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Complete Asymptotic Expansions for
Bernstein-Chlodovsky Polynomials

Ulrich Abel and Harun Karsli

1. Introduction

Let f be a real function on [0,∞) which is bounded on every finite subin-
terval of [0,∞). For b > 0, we define the function fb on [0, 1] by fb(t) = f(bt).
Furthermore, we put

‖f‖b = sup
0≤t≤b

|f(t)|.

Obviously, we have ‖f‖b = ‖fb‖1.
The Bernstein-Chlodovsky polynomials are defined by

(Cn,bf)(x) = (Bnfb)
(x

b

)

,

where Bn stands for the Bernstein polynomials

(Bnf)(x) =

n
∑

ν=0

pn,ν(x)f
( ν

n

)

,

with Bernstein basis polynomials

pn,ν(x) =

(

n

ν

)

xν(1 − x)n−ν , 0 ≤ ν ≤ n.

Obviously, we have Cn,1 ≡ Bn.

In the following we suppose that parameter b depends on n, i.e., b = bn.
Since the difference between two nodes of Cn,b is at least b/n, it is clear that
the condition bn = o(n) as n → ∞ is necessary for having convergence of
(Cn,bnf)(x) to f(x). Throughout the paper we assume that the sequence (bn)
satisfies

bn > 0, lim
n→∞

bn = ∞, and lim
n→∞

bn
n

= 0. (1)
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These polynomials were introduced by Chlodovsky [8] in 1937 in order to
approximate functions on infinite intervals. He showed that under condition
(1), if a function f satisfies

lim
n→∞

exp
(

− σn

bn

)

‖f‖bn = 0 for every σ > 0, (2)

then
lim
n→∞

(Cn,bnf)(x) = f(x)

at each point x of continuity of f . Moreover, he proved convergence in each
continuity point for the wide class of functions f satisfying the growth condition
f(t) = O(exp(tp)) as t→ ∞, if the sequence (bn) satisfies the condition

bn = O
(

n1/(p+1+η)
)

, (n→ ∞), (3)

for an arbitrary small η > 0. For more results on Chlodovsky operators see the
survey article [12] by Karsli.

The purpose of this note is a pointwise complete asymptotic expansion for
the sequence of Bernstein-Chlodovsky operators of the form

(Cn,bnf)(x) ∼ f(x) +

∞
∑

k=1

c
[bn]
k (f, x)

( bn
n

)k

, (n→ ∞),

for sufficiently smooth functions f satisfying f(t) = O(exp(αtp)) as t → ∞,
provided that the sequence (bn) satisfies bn = o

(

n1/(p+1)
)

as n → ∞. Note

that the latter condition is slightly weaker than (3). The coefficients c
[bn]
k (f, x),

which depend on f and bn, are bounded with respect to n.
The latter formula means that, for each fixed x > 0 and for all positive

integers q,

(Cn,bnf)(x) = f(x) +

q
∑

k=1

c
[bn]
k (f, x)

(bn
n

)k

+ o
((bn

n

)q)

, (n→ ∞).

Explicit expressions for coefficients c
[bn]
k (f, x) in terms of the Stirling numbers

were given by Karsli [13]. He derived the asymptotic expansion if the function
f satisfies condition (2) for every σ > 0.

Finally, we announce the corresponding result for the Durrmeyer variant of
the Bernstein-Chlodovsky operators given by

(

C̃n,bf
)

(x) = (Mnfb)
(x

b

)

,

where Mn, n ∈ N0, are the Bernstein-Durrmeyer operators

(Mnf)(x) =

n
∑

ν=0

pn,ν(x)(n+ 1)

∫ 1

0

pn,ν(t)f(t) dt, x ∈ [0, 1].
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2. The Main Result

For real constants α ≥ 0 and p ≥ 0, let Wα,p denote the class of functions
f ∈ C[0,∞) satisfying the growth condition

f(t) = O(exp(αtp)), (t→ ∞).

Note that in the special case p = 0 the class Wα,0 consists of the bounded
continuous functions on [0,∞). Since W0,p and Wα,0 coincide, we consider
only the case α > 0.

