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Complete Asymptotic Expansions for
Bernstein-Chlodovsky Polynomials

ULRICH ABEL AND HARUN KARSLI

1. Introduction

Let f be a real function on [0, c0) which is bounded on every finite subin-
terval of [0, 00). For b > 0, we define the function f, on [0, 1] by fi(t) = f(bt).
Furthermore, we put

I fllo = sup [f(t)].
0<t<b

Obviously, we have || f||s = || fo|1-
The Bernstein-Chlodovsky polynomials are defined by

(Cunf)@) = (Buf)(3):

where B,, stands for the Bernstein polynomials

" v
(Buf)(@) = > pusl@)f ().
v=0
with Bernstein basis polynomials

Dnp(x) = <n> x’(1—x)"", 0<v<n.
v

Obviously, we have Cy, 1 = B,,.

In the following we suppose that parameter b depends on n, i.e., b = b,.
Since the difference between two nodes of C, ; is at least b/n, it is clear that
the condition b, = o(n) as n — oo is necessary for having convergence of
(Cnp, [)(x) to f(x). Throughout the paper we assume that the sequence (by,)
satisfies

b, >0, lim b, = oo, and lim b—n =0. (1)

n— 00 n—oo N
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These polynomials were introduced by Chlodovsky [8] in 1937 in order to
approximate functions on infinite intervals. He showed that under condition
(1), if a function f satisfies

=0 forevery o >0, (2)

n

lim exp (= 7 )[1£ll
n— 00 by

then
lim (Chp, f)(x) = f(x)

n—o0
at each point x of continuity of f. Moreover, he proved convergence in each
continuity point for the wide class of functions f satisfying the growth condition
f(t) = O(exp(tP)) as t — oo, if the sequence (b,,) satisfies the condition

= O(n!/ M) (n — o0), (3)

for an arbitrary small n > 0. For more results on Chlodovsky operators see the
survey article [12] by Karsli.

The purpose of this note is a pointwise complete asymptotic expansion for
the sequence of Bernstein-Chlodovsky operators of the form

(Crp, )z +Z[b"] ( ), (n — 00),

for sufficiently smooth functions f satisfying f(t) = O(exp(at?)) as t — oo,
provided that the sequence (b,,) satisfies b,, = o(nl/(p“)) as n — oo. Note
that the latter condition is slightly weaker than (3). The coefficients cg’”] (f,x),
which depend on f and b,, are bounded with respect to n.

The latter formula means that, for each fixed x > 0 and for all positive
integers ¢,

(Crp, (@ +Zcb] ( ) —l—o((%)q), (n — o).

Explicit expressions for coefficients cg’”] (f,z) in terms of the Stirling numbers
were given by Karsli [13]. He derived the asymptotic expansion if the function
f satisfies condition (2) for every o > 0.

Finally, we announce the corresponding result for the Durrmeyer variant of
the Bernstein-Chlodovsky operators given by

(Cra) @) = (Mafi) (3):

where M,,, n € Ny, are the Bernstein-Durrmeyer operators

= VZZOpn,V(CE)(n + 1)/0 Pnw () f(t)dt, zel0,1].
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2. The Main Result

For real constants o > 0 and p > 0, let W, , denote the class of functions
f € C[0,00) satisfying the growth condition

f(t) = Olexp(at?)),  (t = o0).

Note that in the special case p = 0 the class W, ¢ consists of the bounded
continuous functions on [0,00). Since Wy, and W, coincide, we consider
only the case a > 0.

Recall that the Stirling numbers s(n, k) and S(n, k) of the first and the
second kind, respectively, are defined by the relations

= Z s(n, k)2~ and 2" = Z S(n, k)2, (z € C),
k=0 k=0

where 22 = 1 and 22 = z(z — 1)--- (2 — n + 1), for n € N, denote the falling
factorials.
The following theorem is our main result.

Theorem 1. Let o, p > 0. Suppose that the function f € Wy, is 2q-
times differentiable at the point x > 0. Let (b,) be a sequence of positive reals
satisfying the growth condition

b, = o(nl/(p+1)), (n — ). (4)

Then, for any positive integer q, the Bernstein-Chlodovsky operators Cy, p,, pos-
sess the asymptotic expansion

(Crp, (@ +Zcb"] ( ) —l—o((%)q), (n — 0).

where

l(f,2) =0(1), (o), (5)

The coefficients ckb”}(f, x) have the explicit representation

[bn i,z Zf(é) Z k,sj)bjkéj

with

S

alk,s,)= > (-1 (i)s(r — G —k)S(rr — j). (6)

r=max{j,k}

Remark 1. Note that the coefficients ckb"} (f,x) depend on n but are bounded
with respect to n.
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Remark 2. Our assumption (4) on (b,) is weaker than Chlodovsky’s con-
dition (3).

Remark 3. Explicit formulas for the coeflicients ckb"} (f,x), for k=1,2,3,
can be found in [13, p. 1220].

