CONSTRUCTIVE THEORY OF FUNCTIONS, Sozopol 2013
(K. Ivanov, G. Nikolov and R. Uluchev, Eds.), pp. 265-273
Prof. Marin Drinov Academic Publishing House, Sofia, 2014

On Approximation by Algebraic Version
of the Trigonometric Jackson Integrals Gg n
in Weighted Integral Metric

TEODORA ZAPRYANOVA

We characterize the errors of the algebraic version of trigonometric Jack-
son integrals G, » in weighted integral metric. We prove direct and strong
converse theorem in terms of a weighted K-functional.
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1. Introduction

We study linear approximation process together with the characterization
of the rate of convergence of the algebraic version of the trigonometric Jackson
integrals G, defined by

T

Gsn(f,z) = f(cos(arccosx + v)) K (v) dv,

—T

where

K, n(v) = MS,n<SSi§1(Z:)/22)))28, /_7; K n(v)dv=1.

In [4, 5] we have established the equivalence between the approximation error
in uniform norm || - || of the operator G ,,, a proper K-functional and a proper
modulus of smoothness

1 1
||f - Gs,nfll ~ K<f7 ﬁ; C[_la 1]v 027 H) ~ QQ(f> E)
In this equivalence the K-functional is defined for every f € C[—1,1] and ¢t > 0

by
K(f,t;C[-1,1],C% H) := inf{|| f — gl| + t[|Hg| : g € C*},
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where C? = C?[—1, 1], the differential operator is given by

d
H:=(H1)?,  (Hig)(z):=V1-2>—g(x)
and the modulus is defined by

Do (f,t) = Oilllzgt |l f (cos(arccos(-) + h)) + f(cos(arccos(-) — h)) — 2f()]|-

The notation A(n) ~ B(n) means that there exists a positive constant ¢ inde-
pendent of n such that £B(n) < A(n) < cB(n). The equivalence || f — G, f|| ~
K(f,25;C[—1,1],C? H) consists of a direct inequality and a strong converse
inequality of type A in the sense of [2]. Ditzian and Ivanov have shown
that the converse inequality follows from several inequalities of Bernstein and
Voronovskaya type. We apply their method.

Let L,(u)[—1,1], 1 < p < o0, u(z) = (1 — 22)~Y/(P) be the weighted L,
space with the norm

1 1/
o = 1 lesosn = (| u@rp@ras) ™

The approximation error ||f — Gsnfllp,u of Gsr in Ly(u)[—1,1] will be com-
pared with the K-functional, which for every f € L,(u)[—1,1] and t > 0 is
defined by

K(f,t; Ly(u)[-1,1], c?, H) = inf{”f = 9llpu + tIHgllpu = 9 € 02}'
Our main result states the following:

Theorem 1. For every f € L,(u)[—1,1], 1 <p < o0, and s,n € N, s > 3,
we have

1
||f - Gs,anLp(u)[—l,l] ~ K(.fv ﬁ?LP(U)[ilv 1]a027H)-

In Section 2 we state and prove some auxiliary lemmas. The proof of
Theorem 1 is given in Section 3.

2. Auxiliary Lemmas

The convolution between a summable on R function F' and a 27-periodic
function G is given by

F«G(x) = /_00 F(z —v)G(v) dv.

The following three lemmas follow immediately by Fubini’s theorem and
Minkowski’s inequality.
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Lemma 1. Let f be summable on R and g € L,[—m, 7] be a 2w-periodic
function, 1 < p < co. Then the following holds true:

Hf*gHLp[—‘fr,‘fr] < Hf||L1(—DO,DO)”g”Lp[—‘fr,ﬂ]'

Lemma 2. For a 2m-periodic integrable on [—m, 7] function g and every
v # 0 we have
1 z+v
L], =l
5 [ wena], = lallnn

v

Lemma 3. For a 2m-periodic function g € Ly[—m, 7], 1 < p < oo, and
every v # 0 we have

12 [ g

v < ||g||Lp[77r,7r]-

Ly[—m,7]
Let us set

Y :={geC[-1,1] : Hige C[-1,1], Hg € C[-1,1], Hig(+1) =0}, (1)
Z:={g€Y : Hjge C[-1,1], H?g € C[-1,1], H}g(£1) = 0}. (2)
The following lemma is proved in [5, p. 402].

Lemma 4. Let Y be the space defined in (1), g €Y and g(o) := g(coso).
Then g € C%(R) and g (o) = Hg(cosa) for o € R.

The last statement in this section is

Lemma 5. Let Y be the space defined in (1). Then for every function
feLy(u)[-1,1] and t > 0, we have

K(f,t; Ly(u)[-1,1],Y, H) = K(f,t; L,(v)[-1,1],C%, H).

