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We consider mappings generated by inequalities for isotonic linear func-
tionals such as the inequalities of Chebyshev, Beckenbach-Dresher,
Jensen-Mercer, Jensen, Hölder, Minkowski and their reversed versions.
Properties like quasilinearity, boundedness and monotonicity are proved.
Also, properties of the composite functional x 7→ h(v(x))Φ
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mentioned, where g and v are functions associated with the mappings
generated by the inequalities and Φ is a h-concave monotone function.
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1. Introduction and Preliminaries

It is known that some inequalities generate mappings based on the difference
between their right- and left-hand side. Those mappings have some interesting
properties such as quasilinearity, homogeneity, monotonicity, boundedness, etc.
Here we mention only few papers with such motives: [2, 4, 7, 12, 15, 16, 22].
In these papers the considered inequalities and mappings involve sums and
integrals. However, many classical inequalities allow the so-called functional
version, where the sum or the integral is substituted by an isotonic linear func-
tional. For some functional versions of the classical inequalities, the book [20]
is a good beginning point of investigation, while some inequalities for isotonic
linear functional will be mentioned or proved in this paper.

Meanwhile, Dragomir [8, 10, 9] gave series of results about quasilinearity of
some composite functionals with applications to Jensen’s, Hölder’s, Minkowski’s
and Schwarz’s functionals, and these results were generalized in [1, 18].

In this paper we give properties of mappings connected with inequalities
for isotonic linear functional and apply results from [18] to them. In this
introductory section we give definitions and describe some useful facts about
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the defined items. The second section is devoted to the Chebyshev functional,
while in the third section we consider a functional which is generated by the
generalized Beckenbach-Dresher inequality. In both sections the considered
composite functionals have denominators which are superadditive functions
and for their investigation we need general results from [18]. The last section
is devoted to the properties of functionals which are related to the classical
inequalities such as Jensen’s, Hölder’s, Minkowski’s, Jensen-Mercer’s and their
reversed versions. The corresponding composite functionals have an additive
function in the denominator and we apply a special case of the results given
in [18].

Definition 1.1. Let E be a non-empty set and L be a class of real-valued
functions on E having the properties:

L1. If f, g ∈ L, then (af + bg) ∈ L for all a, b ∈ R;

L2. The function 1 belongs to L (1(t) = 1 for t ∈ E).

A functional A : L → R is called an isotonic linear functional if the following
assumptions are satisfied:

A1. A(af + bg) = aA(f) + bA(g) for f, g ∈ L, a, b ∈ R;

A2. f ∈ L, f(t) ≥ 0 on E implies A(f) ≥ 0.

Let C be a convex cone in the linear space X over R or C. Let L be a
real number, L 6= 0. A functional f : C → R is called L-superadditive (resp.,
L-subadditive) on C if

f(x + y) ≥ L(f(x) + f(y)) for any x, y ∈ C

(resp., f(x + y) ≤ L(f(x) + f(y)) for any x, y ∈ C).

If L = 1, then the functional f is simply called superadditive (subadditive). In
the latter case we term f as quasilinear functional.

A function h : J ⊆ R→ R is said to be supermultiplicative if

h(xy) ≥ h(x)h(y) for all x, y ∈ J.

If the reversed inequality is satisfied, then h is said to be a submultiplicative
function. If the equality holds, then h is said to be a multiplicative function.

Let K be a real non-negative function. We will say that a functional f is
K-positive homogeneous if

f(tx) = K(t)f(x) for any t ≥ 0 and x ∈ C.

The function K has to be multiplicative. Moreover, we have either K ≡ 1 or
K(0) = 0. In particular, if K(t) = tk, then we simply say that f is positive
homogeneous on C of order k. If k = 1, we call it positive homogeneous.
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Example 1.1. The function x 7→ xs is:

1. superadditive and L-subadditive with L = 2s−1 ≥ 1 for s ∈ (1,∞);

2. subadditive and L-superadditive with L = 2s−1 ≤ 1 for s ∈ (0, 1];

3. L-subadditive with L = 2s−1 ≤ 1
2 for s < 0.

In the sequel I and J are intervals in R, (0, 1) ⊆ J and h and f are non-
negative functions defined on J and I, respectively.

Definition 1.2 ([21]). Let h : J → R be a non-negative function, h 6≡ 0.
We say that f : I → R is an h-convex function if f is non-negative and for all
x, y ∈ I, α ∈ (0, 1) we have

f(αx + (1− α)y) ≤ h(α)f(x) + h(1− α)f(y).

If the reversed inequality is satisfied, then f is called an h-concave function.

