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Worst Case and Average Case Cardinality
of Strictly Acute Stencils for Two Dimensional
Anisotropic Fast Marching

JEAN-MARIE MIREBEAU AND FRANCOIS DESQUILBET *

We study a one dimensional approximation-like problem arising in the
discretization of a class of Partial Differential Equations, providing worst
case and average case complexity results. The analysis is based on the
Stern-Brocot tree of rationals, and on a non-Euclidean notion of angles.
The presented results generalize and improve on earlier work [10].

1. Introduction

This paper is devoted to the analysis of an approximation-like problem
arising in the discretization of a class of Partial Differential Equations (PDE):
eikonal equations, defined with respect to a possibly strongly anisotropic Fins-
lerian metric. The results presented are related with the numerical solution of
this equation on two dimensional cartesian grids, and their extension to higher
dimension and/or to unstructured domains remains an open question. The
unique viscosity solution to such an equation is a distance map, whose compu-
tation has numerous applications [14] in domains as varied as motion planning,
seismic traveltime tomography [7], image processing [3], etc. The construction
studied in this paper is designed is to achieve a geometrical property — strict
acuteness with respect to a given asymmetric norm — ensuring that the result-
ing numerical scheme is strictly causal [6, 15, 1, 10, 9]. This in turn enables
efficient algorithms for solving the numerical scheme, in a single pass over the
domain, with linear complexity, and possibly in parallel [16, 13]. In order to
better focus on the problem of interest, further discussion of the addressed PDE
and of its discretization is postponed to §A.

We study in this paper a one dimensional approximation-like problem, in-
volved in the construction of local stencils of minimal cardinality for a numer-
ical solver of eikonal PDEs, see Definition 1.3 for a formal statement. The
efficiency of the procedure is directly tied to the complexity of the numerical
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scheme. A few properties of this problem deviate from the common settings in
approximation theory, and deserve to be discussed here.

e The main function ¢p : R —]— 7/2,7/2[ considered benefits from reg-
ularity and integrability properties, derived from its geometrical inter-
pretation §2.2. However these are fairly uncommon: —¢pg is one-sided
Lipschitz, and tan(pr) is bounded in the L*(]0, 27]) norm.

e The approximation-like problem involves an interval subdivision proce-
dure, that is reminiscent of e.g. dyadic splitting in non-linear approxima-
tion based on the Haar system [5]. However, subdivision is here governed
by the Stern-Brocot tree, and breaks the interval [0,27] into unequal
parts whose endpoints have rational tangents, see § 3.

e We present a uniform “worst case” complexity result, but also an “aver-
age case” result under random shifts, see Theorem 1.1. Because of the
peculiarities of the approximation procedure, a more favorable estimate
is obtained in the average case.

In the rest of this introduction, we introduce the notations and concepts
necessary to state our main result. Our first step is to equip the Euclidean
space R? with the anisotropic geometry defined by a (possibly) asymmetric
norm. Here and below, all asymmetric norms are on R2.

Definition 1.1. An asymmetric norm is a function F : R? — R, which is
1-positively homogeneous, obeys the triangular inequality, and vanishes only
at the origin:

F(Au) = AF(u), Flu+v) < F(u) 4+ F(v), Flu)=0 & u=0,
for all u,v € R?, A > 0. The anisotropy ratio of F is defined as

(u)

WE) = | B F)

|

Note that an asymmetric norm is always a continuous and convex function.
We denote by £L(u,v) € [0,7] the unoriented Euclidean angle between two
vectors u,v € R?\ {0}, which is characterized by the identity

cos £ (u,v) = M
[[ullflv]]

The next definition introduces a generalized measure of angle, associated with
an asymmetric norm. We only consider acute angles, since obtuse angles will
not be needed, and because their definition raises issues. The notion of F-acute
angle is similarly defined in [10, 17], but the related angular measure is new.
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Definition 1.2. Let F' be an asymmetric norm, which is differentiable ex-
cept at the origin, and let u,v € R?\ {0}. We say that u,v form an F-acute
angle iff (VF(u),v) > 0. We define the F-angle £ (u,v) € [0,7/2] U {0} by

(VE(u),v)

o) (1.1)

cos L p(u,v) 1=

if u,v form an F-acute angle. Otherwise we let £ p(u,v) := +o0.

