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In this paper, we present two new families of conditionally positive
definite radial basis functions which can be used in a basis of multivariate
splines in Rd, d ∈ N. These families are the natural generalizations of
well-known constructions of radial basis functions of the tension spline,
the regularized spline, and the completely regularized spline.
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1. Introduction

An RBF-spline associated with a scattered mesh of distinct nodes xi ∈ Rd,
i = 1, . . . , N , is defined as

σ(x) =
N∑

i=1

λiφ(|x− xi|) + p(x), (1.1)

where φ ∈ C[0,∞) is a univariate function, |x − y| is the Euclidean distance
between points x, y ∈ Rd, λi ∈ R are arbitrary values, and p(x) is a function
belonging to the given finite-dimensional linear space P of continuous functions.
Usually, P is the space Pd

m−1 of polynomials of the degree less than m ∈ Z+

on Rd (Pd
−1 = {0}). The space P is called the trend of spline.

With given interpolation equations σ(xi) = zi, i = 1, . . . , N , we arrive to a
system of N linear equations with N + K unknowns, where K = dimP. To
close the system, we assume that

N∑

i=1

λip(xi) = 0 ∀ p ∈ P (1.2)

∗The work is supported by RFBR project 11-07-00447 and the integration grant 32 of
Siberian and Ural branches of RAS.
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and arrive to the system of N + K linear equations with N + K unknowns.
To provide the unique solvability of the resulting system, we assume that

the mesh of nodes {xi} is nondegenerate with respect to P, i.e., the equa-
tions p(xi) = 0, i = 1, . . . , N , have the sole trivial solution p(x) = 0 on P.
Additionally, we suppose that the radial basis function φ(r) is conditionally
positive definite on Rd with respect to P, i.e., for any finite mesh of distinct
points yi ∈ Rd and coefficients µi ∈ R, i = 1, . . . , M , M ∈ N,

M∑

i=1

M∑

j=1

µiµjφ(|yi − yj |) > 0 provided
M∑

i=1

µip(yi) = 0 ∀ p ∈ P,

where {µi ∈ R, i = 1, . . . , M} is a nontrivial set (at least one entry differs from
zero). For P = Pd

m−1, the function φ(r) is called the conditionally positive
definite of order m on Rd.

We denote as Rd
m the set of all conditionally positive definite radial basis

functions of order m on Rd. It is evident that Rd1
m1

⊂ Rd
m if m1 ≤ m and

d1 ≥ d.
Functions from R∞m :=

⋂∞
d=1Rd

m are strongly connected with completely
monotonic functions (f ∈ C∞(0,∞) is completely monotonic if (−1)kf (k) ≥ 0
for every k ∈ Z+).

We denote as Mm the set of functions f ∈ C∞(0,∞) having completely
monotonic mth derivative (−1)mf (m). It is well known [9] that, if a function
f ∈ Mm is bounded at zero and f (m) is not a constant, the function f(r2)
belongs to R∞m . Conversely, φ ∈ R∞m ⇒ φ(

√· ) ∈ Mm (see, e.g., [15]). It is
also clear that, if f ∈ Mm is unbounded at zero and f (m) is not a constant,
f(r2 + c2), c 6= 0, belongs to R∞m .

The strong connection between R∞m and Mm allows us to investigate func-
tions from Mm and then generate functions belonging to R∞m using the follow-
ing substitution:

f ∈Mm =⇒ φ(r) := f(a2(r2 + c2)) + pm−1(r2) =⇒ φ ∈ R∞m , (1.3)

where a ∈ R \ {0}, c ∈ R, and pm−1 ∈ P1
m−1. Here we suppose that f (m) is

not a constant and c 6= 0 if the function f is unbounded at zero. We call the
function f ∈Mm to be the generic function for φ ∈ R∞m in this case.

The following family of functions is generic for many well-known radial basis
functions (see, e.g., [13]):

fν(t) =

{
Γ(−ν)tν , ν ∈ R \ Z+,

(−1)ν+1tν ln t, ν ∈ Z+.
(1.4)

Namely,

• fν , ν ∈ R\Z+, is the generic function for multiquadric (−1)bνc+1(r2+c2)ν ,
ν > 0, and unverse multiquadric (r2 + c2)ν , ν < 0;
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• fn, n ∈ N, is the generic function for the radial basis function
(−1)n+1r2n ln r of the thin-plate spline (n = 1) and polyharmonic spline
(n > 1);

• fν , ν ∈ R+ \ Z+, generates the radial basis function (−1)bνc+1r2ν ;

• fn, n ∈ Z+, generates the radial basis function (−1)n+1(r2+c2)n ln(r2+c2)
of DMM-spline [14].