It is evident that this notion generalizes the concepts of classical convexity
(for h(t) = t); of s-convexity in the second sense (for h(t) = ts, s ∈ (0, 1)),
[3, 14]; of P-functions (for h(t) = 1), [19], and of Godunova-Levin functions
(for h(t) = t−1), [13].

Example 1.2. It is known ([21]), that the function f(x) = xλ is s-convex
in the second sense if

λ ∈ (−∞, 0] ∪ [1,∞), s ≤ 1 or λ ∈ (0, 1), s ≤ λ.

The function f(x) = xλ is s-concave in the second sense if

λ ∈ (0, 1), s ≥ 1 or λ > 1, s ≥ λ.

Examples of functions Φ, non-decreasing on [0,∞) and h-concave, where
h(x) = xs, s > 1 (but not concave) are for instance: Φ(x) = arctan(xs),
Φ(x) = tanh(xs), Φ(x) = xs/(1 + xs). The function

f(x) =

{
xs, x ∈ [0, 1],
x, x ∈ (1, b],

is non-decreasing, convex on (0,1], starshaped on [0, b], b ≥ 1, and s-concave in
the second sense on [0, b], ([18]).

Let us mention also Lemma 2.1 from [18]:

Lemma 1.1. Let x, y ∈ C and f : C → R be a non-negative, L-superadditive
and K-positive homogeneous functional on C. If M ≥ m > 0 are such that
x−my,My − x ∈ C, then

1
L

K(M)f(y) ≥ f(x) ≥ LK(m)f(y).
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Composite functionals associated with monotone h-concave func-
tions. In [18] the following theorem about quasilinearity of a composite func-
tional ηΦ defined on a convex cone is proved. Here, a convex cone C is a subset
of a linear space over F (F = R or C) with the property: if x, y ∈ C and α > 0,
then x + y ∈ C and αx ∈ C.

Theorem 1.1. Let h be a non-negative function which is k1-positive ho-
mogeneous. Let C be a convex cone in the linear space X and v : C → (0,∞)
be an L-superadditive functional on C.

(i) If h is submultiplicative, g : C → [0,∞) is an L-superadditive func-
tional on C and Φ : [0,∞) → [0,∞) is h-concave and non-decreasing, then the
functional ηΦ : C → R defined by

ηΦ(x) := h(v(x))Φ
(g(x)

v(x)

)

is k1(L)-superadditive on C.
(ii) If h is supermultiplicative, g is L-subadditive, Φ is h-convex and non-

decreasing with Φ(0) = 0, then ηΦ is k1(L)-subadditive.

A simple consequence of L-superadditivity and K-positive homogeneity of
ηΦ is the boundedness property which is given in the following corollary, [18].

Corollary 1.1. Let h be a non-negative submultiplicative function which is
k1-positive homogeneous. Let C be a convex cone in the linear space X and
v : C → (0,∞) be L-superadditive and k2-positive homogeneous on C. Let
x, y ∈ C and assume that there exist M ≥ m ≥ 0 such that x − my and
My − x ∈ C. Let K(t) = k1(k2(t)).

If g : C → [0,∞) is an L-superadditive and k2-positive homogeneous func-
tional on C and Φ : [0,∞) → [0,∞) is h-concave and non-decreasing, then

1
k1(L)

K(M)ηΦ(y) ≥ ηΦ(x) ≥ k1(L)K(m)ηΦ(y).

If we consider an additive function v, then with a proof similar to that of
Theorem 1.1 we obtain the following proposition.

Proposition 1.1. Let C be a convex cone in the linear space X and v :
C → (0,∞) be an additive functional on C.

(i) If h is non-negative submultiplicative, g : C → [0,∞) is a superadditive
functional on C and Φ : [0,∞) → [0,∞) is h-concave and non-decreasing, then
the functional ηΦ : C → R defined by

ηΦ(x) := h(v(x))Φ
(g(x)

v(x)

)

is superadditive on C.
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(ii) If h is non-negative supermultiplicative, g is superadditive, Φ is h-
convex and non-decreasing, then ηΦ is subadditive.

Corollary 1.1 under the additional assumptions that v is additive and L = 1,
k1(t) = k2(t) = t, becomes the following:

Corollary 1.2. Let C be a convex cone in the linear space X and v : C →
(0,∞) be additive and positive homogeneous on C. Let x, y ∈ C and assume
that there exist M ≥ m ≥ 0 such that x−my,My − x ∈ C.

If g : C → [0,∞) is superadditive and Φ : [0,∞) → [0,∞) is h-concave and
non-decreasing with submultiplicative and positive homogeneous h, then

MηΦ(y) ≥ ηΦ(x) ≥ mηΦ(y).