Remark 4. Since clb”}(f, x) = fli(%) z(b, — x), the special case ¢ = 1, i.e.,

21b,,
1 bn
o D@ = £@) + L 2, ) 4 0o(22). (n 00,
contains the Voronovskaja-type result
Tim (o ) — () = 5 2 f"(2) (7)

by Albrycht and Radecki [6]. They proved the latter formula for the subclass
of functions f satisfying the growth condition (2).

Remark 5. When taking b,, = 1 for all n € N, the expansion in Theorem 1
reduces to the (pointwise) complete asymptotic expansion

(Buf)(@) ~ f(2) + > e (f,x)n ™" +o(n™),  (n— o0),
k=1

for the classical Bernstein polynomials, which is valid for all bounded func-
tions f : [0,1] — R being sufficiently smooth in = € [0,1]. Note that the
Voronovskaja formula

tim (B, f)(w) ~ () = 5 (1~ 2)f" ()

n—oo

is different from Eq. (7).

3. Auxiliary Results and Proof of the Main Theorem

Our starting-point is an explicit representation of the central moments of
the Bernstein polynomials in terms of Stirling numbers of the first and second
kind. In the following we write e,,(z) = 2™, m € Ny, for the m-th monomial
and ¥, (t) =t — x for z € R.

Lemma 1. The central moments of the Bernstein polynomials possess the

representation

S

(Bntp3)(z) = Z nikZa(kz,s,j)xS*j, (s=0,1,2,...),

k=l(st1)/2) =0

where coefficients a(k, s, j) are given by Eq. (6).
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For a proof see, e.g., [1].
Lemma 2. The central moments of the Bernstein-Chlodovsky operators
possess the representation

S

Coptd)@) = 3 07> alk,s,g)ba",

k=(s+1)/2] J=0

where coefficients a(k, s,j) are given by Eq. (6). Furthermore, for k < s < 2k,
there holds

> a(k, s, j)bla" = 0(bf), (n — 0). (8)

J=0

Proof. We have

(Cuare) = Sma(5) (05 =#) =0 Soona(5) (55’

and the first part of the lemma follows by Lemma 1. For the second part, we
assume that j > k. Then, by Eq. (6),

S

albos.d) = S0 (T)str = o = S0 = ) =

r=j
because s(r — j,r — k) =0, if r — j < r — k. This proves Eq. (8). O
As a consequence we obtain the following result:
Lemma 3 (Butzer and Karsli [7]). For s =0,1,2,..., there holds

(Conts) @) = 0 (22) )

- , (n — o0).

A crucial tool is the following estimate due to Bernstein (see [14, Theo-
rem 1.5.3, p. 18ff]).

Lemma 4 (Bernstein). For 0 <t <1, the inequality

0<z< nt(l—1t)

| W

implies
Z Prw(t) < 2exp(—22).
|v—nt|>2z+/nt(1—t)



6 Bernstein-Chlodovsky Polynomials

The next lemma presents a form of Lemma 4, which is more useful for
application to Chlodovsky operators.

Lemma 5 (Albrycht and Radecki [6]). Ifb >0 and 0 < § <z < 2b/3,

then there holds )

5 pua(Z) <200 (15

b —a] >3

Since the paper [6] is hardly available, for sake of completeness we give a
proof.

Proof of Lemma 5. By putting ¢t = 2/b in Lemma 4, we have

Y oml(i)= X () <2em)
p-ng|>22\[ng (1-%) b2 02220/ Ta(b—2)

fo<z< % n%(l — %) Put § = 2zy/n~1z(b — x), then

xr n 2
> r(3) <200 (- i)

b —x|>d

if0 <6/(2y/n"ta(b—2)) < 3,/n%(1— %£). The latter inequality is equivalent

to r
6 <3x(1-3).
By assumption, we have 3z(1 — 2/b) > x. The assertion follows by observing
that
(- ) <o (- 1) .
P dx(b—2)/) — CPT qwn )

Lemma 6. Let b > 0 and 0 < § < x < 2b/3. If a bounded function
f :10,8] = R satisfies f(t) = 0 for all t € (x — §,x + 0) N [0,b], then the
following estimate holds true:

52
(Cos) )| < 2exp (= 22 ) 1]

Proof. Since f(b%) =0forallve{l,...,n} with |b% — :L'| < J, we have

x v x
(CosD@I=| D pan(F)FO2) [ <00 X pus(F):
[b¥ —=z|>0 v
[b%—z|>0
and the assertion follows by application of Lemma 5. g

A direct consequence is the following localization result for Bernstein—Chlo-
dovsky polynomials, which is interesting in itself.
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Proposition 1 (Localization theorem). Let o, p > 0 be fized constants
and suppose that f € W, satisfies

() < Kexplot), (£ 0).
If for a fizted x > 0 and § > 0, f(t) =0 for allt € (x — 6,2 + ) N[0,00), then

2
(o §)(@) = 2K exp (0t = 12-). (0 o),

Proof of Theorem 1. Suppose that f is continuous on [0, co) being 2¢-times
differentiable at the point = > 0. Define the function h, by

/= Z

and hy(xz) = 0. Tt is a consequence of Taylor’s theorem that h, is continuous
at . Hence, h, € C[0,00). Applying the operator Cy,; to both sides of Eq.
(9) we obtain

(9)

The sum in the right-hand side is equal to

Z f(é) Cn, w Z f(é) i n=k 26: a(k, s, j)b7 x5~

k=|(s+1)/2] 7=0

2q

~Sn *’“Zfs. ZO ak, s, )bl a7
J

k=0 s=k
k
- ZCW f.x ( )
Note that ag’] (f,x) =1. Eq. (5) is a consequence of Eq. (8). We conclude that

Zf(é) (o2 Zc[bn] foa ( )k+0((%>q>, (n — 00).