Proof. From C? C Y we see that
K(f,t; Lp(w)[-1,1],Y, H) < K(f,t; Ly(u)[1,1],C*, H).
In order to prove the opposite inequality
K(f.t: Ly(u)[~1,1],C* H) < K(f.t; Ly(u)[~1,1],Y, H)

it is sufficient to show (see [3, Lemma 2, p. 116]) that for every g € Y and
£ > 0 there exists G € C? such that

G = 9gllz, -1, <& I1HG L, w)-1,1 < 1HgllL, (w)[-1,1 + &
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Let g(x) € Y. We put « = cos o and consider g(o) := g(cosc). Since g(zr) € Y,
g(s) € C? (see Lemma 4). We use the Jackson integrals of the following type

Jn(g,0) := /7r glo +v)Ky 5 n(v)dv = /Tf G(V)K1 s n(0 —v)dv, (3)

—T —T

where s > 0, n > 0 and

T

Ky sn(v) = )\s,n<W)2s, Ky sn(v)dv=1 (4)

for m = [n/s] + 1.

. 2 m—1
Since ﬁ(%) =1+ Y (1—k/m)cosko, it follows that K, is
k=0

an even non-negative trigonometric polynomial of degree at most n. Moreover,
Jn(g,0) is a trigonometric polynomial of degree at most n, which is even as g
is even. From Jackson’s theorem (see [1, Chap. 7, Theorem 2.2]) we get

L. (5)

n?
By the substitution o = arccosz in J,,(g, o) we obtain an algebraic polynomial,
which is the desired function from C2. We set

1
0.7 = O(

Hg_ Jn(ﬁ)HL;,[O,ﬂ'] < sz(g, g)

G(x) = Jn(g, arccos x).

From |g — GllL, (w)-1,1] = 19 = Jn(9)ll L, 0,7 and (5) we get

Ly

1
lg — GllL,w)-1,1) < cwa(g, E)LP[O,W] = O(ﬁ

From (3) and (4) it follows that

2 iy T
& Go) = / 7(0—0) K1 on(v) dv = / 7 () Kron(0—0) dv = Jn(§", ).

2
do — -7

Using the Jackson theorem, we get

N N -, 1
5" = Tn(@")zyt0m < cw2(”s )iyi0m: v

Since (Hg)(x) = %ﬁ(a) and (HG)(x) = %Jn@,a), inequality (6) implies

-, 1
|Hg — HG||L, (u)-1,1) < cwa(g", ﬁ)L,,[o,ﬂy

For a given € > 0 we choose n such that (1 + ¢)wa(g”, %)Lp[o,w] < ¢ and
(14 c)wa(g, £) 1,0, < € to obtain
IHG L, w1, < [Hgllz,w)-1,1 +€ and |G —gllL, )-11 <e-

This completes the proof of the lemma. O
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3. Proof of Theorem 1

In view of Lemma 5 the theorem will be proved if we show that

17 = G Sl ~ K(fy =53 Lyl =1, 1), Y, H).

First we prove the converse result

1
K(fv E?LP(U)[_L 1]aY7H) < C”f - Gs,anLp(u)[—l,l]v

which is a strong converse inequality of type A in terms of [2]. We utilize [2,
Theorems 3.1 and 4.1] with

Qa=Gsn, Df=Hf,  (f)=H*fllL, w11

1 T
)‘(n) = 5/ ’U2Ks7n(v) dv ~ n_2 for s > 2,

—T

(7)
1 ™
A(n) = 5/ VK (v)dv ~n™? for s > 3.

—T

The result needed for inequality (3.3) from Theorem 3.1 in [2] with M =1
is given by

1GsnfllL, -1, < Iz, =11 (8)

In order to prove (8), we set f(z + v) := f(cos(z + v)) = f(cos(arccosz + v)),
z = arccos x, and recall the representation

T us

(Gsnf)(z) = 3 f(cos(arccosx + v)) K, (v) dv = flz+ V) K n(v) dv

—Tr
T

f(z = 0)Kon(v)dv = [ K(2) = K * [(2) = (Gonf)(2),

—T

where

otherwise.
We have

1Gsnflle, -1 = [Gonll o0
Using Lemma 1 as ]?and C:’&nf are even 2m-periodic functions, we obtain
Héﬁ»anLp[o,w] = || K = ]?HLP[O,W]
<Kz (—o000) | F1]

to complete the proof of (8).

o = HfHLp[o,ﬂ] = £, -1,
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Let Z be the space defined in (2). We will show now that for f € Z the
following Voronovskaya-type estimate holds true:

1f = Gsnf + A H fllL, )-1.1) < A (n)®(f), (9)

with ®(f) = | H?f| 1, (u)-1.1] = }|f<4>||Lp[0m] and A(n), Ai(n) defined in (7).
Inequality (9) will serve for inequality (3.4) from Theorem 3.1 in [2]. We note
that G, f € Z as G5, f is an algebraic polynomial. Let f € Z. From Z C Y

and Lemma 4 it follows that fe C?(R). We apply Lemma 4 for Hf to obtain
that f € C*(R). We have

F@) = (Gonf) (@) + A H f(2) = [(2) = (Gonf)(2) + A0) " (2)

