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Extremal Scattered Data Interpolation in R3

Using Tensor Product Bézier Surfaces∗
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We consider the problem of extremal scattered data interpolation in R3.
Using our previous work on minimum Lp-norm interpolation curve net-
works, 1 < p ≤ ∞, we construct a bivariate interpolant F with the
following properties:

(i) F is G1-continuous;

(ii) F consists of tensor product Bézier surfaces;

(iii) Each Bézier surface satisfies the tetraharmonic equation ∆4F = 0.
Hence F minimizes the corresponding energy functional.
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1. Introduction

Scattered data interpolation is a fundamental problem in approximation
theory and finds applications in various areas including geology, meteorology,
cartography, medicine, computer graphics, geometric modeling etc. Different
methods for solving this problem were applied and reported, excellent surveys
are [5, 6, 7, 8].

The problem can be formulated as follows: Given a set of points (xi, yi, zi)
∈ R3, i = 1, . . . , N , find a bivariate function F possessing continuous partial
derivatives up to a given order and such that F (xi, yi) = zi, i = 1, . . . , N . One
of the possible approaches to solving the problem is due to Nielson [11]. The
method consists of the following three steps:

Step 1: Triangulation. Construct a triangulation T of the projection points
Vi = (xi, yi), i = 1, . . . , N , in the plane Oxy.

∗This work was supported by the Bulgarian National Science Fund under Grant No.
DFNI-T01/0001.
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Step 2: Minimum norm network (MNN). The interpolant F and its first or-
der partial derivatives are defined on the edges of T so as to satisfy an extremal
property. The obtained minimum norm network is a cubic curve network, i. e.
on every edge of T it is a cubic polynomial.

Step 3: Interpolation surface. The obtained network is extended to F by
an appropriate blending method.

In [1] Andersson et al. pay special attention to Step 2 of the above method –
the construction of the MNN. Using a different approach, the authors give a
new proof of Nielson’s result. They construct a system of simple linear curve
networks called basic curve networks and then represent the second derivative
of the MNN as a linear combination of these basic curve networks. The results
from [1] are extended in [14] to the class of Lp-norms for 1 < p ≤ ∞. The
extremal network is characterized as a solution to a system of equations which is
nonlinear except for the case p = 2 when it is linear. A Newton-type algorithm
for solving such type of nonlinear systems has been proposed in [15] where its
validity and convergence were evaluated.

In this paper we propose a solution to the scattered data interpolation
problem as follows. We consider the minimal rectangular domain D with sides
parallel to the axes of Oxy and define our interpolation surface on D. Instead of
triangulation we use a rectangular mesh in D such that all points Vi = (xi, yi),
i = 1, . . . , N , are vertices of the mesh. We define z-values for the remaining
vertices of the mesh (if any) using an approach from [13] and we add the new
points to our data. Our method allows to build interpolation networks that are
polynomials of degree n on the edges of the mesh where n ∈ N, n ≥ 3, is chosen
in advance. We obtain these networks by setting p = n−1

n−2 and then computing
the MNN with respect to the Lp-norm. Hereafter we assume that n is part of
our input data.

Since the MNN is a polynomial curve network it is natural to require that
the interpolant F is a polynomial surface on any rectangle of D. Although the
MNN is C1-continuous at the vertices Vi, it is preferable and more appropriate
to require G1 continuity for the interpolant instead of C1 continuity since the
latter is parametrization dependent. Two surfaces with a common boundary
curve are called G1-continuous if they have a continuously varying tangent
plane along that boundary curve.

After the MNN is computed we construct an interpolation surface F (x, y)
defined on D with the following properties.

(i) F consists of tensor product Bézier surfaces (patches) of degree n × n.
Each patch is defined on a rectangle of the mesh;

(ii) F is G1-continuous;

(iii) F satisfies the tetraharmonic equation ∆4x = 0 a.e. for (u, v) ∈ D where
x(u, v) :=

(
x(u, v), y(u, v), z(u, v)

)
and ∆ = ∂2

∂u2 + ∂2

∂v2 is the Laplace
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operator. Hence F is a solution to the extremal problem

min
x

∫

D

‖∆4x‖2dudv, (1)

i.e. F is an extremum to the corresponding energy functional.