It is clear that
fν ∈M(bνc+1)+ , (1.5)

where (k)+ = max{k, 0}.
The paper is organized as follows.
In Section 2, we define two auxiliary families of functions — hν and h̃ν ,

ν ∈ R. The function hν generates Whittle–Matérn radial basis function [8]
used with spline approximation in the Sobolev space Hk(Rd) when ν = k−d/2.
We prove that hν ∈M0, therefore, radial basis functions generated with it can
be used for spline approximation in Rd for any d ∈ N and the parameter ν
does not depend on d. The family of functions h̃ν derives from the family fν

(see (1.4)) and differs from it with slightly modified coefficients.
In Section 3, we present a two-parametric family of functions hν,n, ν ∈ R,

n ∈ Z+:

hν,0(t) = h̃ν(t)− hν(t); hν,n(t) =
h̃ν+n(t)
n! 2n

− hν,n−1(t), n = 1, 2, . . .

and prove that hν,n ∈ M(bνc+n+1)+ . We also investigate the boundedness of
functions hν,n at zero. This family of functions was introduced and investigated
by the author in [12].

In Section 4, we define two auxiliary families of functions — gν and g̃ν ,
ν ∈ R. The family gν is constructed with the help of incomplete Gamma-
function and the family g̃ν is again similar to fν .

In Section 5, we present another new two-parametric family of functions
gν,n, ν ∈ R, n ∈ Z+:

gν,0(t) = g̃ν(t)− gν(t); gν,n(t) = gν+1,n−1(t)− gν,n−1(t), n = 1, 2, . . .

and prove that gν,n ∈ M(bνc+n+1)+ and gν,n is bounded at zero for all ν ∈ R,
n ∈ Z+.

In Section 6, we give calculation formulas for studied functions in special
cases of integer and half-integer values of ν and show that the functions hν,n

generalize the well-known constructions of tension spline and regularized spline
[10] and the functions gν,n generalize the construction of completely regularized
spline [11].

Finally, in Section 7, we discuss properties of radial basis functions gener-
ated with the functions of the new families and compare them with well-known
radial basis functions.
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2. The Auxiliary Families of Functions hν and h̃ν

We start with introducing the family of functions

hν(t) = tν/2Kν(
√

t), ν ∈ R, t ∈ (0,∞). (2.1)

Here Kν(x) is the modified Bessel function of the second kind of order ν (see,
e.g., [1, Sect. 9.6]). The function Kν(x) is continuous on (0,∞), unbounded at
zero, positive, monotonic, and exponentially decaying as x → ∞. Due to the
symmetry Kν(x) = K−ν(x), we establish

hν(t) = tνh−ν(t) ∀ ν ∈ R, t ∈ (0,∞). (2.2)

Theorem 1. The function hν is differentiated by the formula

h′ν(t) = −hν−1(t)
2

∀ ν ∈ R, t ∈ (0,∞). (2.3)

Proof. We use the integral representation of the function Kν(x) derived
from [1, Sect. 9.6.25]:

Kν(x) =
Γ(ν + 1/2)(2x)ν

Γ(1/2)

∫ ∞

0

cosu

(u2 + x2)ν+1/2
du, ν+1/2 > 0, x > 0. (2.4)

Given ν > 0, we derive from (2.4):

hν(t) =
Γ(ν + 1/2)

Γ(1/2)
(2t)ν

∫ ∞

0

cosu

(u2 + t)ν+1/2
du.

Hence

h′ν(t) =
Γ(ν + 1/2)

Γ(1/2)
2ν(2t)ν−1

∫ ∞

0

cos u

(u2 + t)ν+1/2
du

− Γ(ν + 3/2)
Γ(1/2)

(2t)ν

∫ ∞

0

cosu

(u2 + t)ν+3/2
du

= νtν/2−1Kν(
√

t)− t(ν−1)/2

2
Kν+1(

√
t)

=
t(ν−1)/2

2

( 2ν√
t
Kν(

√
t)−Kν+1(

√
t)

)

= − t(ν−1)/2

2
Kν−1(

√
t) = −hν−1(t)

2
. (2.5)

In the penultimate identity in (2.5), we use the well-known recurrence formula

Kν−1(x)−Kν+1(x) = −2ν

x
Kν(x). (2.6)

Given ν ≤ 0, we deduce from (2.4) and the identity Kν(x) = K−ν(x):

hν(t) = tν/2K−ν(
√

t) =
Γ(−ν + 1/2)

Γ(1/2)
2−ν

∫ ∞

0

cos u

(u2 + t)−ν+1/2
du.
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Therefore,

h′ν(t) = −Γ(−ν + 3/2)
Γ(1/2)

2−ν

∫ ∞

0

cosu

(u2 + t)−ν+3/2
du = −hν−1(t)

2
.

