the rightmost zero of  $T_n'$ .

Hence, if  $t \leq 0$ , then the rightmost zero  $s''_1$  of  $\tau''(\cdot, t)$  satisfies  $s''_1 < \cos \frac{\pi}{n}$ , and that proves claim a) of the lemma. On the other hand, if t > 0, then there is at most one zero of  $\tau''(\cdot, t)$  on  $[\cos \frac{\pi}{n}, \infty)$ , and that proves the first part of claim b) of the lemma. The second part of b) follows from the observation that, for t > 0, the polynomial  $\tau(\cdot, t)$  has a negative leading coefficient, hence  $\tau''(x, t) < 0$  for large x. **Corollary 8.3.** If, for a fixed  $t \in [0,1]$ ,  $\tau''(x,t) \ge 0$  at x = 1, then  $\tau''(x,t) > 0$  for all  $x \in [\cos \frac{\pi}{n}, 1)$ .

*Proof.* By Lemma 8.2, there is at most one zero of  $\tau''(\cdot, t)$  on  $[\cos \frac{\pi}{n}, \infty)$ , and  $\tau''(x,t) < 0$  for large x. Hence, if  $\tau''(x,t) \ge 0$  at x = 1, then  $\tau''(\cdot, t)$  does not change its sign on  $[\cos \frac{\pi}{n}, 1)$ .

**Lemma 8.4.** If  $t \in [0, \cos \frac{3\pi}{2n}]$ , then  $\tau''(x, t) > 0$  for  $x \in [\cos \frac{\pi}{n}, 1]$ .

*Proof.* By Corollary 8.3, it suffices to prove that  $\tau''(x,t) \ge 0$  at x = 1 provided  $t \in [0, \cos \frac{3\pi}{2n}]$ . By direct calculations, we have

$$\tau''(x,t) = \frac{1-xt}{x-t} T_n''(x) - 2 \frac{1-t^2}{(x-t)^2} T_n'(x) + 2 \frac{1-t^2}{(x-t)^3} \left( T_n(x) - T_n(t) \right),$$

so we need to prove that

$$\tau''(1,t) = \frac{n^2(n^2-1)}{3} - 2\frac{1+t}{1-t}n^2 + 2\frac{1+t}{(1-t)^2}(1-T_n(t)) \ge 0, \qquad (8.1)$$

where we have used that  $T_n(1) = 1$ ,  $T'_n(1) = n^2$ , and  $T''_n(1) = \frac{n^2(n^2-1)}{3}$ .

1) Since the last term in (8.1) is non-negative for  $t \in [-1, 1)$ , this inequality will certainly be true if

$$\frac{n^2(n^2-1)}{3} - 2\frac{1+t}{1-t}n^2 \ge 0 \quad \Rightarrow \quad t \le \frac{n^2-7}{n^2+5}.$$

We have

$$\cos\frac{3\pi}{2n} < \frac{n^2 - 7}{n^2 + 5} \,, \quad 3 \le n \le 6 \,, \quad \text{and} \quad \cos\frac{2\pi}{n} < \frac{n^2 - 7}{n^2 + 5} < \cos\frac{3\pi}{2n} \,, \quad n \ge 7 \,.$$

That proves (8.1), and hence the lemma, for all  $t \in [0, \cos \frac{3\pi}{2n}]$  if  $3 \le n \le 6$ , and for all  $t \in [0, \cos \frac{2\pi}{n}]$  if  $n \ge 7$ .

2) So, it remains to prove that (8.1) is valid for  $t \in [\cos \frac{2\pi}{n}, \cos \frac{3\pi}{2n}]$  and  $n \ge 7$ . To this end, we consider the function

$$f(t) := (1-t)\tau''(1,t)$$
  
=  $(1-t)\frac{n^2(n^2-1)}{3} - 2(1+t)n^2 + 2(1+t)\frac{1-T_n(t)}{1-t}.$ 

Clearly, f(1) = 0 and it is easy to see that  $f(\cos \frac{2\pi}{n}) > 0$ .

Let us prove next that f is convex on  $I = [\cos \frac{2\pi}{n}, \infty)$ . Indeed, the first two terms are linear in t whereas the last term consists of two factors, both convex, positive and increasing on I. The latter claim is obvious for the factor 1 + t, and it is also true for the factor  $P_n(t) := \frac{1-T_n(t)}{1-t}$ , since this  $P_n$  is a polynomial

with a positive leading coefficient whose rightmost zero is the double zero at  $t = \cos \frac{2\pi}{n}$ .