Recall that the Stirling numbers s(n, k) and S(n, k) of the first and the
second kind, respectively, are defined by the relations

zn =
n
∑

k=0

s(n, k)zk and zn =
n
∑

k=0

S(n, k)zk, (z ∈ C),

where z0 = 1 and zn = z(z − 1) · · · (z − n + 1), for n ∈ N, denote the falling
factorials.

The following theorem is our main result.

Theorem 1. Let α, p ≥ 0. Suppose that the function f ∈ Wα,p is 2q-
times differentiable at the point x > 0. Let (bn) be a sequence of positive reals

satisfying the growth condition

bn = o
(

n1/(p+1)
)

, (n→ ∞). (4)

Then, for any positive integer q, the Bernstein-Chlodovsky operators Cn,bn pos-

sess the asymptotic expansion

(Cn,bnf)(x) = f(x) +

q
∑

k=1

c
[bn]
k (f, x)

(bn
n

)k

+ o
((bn

n

)q)

, (n → ∞).

where

c
[bn]
k (f, x) = O(1), (n→ ∞). (5)

The coefficients c
[bn]
k (f, x) have the explicit representation

c
[bn]
k (f, x) =

2k
∑

s=k

f (s)(x)

s!

s
∑

j=0

a(k, s, j)bj−k
n xs−j

with

a(k, s, j) =

s
∑

r=max{j,k}

(−1)s−r

(

s

r

)

s(r − j, r − k)S(r, r − j). (6)

Remark 1. Note that the coefficients c
[bn]
k (f, x) depend on n but are bounded

with respect to n.
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Remark 2. Our assumption (4) on (bn) is weaker than Chlodovsky’s con-
dition (3).

Remark 3. Explicit formulas for the coefficients c
[bn]
k (f, x), for k = 1, 2, 3,

can be found in [13, p. 1220].

Remark 4. Since c
[bn]
1 (f, x) = f ′′(x)

2!bn
x(bn − x), the special case q = 1, i.e.,

(Cn,bnf)(x) = f(x) +
f ′′(x)

2n
x(bn − x) + o

(bn
n

)

, (n→ ∞),

contains the Voronovskaja-type result

lim
n→∞

n

bn

(

(Cn,bnf)(x)− f(x)
)

=
1

2
xf ′′(x) (7)

by Albrycht and Radecki [6]. They proved the latter formula for the subclass
of functions f satisfying the growth condition (2).

Remark 5. When taking bn = 1 for all n ∈ N, the expansion in Theorem 1
reduces to the (pointwise) complete asymptotic expansion

(Bnf)(x) ∼ f(x) +

∞
∑

k=1

c
[1]
k (f, x)n−k + o(n−q), (n→ ∞),

for the classical Bernstein polynomials, which is valid for all bounded func-
tions f : [0, 1] → R being sufficiently smooth in x ∈ [0, 1]. Note that the
Voronovskaja formula

lim
n→∞

n
(

(Bnf)(x)− f(x)
)

=
1

2
x(1 − x)f ′′(x)

is different from Eq. (7).

3. Auxiliary Results and Proof of the Main Theorem

Our starting-point is an explicit representation of the central moments of
the Bernstein polynomials in terms of Stirling numbers of the first and second
kind. In the following we write em(x) = xm, m ∈ N0, for the m-th monomial
and ψx(t) = t− x for x ∈ R.

Lemma 1. The central moments of the Bernstein polynomials possess the

representation

(

Bnψ
s
x)(x) =

s
∑

k=⌊(s+1)/2⌋

n−k
s
∑

j=0

a(k, s, j)xs−j , (s = 0, 1, 2, . . .),

where coefficients a(k, s, j) are given by Eq. (6).
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For a proof see, e.g., [1].