The theorem is proved.

Corollary 1. hν ∈M0 for every ν ∈ R.

Now we introduce the family of functions

h̃ν(t) =





Γ(−ν)tν

2ν+1
, ν ∈ R \ Z+,

(−1)ν+1 tν [ln(t/4)− ψ(1)− ψ(ν + 1)]
ν! 2ν+1

, ν ∈ Z+.
(2.7)

Here ψ(n) = −γ +
∑n−1

k=1 k−1 and γ = 0.577215 . . . is the Euler constant.
One can easy establish that functions h̃ν are differentiated similarly to hν :

h̃′ν(t) = − h̃ν−1(t)
2

∀ ν ∈ R, t ∈ (0,∞). (2.8)

We will further use the power series for hn, n ∈ Z+, derived from [1,
Sect. 9.6.10, 9.6.11]:

hn(t) = 2n−1
n−1∑

k=0

(n− k − 1)!
k!

(−t/4)k

+ (−1)n+1 tn

2n+1

∞∑

k=0

[ln(t/4)− ψ(k + 1)− ψ(n + k + 1)]
(t/4)k

k! (n + k)!
, (2.9)

Evidently, h̃n(t) coincides with nth term of (2.9) (the first term from the last
sum).

Taking into account the limit form Kν(x) ∼ Γ(ν)/2 · (x/2)−ν for small x
and ν > 0 [1, Sect. 9.6.9], the identity Kν(x) = K−ν(x), and (2.9) for n = 0,
we obtain the limit form for hν near to zero:

hν(t) ∼





Γ(−ν)tν

2ν+1
, ν < 0,

h̃0(t), ν = 0,

Γ(ν)2ν−1, ν > 0.

(2.10)

Comparing (2.10) with (2.7), we conclude that h̃ν coincides with the main
singular part of hν for ν ≤ 0.
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3. The Family of Functions hν,n

Now we define the recurrence formula for hν,n:

hν,0(t) = h̃ν(t)−hν(t); hν,n(t) =
h̃ν+n(t)
n! 2n

−hν,n−1(t), n = 1, 2, . . . (3.1)

In other words,

hν,n(t) = (−1)n+1
(
hν(t)−

n∑

k=0

(−1)k h̃ν+k(t)
k! 2k

)
. (3.2)

We will use in the proof below the following estimates for a completely
monotonic function f ∈ C∞(0,∞) whose derivatives of orders n = 0, . . . , m
are bonded at zero:

(−1)n
(
f(t)−

n∑

k=0

tk

k!
f (k)(0)

)
≤ 0 for t ≥ 0, n ∈ {0, . . . ,m}. (3.3)

Really, since f is completely monotonic, its derivative is nonpositive on (0,∞),
hence f(t) ≤ f(0). Further, f ′′ is nonnegative, hence f(t) ≥ f(0) + tf ′(0), and
so on.

Theorem 2. hν,n ∈M(bνc+n+1)+ for every ν ∈ R, n ∈ Z+.

Proof. From (2.3) and (2.8) it follows that

h′ν,n(t) = −hν−1,n(t)
2

∀ ν ∈ R, n ∈ Z+, t ∈ (0,∞). (3.4)

Given ν + n < 0, we apply (2.2), (2.10), and (2.7) to (3.2) and derive:

hν,n(t) = (−1)n+1tν
(
h−ν(t)−

n∑

k=0

(−1)ktk

k! 2k
· Γ(−ν − k)

2ν+k+1

)

= (−1)n+1tν
(
h−ν(t)−

n∑

k=0

tk

k!
· (−1)kh−ν−k(0)

2k

)

= (−1)n+1tν
(
h−ν(t)−

n∑

k=0

tk

k!
h

(k)
−ν(0)

)
. (3.5)

Since −ν−n > 0, the derivatives of h−ν till order n are bounded at zero. Hence,
taking into account (3.3), we conclude from (3.5) that hν,n is nonnegative for
ν + n < 0. Therefore, from (3.4) we derive hν,n ∈M0.