Thus, f is convex on  $[\cos \frac{2\pi}{n}, \infty)$ , and it also satisfies  $f(\cos \frac{2\pi}{n}) > 0$  and f(1) = 0. Therefore, if  $f(t_*) > 0$  for some  $t_* \in (\cos \frac{2\pi}{n}, 1)$ , then f(t) > 0 for all  $t \in [\cos \frac{2\pi}{n}, t_*]$ . Hence, it suffices to show that  $\tau''(1, t_*) > 0$  for  $t_* = \cos \frac{3\pi}{2n}$ . Putting this  $t_*$  into (8.1) and noting that  $T_n(t_*) = 0$ , we obtain

$$\tau''(1,t_*) = \frac{n^2(n^2-1)}{3} - 2n^2u + \frac{2}{1+\cos\frac{3\pi}{2n}}u^2 \stackrel{?}{>} 0, \quad u := \cot^2\frac{3\pi}{4n}.$$
 (8.2)

Inequality (8.2) will certainly be true if  $\frac{n^2(n^2-1)}{3} - 2n^2u + u^2 > 0$ , and a sufficient condition for the latter is the inequality

$$\cot^2 \frac{3\pi}{4n} = u < n^2 \left( 1 - \sqrt{\frac{2}{3} + \frac{1}{3n^2}} \right).$$

Since  $\cot \alpha < \alpha^{-1}$  for  $0 < \alpha < \frac{\pi}{2}$ , this condition is fulfilled if

$$\left(\frac{4}{3\pi}\right)^2 < 1 - \sqrt{\frac{2}{3} + \frac{1}{3n^2}}\,,$$

and that is true for  $n \ge 8$ . For n = 7, one can verify (8.2) directly.

# 9. Proof of Theorem 2.2

In this section, we prove that, for the majorant

$$\mu_m(x) = (1 - x^2)^{m/2}, \tag{9.1}$$

its snake-polynomial  $\omega_{\mu}$  is *not* extremal for the Duffin-Schaeffer inequality for  $k \leq m$ , precisely that for the value

$$D_{k,\mu_m}^* := \sup_{|p(x)|_{\delta^*} \le |\mu_m(x)|_{\delta^*}} \|p^{(k)}\|$$

where  $\delta^* = (\tau_i^*)$  is the set of points of oscillation of  $\omega_{\mu_m}$  between  $\pm \mu_m$ , we have

$$D_{k,\mu_m}^* > \|\omega_\mu^{(k)}\|, \qquad k \le m.$$

The snake-polynomial for  $\mu_m$  in (9.1) is given by the formula

$$\omega_{\mu_m}(x) = \begin{cases} (x^2 - 1)^s T_n(x), & m = 2s, \\ \frac{1}{n} (x^2 - 1)^s T'_n(x), & m = 2s - 1, \end{cases}$$
(9.2)

so its oscillation points are the sets

$$\delta_n^{(1)} := \left(\cos\frac{\pi i}{n}\right)_{i=0}^n, \qquad \delta_n^{(2)} := \left(\cos\frac{\pi (i-1/2)}{n}\right)_{i=1}^n,$$

at which  $|T_n(x)| = 1$  and  $|T'_n(x)| = \frac{n}{\sqrt{1-x^2}}$ , respectively, with additional multiple points at  $x = \pm 1$ .

Now, we introduce the pointwise Duffin-Schaeffer function:

$$d_{k,\mu}^{*}(x) := \sup_{|p|_{\delta^{*}} \le |\mu_{m}|_{\delta^{*}}} |p^{(k)}(x)| = \begin{cases} \sup_{\substack{|q|_{\delta_{n}^{(1)}} \le |T_{n}|_{\delta_{n}^{(1)}}}} |(x^{2}-1)^{s}q(x)]^{(k)}|, & m = 2s \\ \sup_{|q|_{\delta_{n}^{(2)}} \le \frac{1}{n}|T_{n}'|_{\delta_{n}^{(2)}}} |(x^{2}-1)^{s}q(x)]^{(k)}|, & m = 2s-1 \end{cases}$$

and note that

$$D_{k,\mu}^* = \|d_{k,\mu}^*(\cdot)\| \ge d_{k,\mu}^*(0)$$
.

Proposition 9.1. We have

$$D_{k,\mu_m}^* \ge \mathcal{O}(n^k \ln n)$$
.