Furthermore, if M = 1, then the property of monotonicity holds

ηΦ(y) ≥ ηΦ(x).

2. Functionals Associated with Chebyshev’s Inequality

The classical Chebyshev inequality for integrals ([20, p. 197]) states that if
f and g are similarly ordered real functions on [a, b] and p is a non-negative
weight function, then

∫ b

a

p(x) dx

∫ b

a

p(x)f(x)g(x) dx ≥
∫ b

a

p(x)f(x) dx

∫ b

a

p(x)g(x) dx

provided that the integrals exist. If f and g are oppositely ordered, then the
reversed inequality is valid. Let us recall that f and g are said to be similarly
ordered if

(f(x)− f(y))(g(x)− g(y)) ≥ 0 for all x, y ∈ [a, b].

When the reversed inequality is satisfied, then f and g are called oppositely
ordered.

A version of the Chebyshev inequality for isotonic linear functionals states:
Let A be an isotonic linear functional on L. If f and g are similarly ordered

functions and p is a non-negative weight function, then

A(p)A(pfg) ≥ A(pf)A(pg). (2.1)

If f and g are oppositely ordered, then the reversed inequality is valid.
This result was proved in [11]. The proof of the Chebyshev inequality for

isotonic functional is based on the inequality

p(x)p(y)(f(x)− f(y))(g(x)− g(y)) ≥ 0.
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Performing multiplication and applying the functional A first with respect
to x and then with respect to y, we get (2.1).

Let us consider the Chebyshev functional T defined on the convex cone
CT (A, f, g) = {w ∈ L : w ≥ 0, wf, wg, wfg ∈ L}:

T (w) = A(w)A(wfg)−A(wf)A(wg).

It is obvious that T is positive homogeneous of order 2, T is non-negative for
similarly ordered functions f and g and T is non-positive for oppositely ordered
functions f and g.

Theorem 2.1. (i) If f and g are similarly ordered functions, then T is
a superadditive functional. If f and g are oppositely ordered, then T is a
subadditive functional.

(ii) If w, v ∈ CT (A, f, g) and M ≥ m > 0 are such that w−mv, Mv−w ∈
CT (A, f, g), then for similarly ordered functions f and g

m2 T (v) ≤ T (w) ≤ M2 T (v).

In particular, if M = 1, then we get monotonicity:

T (v) ≥ T (w).

If f and g are oppositely ordered functions, then the reversed inequalities
hold.

Proof. (i) If f and g are similarly ordered, then we have

(w(x)v(y) + v(x)w(y))(f(x)− f(y))(g(x)− g(y)) ≥ 0.

Performing multiplication and applying functional A first with respect to x and
then with respect to y we get

A(v)A(wfg) + A(w)A(vfg) ≥ A(vg)A(wf) + A(wg)A(vf). (2.2)

For the expression T (w + v)− T (w)− T (v) we have

T (w + v)− T (w)− T (v)
= A(w + v)A(wfg + vfg)−A(wf + vf)A(wg + vg)
−A(w)A(wfg) + A(wf)A(wg)−A(v)A(vfg)−A(vf)A(vg)

= A(v)A(wfg) + A(w)A(vfg)−A(vg)A(wf) + A(wg)A(vf).

By (2.2), the last expression is non-negative, hence T (w + v) ≥ T (w) + T (v).
(ii) If f and g are similarly ordered, then T is superadditive, non-negative

and 2-positive homogeneous. Using Lemma 1.1, we get the assertion of (ii).
The other cases are proved similarly. ¤



L. Nikolova and S. Varošanec 205

Theorem 2.2. (i) Let h be a non-negative, k1-positive homogeneous sub-
multiplicative function, and Φ : [0,∞)→ [0,∞) be h-concave and non-decreasing.
Let f and g be similarly ordered.

Then the functional ηT defined on CT (A, f, g) by

ηT (w) = h(A2(w))Φ
( T (w)

A2(w)

)
.

is superadditive.

(ii) Furthermore, if w, v ∈ CT (A, f, g) and M ≥ m > 0 are such that
w −mv, Mv − w ∈ CT (A, f, g), then

k1(M2)h(A2(v))Φ
( T (v)

A2(v)

)
≥ h(A2(w))Φ

( T (w)
A2(w)

)

≥ k1(m2)h(A2(v))Φ
( T (v)

A2(v)

)
.

(iii) If f and g are oppositely ordered, then the above statements (i) and
(ii) are valid with T replaced with −T .