Given ν + n ≥ 0, (−1)bνc+n+1h
(bνc+n+1)
ν,n (t) = 2−bνc−n−1hν1,n(t), where

ν1 = ν−bνc−n−1 < −n and, hence, hν1,n ∈M0. Therefore, hν,n ∈Mbνc+n+1.
The theorem is proved.
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Theorem 3. The limit form for hν,n for small t is the following :

hν,n(t) ∼





h̃ν+n+1(t)
(n + 1)! 2n+1

, ν ≤ −n− 1,

O(1), −n− 1 < ν < 0,

o(1), ν = 0,

(−1)n+1Γ(ν)2ν−1, ν > 0.

(3.6)

Proof. We will prove the estimates from (3.6) in the order of cases and split
the first case into two parts.

1. For ν + n < −1, the function h
(n+1)
−ν (t) = (−1)n+1h−ν−n−1(t)/2n+1 is

bounded at zero. Hence, applying (3.5), (2.3), and (2.10), we obtain

hν,n(t) = (−1)n+1tν
( tn+1h

(k)
−ν(0)

(n + 1)!
+ o(tn+1)

)

=
tν+n+1h−ν−n−1(0)

(n + 1)! 2n+1
+ o(tν+n+1)

=
tν+n+1Γ(−ν − n− 1)2−ν−n−2

(n + 1)! 2n+1
+ o(tν+n+1)

=
h̃ν+n+1(t)

(n + 1)! 2n+1
+ o(tν+n+1).

2. For ν + n = −1, we derive from (3.5):

h−n−1,n(t) = (−1)n+1t−n−1
(
hn+1(t)−

n∑

k=0

tk

k!
· (−1)khn+1−k(0)

2k

)

= (−1)n+1t−n−1
(
hn+1(t)−

n∑

k=0

tk

k!
· (−1)k(n− k)! 2n−k

2k

)

= (−1)n+1t−n−1
(
hn+1(t)− 2n

n∑

k=0

(n− k)!
k!

(−t/4)k
)
. (3.7)

Substituting (2.9) for hn+1 into (3.7), we obtain

h−n−1,n(t) = − ln(t/4)− ψ(1)− ψ(n + 2)
(n + 1)! 2n+2

+ O(t ln t)

=
h̃0(t) + (ψ(n + 2) + γ)/2

(n + 1)! 2n+1
+ O(t ln t).

3. From Cases 1 and 2 and (3.4), we conclude that

hν,n(t) =

{
pbνc+n+1(t) + O(tν+n+1), ν ∈ (−1− n, 0) \ Z,

pν+n(t) + O(tν+n+1 ln t), ν ∈ (−1− n, 0) ∩ Z,
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where pk(t) ∈ P1
k. Therefore, hν,n(t) = O(1) for −1− n < ν < 0.

4. For ν = 0, all terms in (3.2) except h0 and h̃0 vanish at zero. Therefore,
it is enough to prove that h0,0(t) = h̃0(t)− h0(t) = o(1). From (2.9) for n = 0,
we deduce

h0,0(t) =
t

4

(1
2

ln
t

4
+ γ − 1

)
+ O(t2 ln t). (3.8)

5. For ν > 0, all terms in (3.2) except hν vanish at zero. Taking into
account the limit value for hν(0) from (2.10) for ν > 0, we receive the required
limit value for hν,n(0). The theorem is proved.

4. The Auxiliary Families of Functions gν and g̃ν

Now we consider the family of functions

gν(t) = tνΓ(−ν, t), ν ∈ R. (4.1)

Here Γ(a, t) =
∫∞

t
e−xxa−1 dx is the incomplete Gamma-function [1, Sect. 6.5.3].

Taking into account the differentiation formula [1, Sect. 6.5.26] and positive-
ness of Γ(a, t) for t > 0, we conclude that

g′ν(t) = −gν−1(t) ∀ ν ∈ R, t ∈ (0,∞) (4.2)

and gν ∈M0 for every ν ∈ R.
For n ∈ Z+, we obtain from [1, Sect. 5.1.12]:

gn(t) = (−1)n+1 tn[ln t− ψ(n + 1)]
n!

−
∞∑′

k=0
k 6=n

(−t)k

(k − n) k!
. (4.3)

From [1, Sect. 6.5.3, 6.5.4], we derive

gν(t) = Γ(−ν)tν − Γ(−ν)γ∗(−ν, t), ν ∈ R \ Z+, (4.4)

where γ∗(a, t) is a single valued analytic function of a and t possessing no finite
singularities. It has two representation in series:

γ∗(a, t) = e−t
∞∑

k=0

tk

Γ(a + k + 1)
=

1
Γ(a)

∞∑

k=0

(−t)k

(a + k) k!
. (4.5)

In the second representation of γ∗, (−a) /∈ Z+.
Denote

g̃ν(t) =





Γ(−ν)tν , ν ∈ R \ Z+,

(−1)ν+1 tν [ln t− ψ(ν + 1)]
ν!