In order to complete the proof, we have to show that the remainder satisfies

(Crsp, (hx?ﬁiq)) (x) = 0((%)(1), (n — 0).

To this end let (d,,) be a sequence of positive numbers such that

62 = 4x(ab£:1 b;: og%ﬂ + (%)1/2), (n € N). (10)
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Note that conditions (1) and (4) imply that d,, = o(1) as n — oco. Define
en = sup {|hz(t)] : t € (x — 0y, 2+ 6,) N[0, +00)}.

Since h, is continuous with h,(z) = 0, we have &, = o(1) as n — oco. We split
the remainder into two parts

(Cot (h¥2)) @) = 32 pau () () (b

n
v

bn & —a|<sn

S )
bk —a|>6,

- ZlJrZQ'

Let us start with the estimate of the first sum:

DIES RO
o —el<s.
< en(Cnp, 27 (z)
AN bn\ ¢
==0((5)) =o(G))

as n — 0o, where we have used Lemma 3. By Taylor’s formula (9), the second
sum can be rewritten as

DRI SO (2 (f(bng) - f<s;!(:c) v (m%))
and we obtain

v s=0
62 291 £(s) .
5 <2esn (- 428) (b + 32 50 ).

where in the last step Lemma 5 was applied. Note that

|bn £ —2| >3,

2q N
fO @)
Z%bnz(’)(bfﬂ), (n — 00).
s=0
Hence,

2
n

22 = (’)(exp (abfl — %)) +O(exp (2q10gbn - Zjbn>>, (n — 00).
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In the case p =0, i.e., f is bounded on [0, c0), we have

22:O(exp (2q10gbn—;ii>>, (n — oo).

We may assume that « > 0. Therefore, in the case p > 0, we have

2

ZQZO(eXp (abﬁ—fj&)), (n — 00).

Obviously, it is sufficient to estimate the latter expression. By Eq. (10) we
infer that

3 =ofonawats - (2)")) =o((2)' ). om0

Finally, we conclude that the remainder can be estimated by

(Con (ha2)) @) = o (2)"), (5 00),

which completes the proof of the theorem. O

4. Bernstein-Durrmeyer-Chlodovsky Polynomials

The Bernstein-Durrmeyer operators M,,, n € Ny, were introduced by Dur-
rmeyer [10] and independently by Lupag [15] in order to approximate integrable
functions on finite intervals. For a function f € L[0,1] they are defined by

= an,u(x)(n + 1)/ Pop(t)f(t)dt,  xel0,1],
v=0 0

where p,,,, denote the Bernstein basis polynomials.
In [2, Theorem 1] one of the authors derived a complete asymptotic expan-
sion for the Bernstein-Durrmeyer operators as n — oo. The representation is

given in terms of reciprocals of (n + 2)*. The rising factorials are defined by
20=1land 2" =2(2+1)---(z+n—1), forn € N.

Theorem 2. Let ¢ € N. Then for every function f € L*°[0,1] which is
2q-times differentiable at x € [0,1], the Bernstein-Durrmeyer operators M,
satisfy the asymptotic relation

( nf) + Z s 2) E k(l — x)kf(k)(x)} (k) + o(n*q)

k=1

as n — Q.
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Generalizations for the weighted one-dimensional and multivariate Bernstein-
Durrmeyer operators were obtained in [3, 4, 5].
The Bernstein-Durrmeyer-Chlodovsky polynomials are defined by

~ x
(Crof) (@) = (Mafo) (T)-
Without giving a proof, we announce the following result.

Theorem 3. Let o, p > 0. Suppose that the function f € Wy, is 2q-times
differentiable at the point x > 0. Let (b,) be a sequence of positive reals, which
in the case p > 0 satisfies the growth condition

b, = o(nl/(“l))7 (n — 00), (11)

while in the case p =0, (by,) satisfies the slightly stronger condition

by :o(logn), (n — o). (12)

Then, for any positive integer q, the Bernstein-Durrmeyer-Chlodovsky opera-
tors Cy b, possess the asymptotic expansion

(Crop f) (@) = fla) +

=
Il <
—

ot so((2)). o)

(n+2 n
where ) ok ®
el = (@ (- 5) 1Y) (13)

Remark 6. Note that Eq. (13) implies that Egcb"] (f,x) =0O(1) as n — oc.

Remark 7. Clearly, if condition (11) is fulfilled with some p > 0, then
condition (12) is satisfied, too.
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