*Proof.* We split the proof into two cases, for even and for odd m in (9.2), respectively.

**Case 1** (m = 2s). Let us show that, for a fixed  $k \in \mathbb{N}$ , and for all large  $n \not\equiv k \pmod{2}$ , there is a polynomial  $q_1$  of degree n such that

1) 
$$|q_1(x)|_{\delta_n^{(1)}} \le 1$$
, 2)  $|[(x^2 - 1)^s q_1(x)]^{(k)}|_{|x=0} = \mathcal{O}(n^k \ln n)$ .

1) Set

$$P(x) := (x^2 - 1)T'_n(x) = n \prod_{i=0}^n (x - t_i), \qquad (t_i)_{i=0}^n = (\cos \frac{\pi i}{n})_{i=0}^n = \delta_n^{(1)}, \quad (9.3)$$

and, having in mind that  $t_{n-i} = -t_i$ , define the polynomial of degree n

$$q_1(x) := \frac{1}{n^2} P(x) \sum_{i=1}^{(n-1)/2} \left( \frac{1}{x - t_i} - \frac{1}{x + t_i} \right) =: \frac{1}{n^2} P(x) U(x) .$$
(9.4)

This polynomial vanishes at those  $t_i$  that do not appear under the sum, i.e., at  $t_0 = 1$ ,  $t_n = -1$  and, for even n, at  $t_{n/2} = 0$ . At all other  $t_i$  it has the absolute value  $|q(t_i)| = \frac{1}{n^2} |P'(t_i)| = 1$ , by virtue of the equality  $P'(x) = n^2 T_n(x) + xT'_n(x)$ . Hence,

$$|q_1(t_i)| \le |T_n(t_i)| = 1, \qquad \forall t_i \in \delta_n^{(1)}.$$

2) We see from (9.4) that U is an even function,  $P(x) = (x^2 - 1)T'_n(x)$  is either even or odd polynomial, and for their non-vanishing derivatives at x = 0we have

$$\begin{aligned} |P^{(r)}(0)| &= |T_n^{(r+1)}(0) - r(r-1)T_n^{(r-1)}(0)| = \mathcal{O}(n^{r+1}), \quad n \not\equiv r \pmod{2}, \\ |U^{(r)}(0)| &= 2r! \sum_{j=1}^{(n-1)/2} \frac{1}{(\sin\frac{\pi j}{n})^{r+1}} = \begin{cases} \mathcal{O}(n\ln n), & r = 0, \\ \mathcal{O}(n^{r+1}), & r = 2r_1 \ge 2. \end{cases} \end{aligned}$$

Respectively, in the Leibnitz formula for  $q_1^{(k)}(0)$ ,

$$q_1^{(k)}(0) = \frac{1}{n^2} [P(x)U(x)]_{|x=0}^{(k)} = \frac{1}{n^2} \sum_{r=0}^k \binom{k}{r} P^{(k-r)}(0)U^{(r)}(0)$$

if  $k \not\equiv n \pmod{2}$  then the term  $P^{(k)}(0)U(0) = \mathcal{O}(n^{k+2} \ln n)$  dominates, hence  $q_1^{(k)}(0) = \mathcal{O}(n^k \ln n) \quad \Rightarrow \quad [(x^2 - 1)^s q_1(x)]_{|x=0}^{(k)} = \mathcal{O}(n^k \ln n), \qquad k \neq n \pmod{2}.$ 

Case 2 (m = 2s - 1). Similarly, for a fixed k, and for all large  $n \equiv$  $k \pmod{2}$ , the polynomial  $q_2$  of degree n-1 defined as

$$q_2(x) := \frac{1}{n^2} T_n(x) \sum_{i=1}^{(n-1)/2} \left( \frac{1}{x - t_i} - \frac{1}{x + t_i} \right), \qquad (t_i)_{i=1}^n = (\cos \frac{\pi(i - 1/2)}{n})_{i=1}^n = \delta_n^{(2)},$$

satisfies

1) 
$$|q_2(x)|_{\delta_n^{(2)}} \le \frac{1}{n} |T'_n(x)|_{\delta_n^{(2)}},$$
 2)  $|(x^2 - 1)^s q_2^{(k)}(x)|_{|x=0} = \mathcal{O}(n^k \ln n).$   
proposition 9.1 is proved.

Proposition 9.1 is proved.