, ν ∈ Z+.
(4.6)
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It follows from (4.3) and (4.4) that g̃ν(t) ∼ gν(t) for ν ≤ 0 and small t > 0. In
other words, g̃ν coincides with the main singular part of gν for ν ≤ 0.

One can easy prove the differentiation formula for g̃ν :

g̃′ν(t) = −g̃ν−1(t) ∀ ν ∈ R, t ∈ (0,∞). (4.7)

5. The Family of Functions gν,n

Finally, we define the family of functions gν,n, ν ∈ R, n ∈ Z+:

gν,0(t) = g̃ν(t)− gν(t);
gν,n(t) = gν+1,n−1(t)− gν,n−1(t), n = 1, 2, . . .

(5.1)

Theorem 4. gν,n ∈M(bνc+n+1)+ for every ν ∈ R, n ∈ Z+.

Proof. From (4.2) and (4.7) it follows that

g′ν,n(t) = −gν−1,n(t) ∀ ν ∈ R, n ∈ Z+, t ∈ (0,∞). (5.2)

For n = 0, from (4.4) and (4.5) we obtain

gν,0(t) = Γ(−ν)γ∗(−ν, t) = e−t
∞∑

k=0

Γ(−ν)tk

Γ(−ν + k + 1)
, ν ∈ R \ Z+. (5.3)

Clearly, gν,0(t) ≥ 0 for ν < 0 and t > 0. Taking into account the differentiation
formula (5.2), we conclude that gν,0 ∈ M0 for ν < 0. Hence, gν,0 ∈ Mbνc+1

for ν ≥ 0.
For n > 0, the statement of the theorem follows from the formula

gν,n(t) = e−t
∞∑

k=0

Γ(−ν − n)(k + n)!
Γ(−ν + k + 1)k!

tk, ν + n ∈ R \ Z+, (5.4)

valid for ν + n < 0. This formula can be proved using induction by n. The
theorem is proved.

Now we will establish limit values for the functions gν,n at zero. We start
from the case n = 0. Using (4.3) for ν ∈ Z+ and the second representation of
function γ∗ from (4.5) substituted into the identity gν,0(t) = Γ(−ν)γ∗(−ν, t),
we obtain a general formula for calculation gν,0 for any ν:

gν,0(t) =
∞∑′

k=0
k 6=ν

(−t)k

(k − ν) k!
, ν ∈ R. (5.5)

Here the term with index k = ν is excluded from the sum if ν ∈ Z+. For
ν /∈ Z+, summation is done without any exclusion.
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From (5.5), we derive for small t:

gν,0(t) ∼
{
−ν−1, ν ∈ R \ {0},
−t, ν = 0.

(5.6)

Therefore, using recurrence formula (5.1), we conclude that gν,n is bounded at
zero for every ν ∈ R, n ∈ Z+. From (5.2) it also follows that all the derivatives
of the function gν,n are bounded at zero.

6. Special Cases

In practice, two special cases of calculation formulas for considered functions
have an interest — when the value of the parameter ν is an integer or a half-
integer. In these cases, the considered functions can be efficiently calculated.

6.1. Calculation Formulas for hν and hν,n

To calculate hn(t), n ∈ Z+, we start from h0(t) = K0(
√

t) and h1(t) =√
tK1(

√
t). For greater n, we use the recurrence formula

hn+1(t) = thn−1(t) + 2nhn(t) (6.1)

deduced from (2.6).
Calculation formulas for hn+1/2(t), n ∈ Z+, are derived from [2, Sect. 7.2.6]:

hn+1/2(t) =
√

π/2 e−
√

t
n∑

k=0

(n + k)!
k! (n− k)! 2k

t(n−k)/2. (6.2)

The case of a negative ν is reduced to the case of a positive value of the
parameter by applying the identity hν(t) = tνh−ν(t). For example,

h−1/2(t) = t−1/2h1/2(t) =
√

π

2t
e−
√

t.

To evaluate the function hν,n(t) for t > 0, we use (3.2) and do the optimiza-
tion by taking out of the summation the common part of functions h̃ν+k. The
sum in this case reduces to evaluation of a polynomial. In the case of ν+k ∈ Z+,
the constants added to ln(t/4) could be omitted.