Proof. Since x 7→ x2 is a superadditive function, we have that w 7→ A2(w) is
also superadditive. It is also positive homogeneous of order 2. The functional
T is also non-negative, superadditive and positive homogeneous of order 2.
Substituting in ηΦ in Theorem 1.1 v(w) = A2(w) and g(w) = T (w), we obtain
that ηΦ = ηT and it is superadditive. Claim (ii) is in fact Corollary 1.1 for the
functional ηT . ¤

3. Functional Associated with the Beckenbach-Dresher
Inequality

In this section we consider applications of Theorem 1.1 when the function
v is superadditive. Let A and B be isotonic linear functionals on L. Let us
define a convex cone CG(A, B, f, g), where

CG(A, B, f, g) = {w ∈ L : w, f, g ≥ 0, wg, wf ∈ L, B(wg) > 0}.

Theorem 3.1. (i) Let u ∈ R+, p, q ∈ (0, 1] and k ≥ max{1, u}. Then the
functional G defined by

G(w) =
Au/p(wf)

B(u−k)/q(wg)

is superadditive on CG(A,B, f, g).
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(ii) If w, v ∈ CG(A,B, f, g) and M ≥ m > 0 are such that w−mv, Mv−w ∈
CG(A,B, f, g), then

mu/p+(k−u)/q G(v) ≤ G(w) ≤ Mu/p+(k−u)/q G(v).

In particular, if M = 1, then

G(v) ≥ G(w).

Proof. Let us define

Φ(t) = tu, h(t) = tk, k ≥ max{1, u},
v(w) = B1/q(wg), g1(w) = A1/p(wf), p, q ∈ (0, 1].

Then h is multiplicative, Φ is non-decreasing h-concave (see Example 1.2),
and v and g1 are superadditive (see Example 1.1). The functional ηΦ from
Theorem 1.1 is of the form

ηΦ(w) = h(v(w))Φ
(g1(w)

v(w)

)
=

Au/p(wf)
B(u−k)/q(wg)

,

i.e. ηΦ = G. Then the assumptions of Theorem 1.1(i) are satisfied, and thereby
G is superadditive. The monotonicity and the boundedness in part (ii) are
proved using Lemma 1.1 with f = ηΦ = G and K(t) = tu/p+(k−u)/q. ¤

Remark 3.1. With k = 1, u, p, q ∈ (0, 1], f → fp, g → gq, Theorem 3.1
asserts that G(w) = Au/p(wfp)

B(u−1)/q(wgq)
is superadditive. This is a result obtained

in [22]. Furthermore, in this case G is connected with the Beckenbach-Dresher
inequality. Namely, if we put A(f) = B(f) =

∫
fdϕ, u = p

p−q , w = 1,
then the inequality which describes superadditivity of G is exactly the reversed
Beckenbach-Dresher inequality. More about this inequality can be found in [22]
and the references therein.

Remark 3.2. Depending on how k 6= 0, u and 0 are situated with respect
to each other, we may consider 6 cases and get results for superadditivity and
subaditivity of G. (In fact, the cases are more, as we have also dependence on
p and q.) The idea is to use the inequalities

min{1, 2l−1}(al + bl) ≤ (a + b)l ≤ max{1, 2l−1}(al + bl), l ≥ 0,

and
(a + b)l ≤ 2l−1(al + bl), l ≤ 0,

for l = k, l = 1
p , l = 1

q . We use also Hölder’s inequality

(a + b)s(c + d)1−s ≥ asc1−s + bsd1−s for s =
u

k
, s ∈ [0, 1],

and the reversed Hölder inequality for s = u
k in the cases 1) u

k < 0, 1− u
k > 0,

and 2) u
k > 0, 1− u

k < 0.



L. Nikolova and S. Varošanec 207

Theorem 3.2. Let k 6= 0.

(i) If p, q > 0 and 0 ≤ u ≤ k, then G is L1-superadditive with

L1 = min{1, 2(1/p−1)u} ·min{1, 2(1/q−1)(k−u)} ·min{1, 2k−1}.

(ii) If p, q > 0 and either 0 < k ≤ u or u ≤ 0 < k, then G is L2-
subadditive with

L2 = max{1, 2(1/p−1)u} ·max{1, 2(1/q−1)(k−u)} ·max{1, 2k−1}.

(iii) If p, q > 0 and k ≤ u ≤ 0 (hence, 0 ≤ u
k ≤ 1), then G is L3-subadditive

with
L3 = max{1, 2(1/p−1)u} ·max{1, 2(1/q−1)(k−u)} 2k−1.

(iv) If p > 0, q < 0, and u < 0 < k, then G is L4-subadditive with

L4 = max{1, 2(1/p−1)u} · 2(1/q−1)(k−u) max{1, 2k−1}.