**Proposition 9.2.** Let  $\mu_m(x) = (1 - x^2)^{m/2}$ . Then

$$M_{k,\mu_m} := \sup_{|p(x)| \le |\mu_m(x)|} \|p^{(k)}\| = \mathcal{O}(n^k), \quad k \le m.$$
(9.5)

*Proof.* Pierre and Rahman [4] proved that

$$M_{k,\mu_m} = \max\left(\|\omega_N^{(k)}\|, (\|\omega_{N-1}^{(k)}\|\right), \qquad k \ge m,$$
(9.6)

where  $\omega_N$  and  $\omega_{N-1}$  are the snake-polynomial for  $\mu_m$  of degree N and N-1, respectively. However, they did not investigate which norm is bigger and at what point  $x \in [-1, 1]$  it is attained. We proved in [3] that, for functions

$$f(x) := (x^2 - 1)^s T_n(x), \quad g(x) := \frac{1}{n} (x^2 - 1)^s T'_n(x)$$

we have

$$||f^{(k)}|| = f^{(k)}(1), \quad k \ge 2s, \qquad ||g^{(k)}|| = g^{(k)}(1), \quad k \ge 2s - 1.$$

Since f and g are exactly the snake-polynomials for  $\mu_m(x) = (1 - x^2)^{m/2}$  for m = 2s and m = 2s - 1, respectively, we can refine the result of Pierre and Rahman in (9.6) as

$$M_{k,\mu_m} = \omega_N^{(k)}(1) = \omega_\mu^{(k)}(1), \qquad k \ge m.$$

It is easy to find that  $f^{(k)}(1) = \mathcal{O}(n^{2(k-s)})$  and  $g^{(k)}(1) = \mathcal{O}(n^{2(k-s)+1})$ , hence  $\omega_{\mu}^{(k)}(1) = \mathcal{O}(n^{2k-m})$ , in particular,

$$M_{m,\mu_m} = \omega_{\mu}^{(m)}(1) = \mathcal{O}(n^m),$$
 (9.7)

and that proves (9.5) for k = m. For k < m, we observe that

$$k < m \Rightarrow \mu_m \le \mu_k \Rightarrow M_{k,\mu_m} \le M_{k,\mu_k} \stackrel{(9.7)}{=} \mathcal{O}(n^k),$$

and that completes the proof.

### References

- R. J. DUFFIN AND A. S. SHAEFFER, A refinement of an inequality of the brothers Markoff, Trans. Amer. Math. Soc. 50 (1941), 517–528.
- [2] W. MARKOV, On functions which deviate least from zero in a given interval, Sankt-Petersburg, 1892; German translation: Math. Ann. 77 (1916), 213–258.
- [3] G. NIKOLOV AND A. SHADRIN, On Markov-Duffin-Schaeffer inequalities with a majorant, in "Constructive theory of functions, Sozopol 2010" (G. Nikolov and R. Uluchev, Eds.), pp. 227–264, Prof. M. Drinov Acad. Publ. House, Sofia, 2012.
- [4] R. PIERRE AND Q. I. RAHMAN, On a problem of Turan about polynomials. II, Canad. J. Math. 33 (1981), no. 3, 701–733.
- [5] Q. I. RAHMAN AND G. SCHMEISSER, Markov-Duffin-Schaeffer inequality for polynomials with a circular majorant, *Trans. Amer. Math. Soc.* **310** (1988), no. 2, 693–702.
- [6] Q. I. RAHMAN AND A. O. WATT, Polynomials with a parabolic majorant and the Duffin-Schaeffer inequality, J. Approx. Theory 69 (1992), no. 3, 338–354.
- [7] V. S. VIDENSKII, A generalization of V. A. Markoff inequalities, *Dokl. Akad. Nauk SSSR* 120 (1958), 447–449 [in Russian].
- [8] V.S. VIDENSKII, Generalizations of Markov's theorem on the evaluation of a polynomial derivative, *Doklady Akad. Nauk SSSR* **125** (1959), 15–18 [in Russian].

GENO NIKOLOV Department of Mathematics University of Sofia 5 James Bourchier Blvd. 1164 Sofia BULGARIA *E-mail:* geno@fmi.uni-sofia.bg

ALEXEI SHADRIN Department of Applied Mathematics and Theoretical Physics (DAMTP) Cambridge University Wilberforce Road Cambridge CB3 0WA UNITED KINGDOM *E-mail:* a.shadrin@damtp.cam.ac.uk