The function h0,0(t) = −0.5 ln(t/4) − γ − K0(
√

t) should be evaluated in
a special way when t < ε, where ε is the relative accuracy of calculation on
computer. We use in this case the formula

h0,0(t) ≈ t

4

(1
2

ln
t

4
+ γ − 1

)

derived from (3.8).
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The function h−1/2,0(t) =
√

π/(2t)
(
1− e−

√
t
)

is also evaluated in a special
way for t < ε:

h−1/2,0(t) ≈
√

π

2

(
1−

√
t

2

)
.

6.2. Calculation Formulas for gν and gν,n

The recurrence formula

e−t − tgν−1(t) = νgν(t), ν ∈ R, (6.3)

is easy established from (4.1) by applying integration by parts. Hence, functions
gν for integer and half-integer values of ν can be easy calculated if we could
evaluate g−1, g−1/2, and g0. For ν ∈ Z, we use formulas [1, Sect. 5.1.45, 5.1.46]
and derive to well-known exponential integral functions:

gn(t) =

{
α−n−1(t), n < −1,

En+1(t), n > −1,
g−1(t) = α0(t) = E0(t) =

e−t

t
. (6.4)

For ν = −1/2, we deduce from [1, Sect. 6.5.17, 7.1.5]:

g−1/2(t) =
√

π
1− erf

√
t√

t
. (6.5)

From (6.3) and (5.1) we obtain the recurrence formula

e−t + tgν−1,0(t) =





−νgν,0(t), ν ∈ R \ Z+,

1, ν = 0,

−νgν,0(t) +
(−t)ν

ν!
, ν ∈ N,

(6.6)

which allows us to evaluate gν,0(t) in the case of an integer or a half-integer
value of ν by starting from g−1/2,0(t) or g0,0(t). From (6.4), (6.5), and (4.6),
we deduce

g−1/2,0(t) =
√

π
erf
√

t√
t

, g0,0(t) = − ln t− γ − E1(t).

For t < ε, we use the limit forms from (5.6) and assign

g−1/2,0(t) = 2, g0,0(t) = −t.

Functions gν,n(t), n > 0, are easy evaluated by the recurrence formula (5.1).
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6.3. Comparison with Radial Rasis Functions Introduced by Mitáš
and Mitášová

In Table 1, we show examples of radial basis functions generated with par-
ticular functions from families hν , hν,n, gν , and gν,n. The coefficient c is given
in the cases when a generic function is unbounded at zero.

Table 1. Examples of radial basis functions

Ex. Generic function Radial basis function Order

1 h−1/2(t) =
p

π/(2t) e−
√

t
p

π/2 (r2 + c2)−1/2e−(r2+c2)1/2
0

2 h0(t) = K0(
√

t) K0((r
2 + c2)1/2) 0

3 h1/2(t) =
p

π/2 e−
√

t
p

π/2 e−r 0

4 h3/2(t) =
p

π/2 e−
√

t(
√

t + 1)
p

π/2 e−r(r + 1) 0

5 h−1/2,0(t) =
p

π/(2t) (1− e−
√

t)
p

π/2
1

ϕr
(1− e−ϕr) 0

6 h0,0(t) = −1

2
ln

t

4
− γ −K0(

√
t) − ln

ϕr

2
− γ −K0(ϕr) 1

7 h1/2,0(t) = −
p

π/2 (
√

t + e−
√

t) −
p

π/2 (ϕr + e−ϕr) 1

8 h−1/2,1(t) =
p

π/(2t) (−t/2− 1 + e−
√

t)
p

π/2
τ

r

�
− r2

2τ2
− 1 + e−r/τ

�
1

9 h0,1(t) =
t

8

�
ln

t

4
+ 2γ − 1

�
+

1

2
ln

t

4
+ γ + K0(

√
t)

r2

4τ2

�
ln

r

2τ
+ γ − 1

2

�
+

ln
r

2τ
+ γ + K0

� r

τ

�
2

10 h1/2,1(t) =
p

π/2
�√t3

6
+
√

t + e−
√

t
� p

π/2
� r3

6τ3
+

r

τ
+ e−r/τ

�
2

11 g−1(t) =
e−t

t

e−(r2+c2)

r2 + c2
0

12 g−1/2(t) =
√

π
1− erf

√
t√

t

√
π

1− erf
√

r2 + c2

√
r2 + c2

0

13 g0(t) = E1(t) E1(r
2 + c2) 0

14 g1/2(t) = 2
�
e−t −√πt

�
1− erf

√
t
��

2
�
e−r2 −√πr

�
1− erf r

��
0

15 g−1/2,0(t) =
√

π
erf
√

t√
t

√
π

erf(ϕr/2)

ϕr/2
0

16 g0,0(t) = − ln t− γ − E1(t) − ln
�
(ϕr/2)2

�− γ − E1

�
(ϕr/2)2

�
1

17 g1/2,0(t) = −2
�√

πt erf
√

t + e−t
� −2

�√
π

ϕr

2
erf(ϕr/2) + e−(ϕr/2)2

�
1
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We use the substitutions t 7→ (ϕr)2 in Examples 5–7, t 7→ (r/τ)2 in Exam-
ples 8–10, and t 7→ (ϕr/2)2 in Examples 15–17 with some positive values of ϕ
and τ .