= [ [ = Fet o+ 52 P Kl

Expanding f(z + v) by Taylor’s formula and using that ffﬁ VK, p(v)dv = 0,
[T 03K, ,(v) dv =0, we obtain

z+v
F(@)— (G ) (@) +A /_ / ST (40— dE K (v) do

We recall that f®) (&) = (H2f)(cos€). As for £ € [z,2+v], z4+v—& € [0,v]
and the sign of f;+v |f®)(€)| d€ is constant and coincides with the sign of v (if
the integral is not zero), via Minkowski’s inequality we get

1= Gond + M H sy o1 = llf — Gonf A0 0
z+v 1

}1/p
< ;!{/0 (/_ﬂ U4Ks,n(v)‘?1}/:Jrv‘fm(g)’df‘dv)pdz}l/p

1 4 1 [*F
<3 _ﬂv4K5,n(U)H/Z 7o) |d§‘

v

(2 + v — € deK o (v) du|

p[OTl'

s

viK

S3 . Sv"(v)HfM)HL},[O,W]dU
= A (n)@(f).

In the last inequality above we have applied Lemma 3 to the even 27-periodic
. (4 . 1 rzt+v| 74 74 .
function f* to obtain H; fz |f( )(f)‘dfnLP[Om] < Hf( )HLP[O,ﬂ']' This estab-
lishes (9).
To obtain results corresponding to (3.5) and (3.6) from Theorem 3.1 in [2],
we need a weighted Bernstein-type inequality for the power of the operator
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G5 like inequality (6.10) in [2]. We use representations

Con)@) = [ T~ 0)Kon(w)do = F o K(2) = K « J2) = (@) (2)
Gon(Gsnf)(@) = K * K  f(2) = Ky * f(2),

(G )(2) = K % Ky f(2) = K * f(2),
(Km = K x Kyp—q for m=2,3,...), to obtain
HiG™ f = —{K'} % Kpp1 % [,

where

d /sin(nv/2)\2s |

5,0 7\ i (0 /0 f < 7

o= [P i<
0, otherwise.

We now estimate the action of H; on the m-th degree G of the operator.

Using Lemma 1, we obtain
| H: G, f“L,,(u) —1,1) = [{K"} * K- 1*f||L [0,7]
<K} 5 Kl oo |12, 0.0
= [{E"} % K1l 1. (~00,00) [1f |2, (w) 1,11
We have proved in [4, Assertion 1.2] that

s,n

n
I{E} 5 Kol 1y (—o0,00) < €=

3

and therefore
n
1 G |, -1 < €M 2 ot-1.0 (10)

As G, commutes with the operator Hy, using estimation (10) we observe that

||H2G4mf||L w1y < en'mTHHGT| L oy

o (1)

1
2m
|HG? f||Lp (w=11] = cn?m” ||fHLp(u)[ 11 = BW”JCHLP(u)[—l,l]- (12)

Estimations (11) and (12) correspond to (3.5) and (3.6) from Theorem 3.1
in [2]. To match the conditions of Theorem 4.1 in [2], we need the constant A
in (11) to satisfy A < 1. This is true for large m because

A= anm_lL(n)

~em <1
)\(n) cm <
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From (8), (9), (11) and (12) we obtain

(f7 7 ( )[_17 1]7KH) S Cllf - Gs,anLp(u)[fl,l]'

To prove the direct result, we need (8) and the inequality

1
lg — GsngllL, wy-1,1] < Cﬁ”HgHLp(u)[fl,l] forgeY (13)

to be satisfied (see Theorem 3.4 in [2]).
Let g € Y. We set g(z + v) := g(cos(z + v)) = g(cos(arccosz + v)),
z = arccos z. We have

T

(Gang — 9)(@) = / (3 +v) = §()] Kan(v) do.

—T

Expanding g(z + v) by Taylor’s formula (note that ¢ € C?(R) by Lemma 4)

z+v
3z + ) — §(2) = o7 (2) + / 7(6) (= +v - €) de,

and using that [* vK,,(v) dv =0, we obtain

(Gamg — 0) // (€)= +v— ) Ky (v) du

We recall that §"”(§) = (Hg)(cos&). Since z +v — & € [0,v] for € € [z,z + v]
and the sign of | VUG (€)| d€ is constant and coincides with the sign of v (if
the integral is not zero), we get

lg = Gangllz, -1 = 19 = Gl jo.m

") (z+v—E) €K, (v) dv pdz}1/p

- 0
AL ([ ml]t [ @) e}

Using Minkowski’s inequality, we estimate the last quantity as follows:

(] ol | e dgjdu)”dz}”p

—T

s 1 Z
< 2Ksn Hf/ ~//
<[ erao|; [

g/_” e 17”1, 0.y 0

T

L[Oﬂ'

<c

|~//

131, 0

= CﬁHH!JHLP(u)[—LH.
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In the second inequality above we have applied Lemma 3 to the even 27-periodic
. ~ . 1 z+v|~ ~ .

function g” to obtain H; IR {g”(f)‘dﬁHLp[oﬂ < Hg//HLp[o,w]‘ This proves (13)

and completes the proof of the direct result

1
||f - Gs,anLp(u)[—l,l] S CK(fa E,LP(U)[fL 1]3027H)'

This concludes the proof of Theorem 1. O
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