(v) If p < 0, q > 0, and 0 < k ≤ u, then G is L5-subadditive with

L5 = 2(1/p−1)u max{1, 2(1/q−1)(k−u)} ·max{1, 2k−1}.

Proof. (i) Since the function x 7→ x1/p is min{1, 21/p−1}-superadditive, the
function x 7→ x1/q is min{1, 21/q−1}-superadditive, and the function
x 7→ xk is min{1, 2k−1}-superadditive, we have for instance

(
A(wf) + A(vf)

)1/p ≥ min{1, 21/p−1}(A(wf)1/p + A(vf)1/p
)
,

and hence

G(w + v) =
(
A(wf) + A(vf)

)u/p(
B(wg) + B(vg)

)(k−u)/q

≥ min{1, 2(1/p−1)u} ·min{1, 2(1/q−1)(k−u)}

×
[(

A(wf)1/p + A(vf)1/p
)u/k(

B(wg)1/q + B(vg)1/q
)1−u/k

]k

≥ min{1, 2(1/p−1)u} ·min{1, 2(1/q−1)(k−u)}

×
[
A(wf)u/(kp)B(wg)(k−u)/(kq) + A(vf)u/(kp)B(vg)(k−u)/(kq)

]k

≥ L1

[
A(wf)u/pB(wg)(k−u)/q + A(vf)u/pB(vg)(k−u)/q

]

= L1

(
G(w) + G(v)

)
,

where for the intermediate estimation we have used Hölder’s inequality.

(ii) Let us consider the case p, q > 0, 0 ≤ k ≤ u, the other case can be
proved analogously. The function x 7→ x1/p is max{1, 21/p−1}-subadditive, the
function x 7→ x1/q is min{1, 21/q−1}-superadditive and the function
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x 7→ xk is min{1, 2k−1}-superaddditive. Using the reversed Hölder inequal-
ity with negative exponent 1− u

k and positive exponent u
k , we get the result as

follows:

G(w + v) =
[(

A(wf) + A(vf)
)u/(kp)(

B(wg) + B(vg)
)(k−u)/(kq)]k

≤
[
max{1, 2(1/p−1)u/k}(A(wf)1/p + A(vf)1/p

)u/k

×max{1, 2(1/q−1)(1−u/k)}(B(wg)1/q + B(vg)1/q
)1−u/k

]k

≤ max{1, 2(1/p−1)u} ·max{1, 2(1/q−1)(k−u)}
× [

A(wf)u/(kp)B(wg)(k−u)/(kq) + A(vf)u/(kp)B(vg)(k−u)/(kq)
]k

≤ L2

[
A(wf)u/pB(wg)(k−u)/q + A(vf)u/pB(vg)(k−u)/q

]

= L2

(
G(w) + G(v)

)
.

(iii) The function x 7→ x1/p is max{1, 21/p−1}-subadditive, the function
x 7→ x1/q is max{1, 21/q−1}-subadditive, and the function x 7→ xk is 2k−1-
subadditive. We use Hölder’s inequality with positive exponents u

k and 1 − u
k

to deduce subadditivity of G as follows:

G(w + v) =
[(

A(wf) + A(vf)
)u/(kp)(

B(wg) + B(vg)
)(k−u)/(kq)]k

≤
[
max{1, 2(1/p−1)u/k}(A(wf)1/p + A(vf)1/p

)u/k

×max{1, 2(1/q−1)(1−u/k)}(B(wg)1/q + B(vg)1/q
)1−u/k

]k

≤ L3

[
A(wf)u/(kp)B(wg)(k−u)/(kq) + A(vf)u/(kp)B(vg)(k−u)/(kq)

]k

≤ L3

[
A(wf)u/pB(wg)(k−u)/q + A(vf)u/pB(vg)(k−u)/q

]k

= L3

(
G(w) + G(v)

)
.

(iv) We have

(
A(wf) + A(vf)

)1/p ≥ min{1, 21/p−1}(A(wf)1/p + A(vf)1/p
)
,

and hence

(
A(wf) + A(vf)

)u/(kp) ≤ max{1, 2(1/p−1)u/k}(A(wf)1/p + A(vf)1/p
)u/k

.