Comparing radial basis functions from Examples 6–9 with [10] and taking
into account the substitution (1.3), we conclude that h1−d/2,0 (Examples 6, 7)
generates the radial basis function of the tension spline on Rd, d = 1, 2, and
h1−d/2,1 (Examples 8, 9) generates the radial basis function of the regularized
spline on Rd, d = 2, 3. Let us note a small difference between radial basis
functions from Examples 8, 9 and the corresponding formulas from [10]:

• The order of conditional positive definiteness of the function in Example 8
is equal to 1, but in [10] a trend space consisting of linear functions is
required, i.e., the order is equal to 2.

• There is an errata in formula (55) of the radial basis function of the
regularized spline in R2 — π in the argument of ln should be replaced
with τ .

Comparing radial basis functions from Examples 15, 16 with [11], we also
conclude that g1−d/2,0 generates the radial basis function of the completely
regularized spline on Rd, d = 2, 3.

7. Discussion

Now we return back to the interpolation by RBF-spline constructed with
the help of a radial basis function φ, which is conditionally positive definite with
respect to a trend space P. It is well-known [7], that the interpolating RBF-
spline minimizes in this case a specific seminorm Φ(·) in the proper Hilbert
space NΦ(Ω) of functions on Ω ⊂ Rd, where Ω is a domain containing mesh
nodes. This space of functions is called the native space and it is uniquely
identified by the triple 〈φ,P, Ω〉. The seminorm can be presented in the form
Φ(u) = ‖Tu‖Y , where T is a bounded linear operator acting from NΦ(Ω)
to a Hilbert space Y , and the function φ generates the reproducing kernel
G(x, y) = φ(|x− y|) of the space NΦ(Ω) equipped with the seminorm Φ(·) [3].
The reproducing kernel G is also the Green’s function of the operator T ∗T (see,
e.g., [6]).

In the case of P = Pd
m−1, Ω = Rd, and φ ∈ Rd

m, the native space and
minimized seminorm can be associated with the triple 〈φ,m, d〉. In Table 2 we
show particular cases of seminorms minimized by RBF-splines. We use here
the notation

‖Dku‖2Y :=
∑

|α|=k

k!
α!
‖Dαu‖2Y , k ∈ Z+,

where Dαu is the partial derivative of u of the multiindex α. See [5] for the
definition of the function space H̃s(Rd).
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Table 2. Examples of variational functionals minimized by RBF-splines

Ex. Φ(u)2 φ(r) Restrictions

1 ‖Dmu‖2L2 fm−d/2(r
2) m− d/2 > 0

2 ‖Dmu‖2
H̃s fm+s−d/2(r

2) m > m + s− d/2 > 0

3 ‖u‖2L2 + ‖Dmu‖2L2 hm−d/2(r
2) m− d/2 > 0

4 ϕ2‖D1u‖2L2 + ‖D2u‖2L2 h1−d/2,0((ϕr)2) 2− d/2 > 0

5 ‖D2u‖2L2 + τ2‖D3u‖2L2 h1−d/2,1((r/τ)2) 3− d/2 > 0

6

∞X

k=1

‖Dku‖2L2

ϕ2k(k − 1)!
g1−d/2,0((ϕr/2)2) —

Radial basis functions of the tension and regularized splines can be also
obtained with the approach described in [4]. After appropriate scaling, the
functional from Example 4 can be written as

‖D1u‖2L2
+ ‖D2u‖2L2

= (Lu, u)L2 , where L = (−∆)(−∆ + I).

Following [4], we conclude that the radial basis function of the tension spline
is the difference of the radial basis function h̃1−d/2(r2) corresponding to the
operator (−∆) and the radial basis function h1−d/2(r2) corresponding to the
operator (−∆ + I). As a result, we obtain h1−d/2,0(r2).

The radial basis function of the regularized spline is obtained as a linear
combination of 3 functions, because the respective differential operator has the
form L = (−∆)(−∆)(−∆ + I). Therefore, the linear combination will include
2 functions h̃ν(r2) and one function hν(r2) with appropriate values of ν, and
we obtain h1−d/2,1(r2).