The harmonic and biharmonic Bézier surfaces were studied by Monterde
and Ugail [9]. Their method was extended to general 4th-order PDE Bézier
surfaces in [10]. Here we use a result by Centella et al. [3] to generate tetrahar-
monic tensor product Bézier surfaces from given boundary curves and tangent
conditions along them.

The paper is organised as follows. In Section 2 we introduce the notation,
present some related results from [1, 14], and propose our Algorithm 1 for
solving the scattered data interpolation problem. In Section 3 we investigate
the G1 continuity conditions for adjacent Bézier patches and prove that they
correctly apply to our problem. The construction of surface F is considered in
Section 4. In Section 5 we present our concluding remarks.

2. Preliminaries and Description of the Algorithm

Let N ≥ 3 be an integer and Pi := (xi, yi, zi), i = 1, . . . , N , be different
points in R3. We call this set of points data. The data are scattered if the
projections Vi := (xi, yi) onto the plane Oxy are different and non-collinear.

Definition 1. A collection of non-overlapping, non-degenerate quadrangles
in R2 is a quadrangulation of the points Vi, i = 1, . . . , N , if the set of the vertices
of the quadrangles coincides with the set of the points Vi, i = 1, . . . , N .

We construct rectangular quadrangulation Q of the points Vi, i = 1, . . . , N ,
using lines parallel to the axes Ox and Oy, as shown in Figure 1.

Figure 1. Rectangular quadrangulation of the projection points Vi, i = 1, . . . , N ,

where • denotes old (given) points, and × denotes new (added) points.

Obviously Q may introduce new vertices. To sample zi-values of the cor-
responding new points Pi we use Renka’s algorithm 790 [13] for constructing
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a smooth bivariate function that interpolates the data. This method achieves
cubic precision, C2 continuity, and is one of the most accurate available. The
software can be found in the TOMS subdirectory of the NETLIB web cite [16].
Furthermore, we suppose that Vi, i = 1, . . . , N , are all vertices of Q.

Let D be the rectangular domain that is the union of all rectangles in Q.
The set of the edges of the rectangles in Q is denoted by E. If there is an
edge in E joining Vi and Vj , it will be referred to by eij or simply by e if no
ambiguity arises.

Definition 2. A curve network is a collection of real-valued univariate
functions {fe}e∈E defined on the edges in E.

With any real-valued bivariate function F defined on D we naturally asso-
ciate the curve network defined as the restriction of F on the edges in E, i.e.
for e = eij ∈ E,

fe(t) := F
((

1− t

‖e‖
)
xi +

t

‖e‖ xj ,
(
1− t

‖e‖
)
yi +

t

‖e‖ yj

)
,

where 0 ≤ t ≤ ‖e‖ and ‖e‖ =
√

(xi − xj)2 + (yi − yj)2.
(2)

In our presentation, according to the context, F will denote either a real-
valued bivariate function or a curve network defined by (2). Let 1 < p < ∞.
We introduce the following class of functions defined on D

Fp :=
{
F (x, y) ∈ C1(D) : F (xi, yi) = zi, i = 1, . . . , N,

f ′e ∈ AC[0, ‖e‖], f ′′e ∈ Lp[0, ‖e‖], e ∈ E
}
,

and the corresponding class of the so-called smooth interpolation curve networks

Cp(E) :=
{
F |E = {fe}e∈E : F (x, y) ∈ Fp

}
.

For F ∈ Cp(E) we denote the curve network of second derivatives of F by
F ′′ := {f ′′e }e∈E . The Lp-norm of F ′′ is defined by

‖F ′′‖p :=

(∑

e∈E

∫ ‖e‖

0

|f ′′e (t)|pdt

)1/p

.

We consider the following extremal problem.

(Pp) Find F ∗ ∈ Cp(E) such that ‖F ∗′′‖p = inf
F∈Cp(E)

‖F ′′‖p.