On the other hand,

(
B(wg) + B(vg)

)(k−u)/(kq) ≤ 2(1/q−1)(1−u/k)
(
B(wg)1/q + B(vg)1/q

)1−u/k
.
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Using these estimates and the reversed Hölder inequality with negative expo-
nent u

k and positive exponent 1− u
k , we get

G(w + v) ≤ max{1, 2(1/p−1)u} 2(1/q−1)(k−u)

×
[(

A(wf)1/p + A(vf)1/p
)u/k(

B(wg)1/q + B(vg)1/q
)1−u/k

]k

≤ max{1, 2(1/p−1)u} 2(1/q−1)(k−u)

× [
A(wf)u/(kp)B(wg)(k−u)/(kq) + A(vf)u/(kp)B(vg)(k−u)/(kq)

]k

≤ L4

[
A(wf)u/pB(wg)(k−u)/q + A(vf)u/pB(vg)(k−u)/q

]

= L4

(
G(w) + G(v)

)
.

(v) The proof of this claim is analogous to the proof of (iv). ¤

4. Mappings Generated with the Classical Inequalities
and Their Reverses for Isotonic Functionals

Let us define several mappings which arise from the functional versions of
classical inequalities such as Jensen’s, Hölder’s and Minkowski’s inequality and
their reversed inequalities. In the sequel we assume that L satisfies conditions
L1 and L2 and A is an isotonic linear functional on L. We define below several
convex cones. Assume that A is an isotonic linear functional on L, ϕ is a
continuous function on an interval I ⊆ R, a, b ∈ I, a < b, f, g ∈ L, f0, g0 ∈ R+,
p ∈ R, p 6= 0 and q = p−1

p . Set

CJ(A,ϕ, g) =
{
w ∈ L : wg, wϕ(g) ∈ L, w ≥ 0, A(w) > 0, A(wφ(g))

A(w) ∈ I
}
,

CRJ(A,ϕ, g, g0) =
{
(w0, w) ∈ R+× L : w ≥ 0, wg, wϕ(g) ∈ L,

0 < A(w) < w0,
w0g0−A(wg)

w0−A(w) ∈ I
}
,

CJM (A, ϕ, g, a, b) =
{
w ∈ L : w ≥ 0, A(w) > 0, wg, wϕ(g)∈L, A(wg)

A(w) ∈ [a, b]
}
,

CH(A, f, g, p) =
{
w ∈ L : w, f, g ≥ 0, wfp, wgq, wfg ∈ L, (P1) is satisfied

}
,

CPOP (A, f, g, f0, g0, p) =
{
(w0, w) ∈ R+× L : w, f, g ≥ 0, wfp, wgq, wfg ∈ L,

w0f
p
0 −A(wfp) > 0, w0g

q
0 −A(wgq) > 0, (P1) is satisfied

}
,

CM (A, f, g, p) =
{
w∈L : w, f, g ≥0, wfp, wgq, w(f+ g)p∈L, (P2) is satisfied

}
,

CBEL(A, f, g, f0, g0, p)=
{
(w0, w) ∈ R+ × L : w, f, g ≥ 0,

wfp, wgq, w(f+ g)p∈L, w0f
p
0 >A(wfp), w0g

p
0 >A(wgp), (P2) is satisfied

}
,

where properties (P1) and (P2) are defined as follows:
(P1) If 0 < p < 1, then A(wgq) > 0; if p < 0, then A(wfp) > 0.
(P2) If 0 < p < 1 or p < 0, then A(wgq) > 0 and A(wfp) > 0.
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Definition 4.1. The Jensen functional J is defined as

J(w) = A(wϕ(g))−A(w)ϕ
(A(wg)

A(w)

)
where w ∈ CJ(A,ϕ, g).

The reversed Jensen functional RJ is defined on cone CRJ (A,ϕ, g, g0), g0∈I, by

RJ(w0, w) = (w0 −A(w))ϕ
(w0g0 −A(wg)

w0 −A(w)

)
− w0ϕ(g0) + A(wϕ(g)).

The Jensen-Mercer functional JM is defined on CJM (A,ϕ, g, a, b) by

JM(w) = A(w)(ϕ(a) + ϕ(b))−A(wϕ(g))−A(w)ϕ
(
a + b− A(wg)

A(w)

)
.

From Jensen’s inequality for isotonic linear functional (often called Jessen’s
inequality), [20, p. 113], and from the Jensen-Mercer inequality for isotonic lin-
ear functionals ([5]) we deduce that J and JM are non-negative if the function
ϕ is convex, and J and JM are non-positive if ϕ is concave. The same holds
for RJ(w) from the functional version of the reversed Jensen inequality, which
is proved in [20, p. 124].

Also, in [20] one can find Hölder’s and Minkowski’s inequality for isotonic
functionals and their reversed inequalities, which is called Popoviciu’s and Bell-
man’s inequality, respectively, [20, pp. 113–114 and 124–125]. Inspired by these
inequalities, we define the following functionals.