Taking into account these considerations, we can conclude that h1−d/2,k(r2)
corresponds to minimization of the functional ‖Dk+1u‖2L2

+ ‖Dk+2u‖2L2
.

Finally, we will give some recommendations on selection an appropriate
radial basis function from the wide range of possible variants. The first question
we should answer is, what is the order of smoothness of functions from the
native space corresponding to 〈φ,m, d〉? This order is strongly connected with
the order of smoothness of the function φ at zero or, in terms of its generic
function f , with a value of n such that |f (k)(0)| < ∞, k = 0, . . . , n.

We introduce the Tailor series residual operator

Tνf(t) = f(t)−
∑

k∈Z+, k<ν

f (k)(0)
k!

tk.

Note that Tνf = f for ν ≤ 0. Note also that Tν h̃ν = h̃ν .
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From (2.10) for ν ≤ 0 and the similarity of the differentiation rules (2.3)
and (2.8), we conclude that Tνhν(t) ∼ h̃ν(t) for small t. Therefore, a hν-spline
constructed with hν(r2) behaves in a small neighborhood of interpolation nodes
as h̃ν-spline and the orders of convergence of these two splines in the domain
of nodes condensation are the same. Similarly, from (3.6) for ν ≤ −n− 1 and
(2.8), (3.4), we conclude that Tν+n+1hν,n(t) ∼ h̃ν+n+1(t)/((n + 1)! 2n+1) for
small t. Therefore, the orders of convergence of hν,n-spline and h̃ν+n+1-spline
are the same. Applying operator Tν to gν , we also conclude that gν-spline
has the similar behavior in a small neighborhood of interpolation nodes as the
g̃ν-spline.

Taking into account the similarity of functions fν , h̃ν , and g̃ν , we obtain
that the functions hν(r2), gν(r2), fν(r2), and hν−n−1,n(r2) produce splines
with similar convergence properties. But the difference between these splines
is essential outside of a neighborhood of interpolation nodes.

The main difference consists in the requirements on the degree of polyno-
mials to be involved in the trend space P. We say that P is the polynomial
trend of order m if P = Pd

m−1. In the case of hν- and gν-splines, the minimal
order of the polynomial trend is zero. For fν-spline it is (bνc + 1)+ and for
hν−n−1,n-spline it is (bνc)+. Although hν- and gν-splines don’t require any
trend, we can use a trend space with hν- and gν-splines. This allows us to
construct hybrid interpolations, for example, by combining a high-order radial
basis function hν(r2) with a low-degree polynomial trend, say with linear func-
tions. Of course, in hν- and gν-spline approximation, the scaling of radial basis
functions is very important, contrary to fν-spline approximation where scaling
has no affect on the interpolating spline constructed.

Both functions hν(r2) and gν(r2) decay exponentially fast as r → ∞:
hν(r2) ≈ rν−1/2e−r and gν(r2) ≈ e−r2

/r2. Therefore, they can be used in
the adaptive greedy algorithm (see, e.g., [15]) as an alternative to finitely sup-
ported radial basis functions.

Interpolation with the radial basis function hν−n−1,n((ar)2) produces inter-
mediate constructions between fν- and fν−1-splines. As a → 0, the hν−n−1,n-
spline tends to fν-spline, and, as a → ∞, the hν−n−1,n-spline tends to fν−1-
spline. Concerning to gν,n-splines, we only can say that they should behave
similarly to interpolation with infinitely-differentiable radial basis functions
such as gaussian, multiquadric, or inverse multiquadric, or any other radial
basis function generated by the formula φ(r) = f(r2 + c2) with nonzero value
of c.

In conclusion, we would like to mention one essential possibility of RBF-
spline approximation which remains out of scope of the theoretical study, but
it is important in practice. Using RBF-spline approximation, we can involve
additional information on approximated function such as first-order breaks or
areas with big gradients. If we know that somewhere in the domain the ap-
proximated function has a peculiarity and this peculiarity could be described
with a given function, we can subtract this function values from approximated
data, then approximate the rest of data with RBF-spline and after that add
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the peculiarity function back to the result. But this method works if we exactly
know the peculiarity function.

In the case when the peculiarity can be described as a linear combination of
functions with unknown coefficients, we can directly add these functions into
the basis of the trend space P and solve the spline-approximation problem with
the extended trend. Of course, to obtain the close system of linear equations, we
should also add corresponding equations to (1.2). We call a spline constructed
with extended trend as spline with external drift by analogy with kriging with
external drift used in geostatistics.
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