Lemma 2. The central moments of the Bernstein-Chlodovsky operators

possess the representation

(

Cn,bψ
s
x

)

(x) =

s
∑

k=⌊(s+1)/2⌋

n−k
s
∑

j=0

a(k, s, j)bjxs−j ,

where coefficients a(k, s, j) are given by Eq. (6). Furthermore, for k ≤ s ≤ 2k,
there holds

s
∑

j=0

a(k, s, j)bjnx
s−j = O

(

bkn
)

, (n → ∞). (8)

Proof. We have

(

Cn,bψ
s
x

)

(x) =
n
∑

ν=0

pn,ν

(x

b

)(

b
ν

n
− x
)s

= bs
n
∑

ν=0

pn,ν

(x

b

)(ν

n
− x

b

)s

= bs
(

Bnψ
s
x/b

)

(x

b

)

and the first part of the lemma follows by Lemma 1. For the second part, we
assume that j > k. Then, by Eq. (6),

a(k, s, j) =

s
∑

r=j

(−1)s−r

(

s

r

)

s(r − j, r − k)S(r, r − j) = 0,

because s(r − j, r − k) = 0, if r − j < r − k. This proves Eq. (8). �

As a consequence we obtain the following result:

Lemma 3 (Butzer and Karsli [7]). For s = 0, 1, 2, . . ., there holds

(

Cn,bnψ
s
x

)

(x) = O
((bn

n

)⌊(s+1)/2⌋)

, (n→ ∞).

A crucial tool is the following estimate due to Bernstein (see [14, Theo-
rem 1.5.3, p. 18ff]).

Lemma 4 (Bernstein). For 0 ≤ t ≤ 1, the inequality

0 ≤ z ≤ 3

2

√

nt(1− t)

implies
∑

|ν−nt|≥2z
√

nt(1−t)

pn,ν(t) ≤ 2 exp(−z2).
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The next lemma presents a form of Lemma 4, which is more useful for
application to Chlodovsky operators.

Lemma 5 (Albrycht and Radecki [6]). If b > 0 and 0 < δ < x ≤ 2b/3,
then there holds

∑

|b ν

n
−x|≥δ

pn,ν

(x

b

)

≤ 2 exp
(

− nδ2

4xb

)

.

Since the paper [6] is hardly available, for sake of completeness we give a
proof.

Proof of Lemma 5. By putting t = x/b in Lemma 4, we have
∑

|ν−n x

b
|≥2z

√

n x

b

(

1− x

b

)

pn,ν

(x

b

)

=
∑

|b ν

n
−x|≥2z

√
n−1x(b−x)

pn,ν

(x

b

)

≤ 2 exp(−z2)

if 0 ≤ z ≤ 3
2

√

nx
b

(

1− x
b

)

. Put δ = 2z
√

n−1x(b − x), then

∑

|b ν

n
−x|≥δ

pn,ν

(x

b

)

≤ 2 exp
(

− nδ2

4x(b − x)

)

if 0 ≤ δ/
(

2
√

n−1x(b − x)) ≤ 3
2

√

nx
b

(

1− x
b

)

. The latter inequality is equivalent

to
δ ≤ 3x

(

1− x

b

)

.

By assumption, we have 3x(1 − x/b) ≥ x. The assertion follows by observing
that

exp
(

− nδ2

4x(b− x)

)

≤ exp
(

− nδ2

4xb

)

. �

Lemma 6. Let b > 0 and 0 < δ < x ≤ 2b/3. If a bounded function

f : [0, b] → R satisfies f(t) = 0 for all t ∈ (x − δ, x + δ) ∩ [0, b], then the

following estimate holds true:

|(Cn,bf)(x)| ≤ 2 exp
(

− nδ2

4xb

)

‖f‖b .

Proof. Since f
(

b νn
)

= 0 for all ν ∈ {1, . . . , n} with
∣

∣b νn − x
∣

∣ < δ, we have

|(Cn,bf)(x)| =
∣

∣

∣

∣

∣

∑

|b ν

n
−x|≥δ

pn,ν

(x

b

)

f
(

b
ν

n

)

∣

∣

∣

∣

∣

≤ ‖f‖b
∑

ν
|b ν

n
−x|≥δ

pn,ν

(x

b

)

,

and the assertion follows by application of Lemma 5. �

A direct consequence is the following localization result for Bernstein–Chlo-
dovsky polynomials, which is interesting in itself.
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Proposition 1 (Localization theorem). Let α, p ≥ 0 be fixed constants

and suppose that f ∈ Wα,p satisfies

|f(t)| ≤ K exp(αtp), (t ≥ 0).