Definition 4.2. The Hölder functional H is defined by

H(w) = A1/p(wfp)A1/q(wgq)−A(wfg), w ∈ CH(A, f, g, p).

The Popoviciu functional POP is defined by

POP (w0, w) = w0f0g0 −A(wfg)− (
w0f

p
0 −A(wfp)

)1/p(
w0g

q
0 −A(wgq)

)1/q
,

where (w0, w) ∈ CPOP (A, f, g, f0, g0, p).
The Minkowski functional M is defined as

M(w) =
[
A1/p(wfp) + A1/p(wgp)

]p −A(w(f + g)p), w ∈ CM (A, f, g, p).

The Bellman functional BEL is defined by

BEL(w0, w) = w0(f0 + g0)p −A(w(f + g)p)

− [(
w0f

p
0 −A(wfp)

)1/p +
(
w0g

p
0 −A(wgp)

)1/p]p
,

where (w0, w) ∈ CBEL(A, f, g, f0, g0, p).

If p > 1, then H(w) ≥ 0 and POP (w) ≥ 0, while if 0 < p < 1 or
p < 0, then H(w) ≤ 0 and POP (w) ≤ 0, [20, pp. 113 and 125]. If p ≥ 1
or p < 0, then M(w) ≥ 0 and BEL(w0, w) ≥ 0, while if 0 < p < 1, then
M(w) ≤ 0 and BEL(w0, w) ≤ 0, [20, pp. 114 and 125–126]. Let us mention
that J, JM,RJ,H, M,POP and BEL are positive homogeneous functionals.
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In the following theorem we give results about quasilinearity of the above-
defined mappings.

Theorem 4.1. (a) If ϕ is convex, then functionals J and JM are super-
additive and RJ is subadditive. If ϕ is concave, then functionas J and JM
are subadditive and RJ is superadditive.

(b) If p > 1, 1
p + 1

q = 1, then H is superadditive and POP is subadditive.
If 0 < p < 1 or p < 0, then H is subadditive and POP is superadditive.

(c) If p > 1 or p < 0, then M is superadditive and BEL is subadditive.
If 0 < p < 1, then M is subadditive and BEL is superadditive.

Proof. (a) The proof for J is given in [17]. Let us prove the claim for JM .
Let ϕ be convex. A simple calculation yields:

JM(w+v)−JM(w)−JM(v) = A(w)ϕ
(
a+b−A(wg)

A(w)

)
+A(v)ϕ

(
a+b−A(vg)

A(v)

)

−A(w + v)ϕ
(
a + b− A((w + v)g)

A(w + v)

)
≥ 0.

The last inequality follows from the classical Jensen inequality

(p1 + p2)ϕ
( p1

p1 + p2
x1 +

p2

p1 + p2
x2

)
≤ p1ϕ(x1) + p2ϕ(x2),

applied with

p1 = A(w), p2 = A(v), x1 = a + b− A(wg)
A(w)

, x2 = a + b− A(vg)
A(v)

.

(b) We shall prove only the first case because the proof of the second one
is similar. Let p > 1, 1

p + 1
q = 1. Then

POP (w0 + v0, w + v)− POP (w0, w)− POP (v0, v)
= (w0 + v0)f0g0 −A((w + v)fg)

− (
(w0 + v0)f

p
0 −A((w + v)fp)

)1/p((w0 + v0)g
q
0 −A((w + v)gq)

)1/q

− w0f0g0 −A(wfg) +
(
w0f

p
0 −A(wfp)

)1/p(
w0g

q
0 −A(wgq)

)1/q

− v0f0g0 −A(vfg) +
(
v0f

p
0 −A(vfp)

)1/p(
v0g

q
0 −A(vgq)

)1/q

=
(
w0f

p
0 −A(wfp)

)1/p(
w0g

q
0 −A(wgq)

)1/q

+
(
v0f

p
0 −A(vfp)

)1/p(
v0g

q
0 −A(vgq)

)1/q

− (
(w0 + v0)f

p
0 −A((w + v)fp)

)1/p((w0 + v0)g
q
0 −A((w + v)gq)

)1/q

≤ 0,
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where for the last inequality we have substituted a = w0f
p
0 − A(wfp),

b = v0f
p
0 − A(vfp), c = w0g

q
0 − A(wgq) and d = v0g

q
0 − A(vgq) in the clas-

sical Hölder inequality

a1/pc1/q + b1/pd1/q ≤ (a + b)1/p(c + d)1/q.