The degree of all vertices in Q, i.e. the number of the edges in E incident
to each vertex, is four. Let {eii1 , . . . , eii4} be the edges incident to Vi listed
in clockwise order around Vi. A basic curve network Bis is defined on E for
i = 1, . . . , N , and s = 1, 2. The support of the basic curve network Bis consists
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of the two collinear edges eiis and eiis+2 where Bis is linear. More precisely,
Bis is defined by

Bis :=

{
1− t

‖eiis+r
‖ on eiis+r , 0 ≤ t ≤ ‖eiis+r‖, r = 0, 2,

0 on the other edges of E.

Note that basic curve networks are associated with points that have at least
two collinear edges incident to them. Thus, no basic curve network is associated
with the four corner points on the boundary of Q. We denote by NB the set
of pairs of indices is for which a basic curve network is defined. With each
basic curve network Bis for is ∈ NB we associate a number dis defined by
dis = (zis

− zi)/‖eiis
‖+ (zis+2 − zi)/‖eiis+2‖.

The next theorem characterizes the solution to problem (Pp).

Theorem 1 ([1, 14]). Problem (Pp), 1 < p < ∞, has a unique solu-
tion F ∗. The second derivative of the solution F ∗′′ has the form

F ∗′′ =

( ∑

is∈NB

αisBis

)q−1

±
,

where (x)r
± := |x|rsign (x), x, r ∈ R, 1/p + 1/q = 1, and the coefficients αis

satisfy the following system of equations

∫

E

( ∑

is∈NB

αisBis

)q−1

±
Bkl dt = dkl, kl ∈ NB . (3)

The basic curve networks Bis are the univariate B-splines defined along
every line and every row of the quadrangulation Q and the numbers dis are the
univariate second-order divided differences. The solution to (Pp) decomposes
to n1 + n2 solutions to the problem in the univariate case along every row and
every column of Q where n1, n2 are the numbers of the rows and columns of Q,
respectively and n1n2 = N . The problem in the univariate case is solved by
de Boor [2] for 1 < p < ∞. For p = 2 the solution is the natural interpolating
cubic spline. Hence for problem (Pp) the corresponding MNN decomposes to
n1 + n2 solutions to the univariate problem along every row and every column
of Q. For p = 2 we obtain n1 + n2 natural interpolating cubic splines.

To find the solution to (Pp) we can solve either the nonlinear system (3)
using Newton’s method [14] (for p = 2 the system is linear) or the corresponding
n1+n2 problems in the univariate case. In the case where q ∈ N, q > 1, then F ∗

is a C1-continuous polynomial curve network and the degree of the polynomials
is q + 1. Note that n = q + 1. Further on, we consider the polynomials in its
Bézier form. To obtain a polynomial curve network of degree n we can proceed
in one of the following ways.
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1. Solve problem (Pp) for p = q
q−1 = n−1

n−2 .

2. Solve problem (P2). Then F ∗ is a cubic network. We reach the required
degree n after performing degree elevation n − 3 times. The advantage
of this method is that the system we have to solve to obtain F ∗ is linear.

We propose the following Algorithm 1 for solving the scattered data inter-
polation problem.

Algorithm 1 Extremal Scattered Data Interpolation
Input: Scattered data Pi = (xi, yi, zi) ∈ R3, i = 1, . . . , N ; n ∈ N, n ≥ 3.
Output: Interpolation surface F with certain extremal property
Step 1. Construct rectangular quadrangulation Q of the projection points

Vi = (xi, yi), i = 1, . . . , N , using lines parallel to the axes of Oxy.
Step 2. Add new input points to the data if necessary.
Step 3. Solve (Pp) for p = n−1

n−2
.

Step 4. For each rectangle in Q find nearest to the boundary control points
that satisfy G1 continuity conditions.

Step 5. Find the remaining inner control points so that the tensor product
Bézier surface for each rectangle satisfies the tehraharmonic
equation ∆4F = 0.

Step 4 and Step 5 of Algorithm 1 are discussed in detail in Section 3 and
Section 4, respectively.