If for a fixed x > 0 and δ > 0, f(t) = 0 for all t ∈ (x− δ, x+ δ) ∩ [0,∞), then

(Cn,bnf)(x) = 2K exp
(

αbpn − nδ2

4xbn

)

, (n→ ∞).

Proof of Theorem 1. Suppose that f is continuous on [0,∞) being 2q-times
differentiable at the point x > 0. Define the function hx by

f =

2q
∑

s=0

f (s)(x)

s!
ψs
x + hxψ

2q
x (9)

and hx(x) = 0. It is a consequence of Taylor’s theorem that hx is continuous
at x. Hence, hx ∈ C[0,∞). Applying the operator Cn,b to both sides of Eq.
(9) we obtain

(Cn,bf)(x) =

2q
∑

s=0

f (s)(x)

s!

(

Cn,bψ
s
x

)

(x) +
(

Cn,b

(

hxψ
2q
x

))

(x).

The sum in the right-hand side is equal to

2q
∑

s=0

f (s)(x)

s!

(

Cn,bψ
s
x

)

(x) =

2q
∑

s=0

f (s)(x)

s!

s
∑

k=⌊(s+1)/2⌋

n−k
s
∑

j=0

a(k, s, j)bjxs−j

=

2q
∑

k=0

n−k
2k
∑

s=k

f (s)(x)

s!

s
∑

j=0

a(k, s, j)bjxs−j

=

2q
∑

k=0

c
[b]
k (f, x)

( b

n

)k

.

Note that a
[b]
0 (f, x) = 1. Eq. (5) is a consequence of Eq. (8). We conclude that

2q
∑

s=0

f (s)(x)

s!

(

Cn,bnψ
s
x

)

(x) =

q
∑

k=0

c
[bn]
k (f, x)

( bn
n

)k

+ o
((bn

n

)q)

, (n→ ∞).

In order to complete the proof, we have to show that the remainder satisfies

(

Cn,bn

(

hxψ
2q
x

))

(x) = o
((bn

n

)q)

, (n→ ∞).

To this end let (δn) be a sequence of positive numbers such that

δ2n = 4x
(

α
bp+1
n

n
− q

bn
n

log
bn
n

+
(bn
n

)1/2)

, (n ∈ N). (10)



8 Bernstein-Chlodovsky Polynomials

Note that conditions (1) and (4) imply that δn = o(1) as n→ ∞. Define

εn = sup
{

|hx(t)| : t ∈ (x− δn, x+ δn) ∩ [0,+∞)
}

.

Since hx is continuous with hx(x) = 0, we have εn = o(1) as n→ ∞. We split
the remainder into two parts

(

Cn,bn

(

hxψ
2q
x

))

(x) =
∑

ν
∣

∣bn
ν

n
−x
∣

∣<δn

pn,ν

( x

bn

)

(

hxψ
2q
x

)

(

bn
ν

n

)

+
∑

ν
∣

∣bn
ν

n
−x
∣

∣≥δn

pn,ν

( x

bn

)

(

hxψ
2q
x

)

(

bn
ν

n

)

=:
∑

1
+
∑

2
.

Let us start with the estimate of the first sum:
∣

∣

∣

∑

1

∣

∣

∣
≤ εn

∑

ν
∣

∣bn
ν

n
−x
∣

∣<δn

pn,ν

( x

bn

)

ψ2q
x

(

bn
ν

n

)

≤ εn
(

Cn,bnψ
2q
x

)

(x)

= εn O
((bn

n

)q)

= o
((bn

n

)q)

as n→ ∞, where we have used Lemma 3. By Taylor’s formula (9), the second
sum can be rewritten as

∑

2
=

∑

ν
∣

∣bn
ν

n
−x
∣

∣≥δn

pn,ν

( x

bn

)

(

f
(

bn
ν

n

)

−
2q
∑

s=0

f (s)(x)

s!
ψs
x

(

bn
ν

n

)

)

and we obtain

∣

∣

∣

∑

2

∣

∣

∣
≤ 2 exp

(

− nδ2n
4xbn

)

(

‖f‖bn +

2q
∑

s=0

|f (s)(x)|
s!

bsn

)

,

where in the last step Lemma 5 was applied. Note that

2q
∑

s=0

|f (s)(x)|
s!

bsn = O
(

b2qn
)

, (n → ∞).