(c) We again do only one case, namely the superadditivity of BEL, the
other cases follow in the same way. Similar to what was done in (b) we see that

BEL(w0 + v0, w + v)−BEL(w0, w)−BEL(v0, v)

= −[(a + b)1/p + (c + d)1/p]p + [a1/p + c1/p]p + [b1/p + d1/p]p

If 0 < p < 1 using classical Minkowski inequality we get superadditivity of
BEL. ¤

As a consequence of quasilinearity we obtain boundedness and monotonicity
properties. For the sake of simplicity, we say that a functional F satisfies
property Binc on cone C if

m F (x) ≤ F (y) ≤ M F (x),

where x, y ∈ C is such that y −mx,Mx − y ∈ C. The functionl F is said to
satisfy property Bdec if the reversed inequalities hold.

It is easy to see that if F is a non-negative, superadditive and positive homo-
geneous functional, then F satisfies Binc, while if F is non-positive, subadditive
and positive homogeneous, then F satisfies Bdec (see the proof of Theorem 2.1).
Indeed, we have the following corollary.

Corollary 4.1. (i) Property Binc is satisfied when F is one of the following
functionals:

J or JM for convex ϕ; RJ when ϕ is concave; H for p > 1; M for p < 0
or p > 1.

(ii) Property Bdec is satisfied when F is one of the following functionals:
J or JM for concave ϕ; RJ when ϕ is convex; H for p < 0 or p ∈ (0, 1);

M for p ∈ (0, 1).
Moreover, if m = 1, then the above boundedness property becomes monotonic-

ity property.

Remark 4.1. Some of results given in Theorem 4.1 and Corollary 4.1 are
known, especially when A is a sum or an integral. Of course, the most investi-
gated map is Jensen’s functional. Properties like quasilinearity, monotonicity
and boundedness of Jensen’s functional for sums are given in [7, 12], quasilinear-
ity and monotonicity of Jensen’s functional for isotonic functional (or Jessen’s
functional) can be found in [17], while boundedness property with applica-
tions is investigated in [6]. Properties of the discrete Jensen-Mercer functional
are given in [16]. Properties of Minkowski’s functional for integrals are given
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in [15], while some results about Hölder’s and Minkowski’s functionals for sums
in normed spaces are given in [10]. To the best of our knowledge, properties
of the reversed Jensen functional, Popoviciu’s and Bellman’s functional do not
appear in literature in any form: discrete, integral or in the language of isotonic
functionals.

Let us now apply our results from the first section to Jensen’s functional.

Theorem 4.2. (i) Let h be a non-negative submultiplicative function, and
Φ : [0,∞) → [0,∞) be h-concave and non-decreasing. If ϕ is a convex function,
then the functional ηJ defined on CJ(A,ϕ, g) by

ηJ(w) = h(A(w))Φ
(A(wϕ(g))

A(w)
− ϕ

(A(wg)
A(w)

))

is superadditive.
(ii) If h is non-negative supermultiplicative, ϕ is convex, Φ is h-convex and

non-decreasing, then ηJ is subadditive.
(iii) Let assumptions of (i) be satisfied. If h is positive homogeneous,

w, v ∈ CJ(A, ϕ, g) and M ≥ m > 0 is such that w−mv, Mv−w ∈ CJ(A,ϕ, g),
then

mηJ (v) ≤ ηJ (w) ≤ MηJ (v).

Furthermore, if M = 1, then

0 ≤ ηJ (w) ≤ ηJ(v).

Proof. Put in the definition of the functional ηΦ from Proposition 1.1

x → w, v(x) → A(w), g(x) → J(w).

Then v is additive and positive homogeneous, and if ϕ is convex, then g is su-
peradditive and by Proposition 1.1 we obtain that ηJ is superadditive. Another
statements follows from the results of Corollary 1.2. ¤

Let us finally mention that the investigation of the functionals

ηJM (w) = h(A(w))Φ
(
ϕ(a) + ϕ(b)− ϕ

(
a + b− A(wg)

A(w)

)
− A(wϕ(g))

A(w)

)
,

ηH(w) = h(A(w))Φ
( 1

A(w)
(
A1/p(wfp)A1/q(wgq)−A(wfg)

))
,

ηM (w) = h(A(w))Φ
( 1

A(w)
([

A1/p(wfp) + A1/p(wgp)
]p −A(w(f + g)p)

))
,

ηRJ (w0, w) = h(w0 −A(w))Φ
(
ϕ
(w0g0 −A(wg)

w0 −A(w)

)
− w0ϕ(g0)−A(wϕ(g))

w0 −A(w)

)
,

yields results of a very similar nature to those given in Theorem 4.2.
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and generalized means, J. Inequal. Pure Appl. Math. 7 (2006), no. 1, Art 10.
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