3. The G1 Continuity Conditions

3.1. Control Points That Are Nearest to a Boundary Curve

Let B1 and B2 be tensor product Bézier patches whose common boundary
is the polynomial q(t) of degree n, n ∈ N. Let

q(t) =
n∑

i=0

qiB
n
i (t),

where qi, i = 0, . . . , n, are the control points of q(t), and Bn
i (t) are the Bernstein

polynomials defined for 0 ≤ t ≤ 1 as follows:

Bn
i (t) :=

(
n

i

)
ti(1− t)n−i,

(
n

i

)
=

{
n!

i!(n−i)! , for i = 0, . . . , n,

0, otherwise.

Let pi and ri, i = 0, . . . , n, be nearest to the boundary control points of B1

and B2, respectively. Let us degree elevate q(t) to a polynomial of degree n+1
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and denote the degree elevated control points by q̂i, i = 0, . . . , n + 1. Then

q(t) =
n+1∑

i=0

q̂iB
n+1
i (t),

where
q̂i =

i

n + 1
qi−1 +

(
1− i

n + 1

)
qi, i = 0, . . . , n + 1. (4)

Farin [4] proposed the following sufficient conditions for G1 continuity between
B1 and B2:

i

n + 1
di,n+1 +

(
1− i

n + 1

)
di,0 = 0, i = 0, . . . , n + 1, (5)

where

di,0 = α0pi + (1− α0)ri −
(
β0q̂i + (1− β0)q̂i+1

)
,

di,n+1 = α1pi−1 + (1− α1)ri−1 −
(
β1q̂i−1 + (1− β1)q̂i

)
,

and 0 < α0, α1 < 1. Next we shall prove that system (5) always has a solution.
From (5) for i = 0 and i = n + 1 we obtain

d0,0 = 0 ⇒ α0p0 + (1− α0)r0 = β0q̂0 + (1− β0)q̂1, (6)
dn+1,n+1 = 0 ⇒ α1pn + (1− α1)rn = β1q̂n + (1− β1)q̂n+1. (7)

Points q̂0, q̂1, p0, and r0 are coplanar since they lie on the tangent plane
at q̂0. Hence α0 and β0 are uniquely determined from (6) by the intersection
point q̂0 of segments p0r0 and q̂0q̂1. We have

q̂0 ≡ q0 = α0p0 + (1− α0)r0 = β0q̂0 + (1− β0)q̂1 ⇒ β0 = 1.

Analogously, α1 and β1 are uniquely determined by (7) and we have

q̂n+1 ≡ qn = α1pn + (1− α1)rn = β1q̂n + (1− β1)q̂n+1 ⇒ β1 = 0.

Therefore system (5) has n equations for i = 1, . . . , n and 2(n − 1) unknowns
p1, r1, . . . ,pn−1, rn−1. The augmented matrix M of (5) becomes



α0 1− α0 0 0 0 0 · · · 0 0 s1

2
n−1

α1
2

n−1
(1− α1) α0 1− α0 0 0 · · · 0 0 s2

0 0 3
n−2

α1
3

n−2
(1− α1) α0 1− α0 · · · 0 0 s3

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · nα1 n(1− α1) sn




where

s1 =
n + 1

n
q̂1 − 1

n
(α1 − α0)(p0 − r0)− 1

n
q̂0,

si =
n + 1

n− i + 1
q̂i, i = 2, . . . , n− 1,

sn = (n + 1)q̂n − α0pn − (1− α0)rn.

(8)

Next we prove the following
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Lemma 1. System (5) with augmented matrix M always has a solution.

Proof. Since F ∗ is a polynomial function on every e ∈ E then the abscissae
of points q̂i, i = 1, . . . , n, are uniformly distributed. Moreover, B1 and B2

are rectangles and therefore α0 = α1. Then we have s1 = n+1
n q̂1 − 1

n q̂0 and
sn = (n + 1)q̂n − q̂n+1. By Gauss elimination the elements of the first row of
M become zeros and the right hand side becomes

n+1∑

i=0

(−1)i

(
n + 1

i

)
q̂i.