Hence,

∑

2
= O

(

exp
(

αbpn − nδ2n
4xbn

))

+O
(

exp
(

2q log bn − nδ2n
4xbn

))

, (n→ ∞).
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In the case p = 0, i.e., f is bounded on [0,∞), we have

∑

2
= O

(

exp
(

2q log bn − nδ2n
4xbn

))

, (n→ ∞).

We may assume that α > 0. Therefore, in the case p > 0, we have

∑

2
= O

(

exp
(

αbpn − nδ2n
4xbn

))

, (n→ ∞).

Obviously, it is sufficient to estimate the latter expression. By Eq. (10) we
infer that

∑

2
= O

(

exp
(

q log
bn
n

−
( n

bn

)1/2))

= O
((bn

n

)q

e−
√

n/bn
)

, (n→ ∞).

Finally, we conclude that the remainder can be estimated by

(

Cn,bn

(

hxψ
2q
x

))

(x) = o
((bn

n

)q)

, (n→ ∞),

which completes the proof of the theorem. �

4. Bernstein-Durrmeyer-Chlodovsky Polynomials

The Bernstein-Durrmeyer operators Mn, n ∈ N0, were introduced by Dur-
rmeyer [10] and independently by Lupaş [15] in order to approximate integrable
functions on finite intervals. For a function f ∈ L1[0, 1] they are defined by

(Mnf)(x) =
n
∑

ν=0

pn,ν(x)(n+ 1)

∫ 1

0

pn,ν(t)f(t) dt, x ∈ [0, 1],

where pn,ν denote the Bernstein basis polynomials.
In [2, Theorem 1] one of the authors derived a complete asymptotic expan-

sion for the Bernstein-Durrmeyer operators as n → ∞. The representation is

given in terms of reciprocals of (n + 2)k. The rising factorials are defined by

z0 = 1 and zn = z(z + 1) · · · (z + n− 1), for n ∈ N.

Theorem 2. Let q ∈ N. Then for every function f ∈ L∞[0, 1] which is

2q-times differentiable at x ∈ [0, 1], the Bernstein-Durrmeyer operators Mn

satisfy the asymptotic relation

(Mnf)(x) = f(x) +

q
∑

k=1

1

k!(n+ 2)k

[

xk(1− x)kf (k)(x)
](k)

+ o
(

n−q
)

as n→ ∞.
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Generalizations for the weighted one-dimensional and multivariate Bernstein-
Durrmeyer operators were obtained in [3, 4, 5].

The Bernstein-Durrmeyer-Chlodovsky polynomials are defined by

(

C̃n,bf
)

(x) = (Mnfb)
(x

b

)

.

Without giving a proof, we announce the following result.

Theorem 3. Let α, p ≥ 0. Suppose that the function f ∈ Wα,p is 2q-times

differentiable at the point x > 0. Let (bn) be a sequence of positive reals, which

in the case p > 0 satisfies the growth condition

bn = o
(

n1/(p+1)
)

, (n→ ∞), (11)

while in the case p = 0, (bn) satisfies the slightly stronger condition

bn = o
( n

logn

)

, (n→ ∞). (12)

Then, for any positive integer q, the Bernstein-Durrmeyer-Chlodovsky opera-

tors C̃n,bn possess the asymptotic expansion

(

C̃n,bnf
)

(x) = f(x) +

q
∑

k=1

c̃
[bn]
k (f, x)

bkn

(n+ 2)k
+ o
((bn

n

)q)

, (n→ ∞),

where

c̃
[bn]
k (f, x) =

1

k!

(

xk
(

1− x

bn

)k

f (k)(x)
)(k)

. (13)

Remark 6. Note that Eq. (13) implies that c̃
[bn]
k (f, x) = O(1) as n→ ∞.

Remark 7. Clearly, if condition (11) is fulfilled with some p > 0, then
condition (12) is satisfied, too.
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