Using (4) we obtain consecutively

n+1∑

i=0

(−1)i

(
n + 1

i

)
q̂i =

n+1∑

i=1

(−1)i

(
n + 1

i

)
i

n + 1
qi−1

+
n∑

i=0

(−1)i

(
n + 1

i

)
n− i + 1

n + 1
qi

=
n+1∑

i=1

(−1)i

(
n

i− 1

)
qi−1 +

n∑

i=0

(−1)i

(
n

i

)
qi

=
n∑

i=0

(−1)i+1

(
n

i

)
qi +

n∑

i=0

(−1)i

(
n

i

)
qi

= 0.

Hence system (5) has n − 1 linearly independent rows and 2(n − 1) columns.
Moreover it is compatible and therefore has a solution. ¤

3.2. The Vertex Enclosure Problem

Let q0 = Vi for some i where Vi is an inner vertex of Q. Let Bk, k = 1, . . . , 4,
be the four Bézier patches incident to q0 and qk(t) =

∑n+1
i=0 q̂k

i Bn+1
i (t), k =

1, . . . , 4, be the four curves emanating from q0 with corresponding αk
i , βk

i ,
i = 0, 1. Let us denote λ := α1

0 = 1− α3
0 and µ := α2

0 = 1− α4
0. We also have

αk
0 = αk

1 , βk
0 = 1, βk

1 = 0, k = 1, . . . , 4. Let tk be nearest to q0 inner control
point of Bk, k = 1, . . . , 4, see Figure 2.

We apply (5) for i = 1 to Bk, k = 1, . . . , 4, and obtain the following linear
system for tk, k = 1, . . . , 4,

(1− µ)t1 +µt2 = q2
1

λt2 +(1− λ)t3 = q3
1

µt3 +(1− µ)t4 = q4
1

λt1 +(1− λ)t4 = q1
1.

(9)
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t1t2

t4t3

q0

q̂21

q̂41

q̂11q̂31

Figure 2. The vertex enclosure problem: points ti, i = 1, . . . , 4, must satisfy a

linear system of equations.

The existence of a solution to system (9) is known as the vertex enclosure
problem, see [12]. Next, we show that system (9) always has a solution.

By Gauss elimination the augmented matrix of (9) becomes



1− µ µ 0 0 q2
1

0 λ 1− λ 0 q3
1

0 0 µ 1− µ q4
1

0 0 0 0 (1− µ)q1
1 − λq2

1 + µq3
1 − (1− λ)q4

1




.

System (9) has a solution if and only if (1− µ)q1
1 − λq2

1 + µq3
1 − (1− λ)q4

1 = 0
which is equivalent to (1 − µ)q1

1 + µq3
1 − (λq2

1 + (1 − λ)q4
1) = q0 − q0 = 0.

Hence (9) always has a solution.

4. Construction of the Bézier Patches

4.1. Choosing Nearest to the Boundary Control Points

First, we shall prove the following

Lemma 2. Points pi, ri, i = 1, . . . , n − 1, are a solution to system (5) if
and only if point qi divides segment [pi, ri] in ratio 1−α : α for i = 1, . . . , n−1,
see Figure 3.

Proof. Let pi, ri, i = 1, . . . , n− 1, be a solution to system (5). From (4) we
have for i = 0, . . . , n + 1,

(
q̂i − i

n + 1
qi−1

) n + 1
n− i + 1

= qi ⇒ q̂i − i

n− i + 1
(qi−1 − q̂i) = qi. (10)

Since di,0 = αpi + (1 − α)ri − q̂i and di,n+1 = αpi−1 + (1 − α)ri−1 − q̂i

then it follows from (5) that

i

n + 1
(
αpi−1 + (1− α)ri−1 − q̂i

)
+

n− i + 1
n + 1

(
αpi + (1− α)ri − q̂i

)
= 0.
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p0 p1

r0 r1

q0 q1

pn−1 pn

rn−1 rn

qn−1 qn

Figure 3. Point qi divides segment [pi, ri] in ratio 1− α : α for i = 0, . . . , n.

Therefore

αpi + (1− α)ri = q̂i − i

n− i + 1
(
αpi−1 + (1− α)ri−1 − q̂i

)
. (11)

We have q̂0 = q0 = αp0 +(1−α)r0. Suppose that αpi−1 +(1−α)ri−1 = qi−1.
Then from (11) and (10) we obtain αpi+(1−α)ri = q̂i− i

n−i+1 (qi−1−q̂i) = qi.
It follows consecutively that αpi +(1−α)ri = qi for i = 0, . . . , n+1. Therefore
point qi divides segment [pi, ri] in ratio 1− α : α for i = 0, . . . , n + 1.

The proof of the other part of the lemma is straightforward. ¤

Obviously there are many possibilities to choose nearest to the boundary
control points. We choose pi and ri for i = 1, . . . , n − 1 in the following way.
We translate segments [p0, r0] and [pn, rn] to segments [p′i, r

′
i] and [p′′i , r′′i ]

respectively which pass through qi in such a way that q0 → qi and qn → qi.
Then we choose pi = (1− i

n )p′i + i
np′′i and ri = (1− i

n )r′i + i
nr′′i .

4.2. Computing the Remaining Control Points

It remains to compute the rest of the control points for each tensor product
Bézier patch Bi so that Bi is a solution to the tetraharmonic equation. We use
a result by Centella et al. [3] who proved the following theorem.

Theorem 2 ([3]). Given the boundary control points and those adjacent
to them of an (n + 1)× (n + 1) net there exists a unique tetraharmonic Bézier
surface whose control net has those points as boundary control points and those
adjacent to them.

To prove Theorem 2 Centella et al. [3] used the standard polynomial power
basis instead of Bernstein basis. They proved that a polynomial surface

p(u, v) =
n∑

i,j=0

aij

i!j!
uivj , aij ∈ R3,
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satisfies the tetraharmonic equation ∆4p(u, v) = 0 if and only if

ai+8,j + 4ai+6,j+2 + 6ai+4,j+4 + 4ai+2,j+6 + ai,j+8 = 0, i, j ∈ N, (12)

where aij = 0 for i > n or j > n.
We proceed as follows. First, we find the unique solution to (12). Then

we convert the polynomial basis to Bernstein basis and compute the remaining
control points of the Bézier patch. Using Algorithm 1 we construct a G1-
continuous surface F (u, v) defined on D which consists of tensor product Bézier
patches of degree n × n and interpolates F ∗. The next theorem states the
extremal properties of F .

Theorem 3. The interpolation G1-continuous surface F (u, v) consists of
tensor product Bézier patches of degree n × n and satisfies the tetraharmonic
equation ∆4x = 0 for (u, v) ∈ D \ E. Consequently F is a solution to the
extremal problem (1) and hence F is an extremum to the energy functional
Φ(x) = 1

2

∫
D
‖∆4x‖2dudv.

Remark 1. For n = 3 we obtain all control points from the G1 continuity
conditions. The corresponding bicubic Bézier patches satisfy the tetraharmonic
equation. For n = 4 we have to find exactly one inner control point from (12)
for each biquartic Bézier patch.

Remark 2. To obtain G1 continuity we do not need the adjacent control
points to the boundary of Q. Nevertheless we need them to solve system (12),
i.e. to find the solution to the tetraharmonic equation.

5. Conclusions and Future Work

We have presented an algorithm for interpolating scattered data in R3 based
on MNN and G1-continuous tensor product Bézier patches of degree n×n where
n can be chosen in advance. The patches satisfy the tetraharmonic equation and
consequently the obtained interpolation surface minimizes the related energy
functional. Our method extends to the case where the Bézier patches satisfy
the nonhomogeneous biharmonic equation ∆2F = w where w is a biharmonic
load, i.e. ∆2w = 0, see [3]. It would be instructive to compare the two types
of interpolation surfaces.

It is an open question how to compute G1-continuous tetraharmonic trian-
gular Bézier patches in the case where the underlying mesh is a triangulation.
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