We show in Lemma 2.1 that the r.h.s. of (1.1) is at most 1, so that £p(u,v)
is well defined, with equality if v = v, so that £p(u,u) = 0. If F is the
Euclidean norm, then one easily checks that the F-angle coincides with the
usual Euclidean angle, when the latter is acute. More generally, if F'(u) = || Au||
for some invertible linear map A, then £ p(u,v) = £(Au, Av), when the latter
is acute. In general however, one has £Lp(u,v) # £p(v,u), and F-acuteness
is not a symmetric relation. The differentiability assumption in Definition 1.2
can be removed, see Definition 2.1.

The following definition introduces (F,«)-acute stencils, which are at the
foundation of our numerical scheme, see Figure A.1 on page 177. Their car-
dinality is directly proportional to the algorithmic complexity of our eikonal
PDE solver, see § A, hence it is important to choose them as small as possible.
When o = 7/2 one recovers the F-acute stencils of [10], and closely related
concepts are considered in [6, 15, 17, 1].

Definition 1.3. A stencil is a finite sequence of pairwise distinct vectors
Up, ..., Uy € Z2, n > 4, such that

det(u,v) =1, (u,v) >0,

for all w = w;, v = ujq1, 1 < i < n, with the convention wu,4+1 1= uy,. It is
said (F, «)-acute, where F' is an asymmetric norm and « € ]0, 7/2], iff with the
same notations one has

Lp(u,v) < a, Lr(v,u) < a. (1.2)
We let N(F,«a) denote the minimal cardinality of an (F, «)-acute stencil.

We provide in §3.2 a simple and efficient algorithm, based on a recursive
refinement procedure and which is effectively used in our numerical implemen-
tation, for producing an (F, a)-acute stencil of minimal cardinality N(F,«). A
similar method appears in [10] when o = 7/2. The main result of this paper
is the following estimate of N(F,«), both in the worst case and in the aver-
age case over random rotations of the asymmetric norm F. The average case
makes sense in view of our application to PDE discretizations § A, since the
orientation of the grid can be set and modified arbitrarily.
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Theorem 1.1. For any asymmetric norm F and any o €)0,7/2], one has

N(F,a) < c% In (m—“) "

In 7
= N(Fo Ry a)d6 < C— In (?) (1.3)

0

where = max{u(F), 12}, Ry denotes the rotation of angle 6 € R, and C' is
an absolute constant.

In the intended applications, one typically has p(F) < 100. The most
pronounced anisotropies p(F') ~ 100 are often encountered in image processing
methods [3, 9], and this bound is large enough that the asymptotic behavior of
(1.3) w.r.t. p is meaningful to our use cases. In contrast, we do confess that it
seems pointless to let & — 0 in our applications (typically we set a = 7/3). If
one fixes ap €10, 7/2] then

2m
N(F,ap) < Culnlnp, N(F o Ry, p)df < Cln? p, (1.4)
0

uniformly w.r.t. p. This improves on [10], whose arguments are limited to
the case oy = 7/2, and where the sub-optimal bounds pln p (resp. In® ) are
obtained for (1.4, left) (resp. right).

Outline. The notion of F-acute angle, see Definition 1.2, is described in
more detail § 2, where related tools are introduced. The Stern-Brocot tree, an
arithmetic structure underlying concept of stencil in Definition 1.3, is discussed
in §3. We conclude in §4 the proof of Theorem 1.1. Some context on the
intended applications of the presented results is given in § A.

2. Anisotropic Angle

This section is devoted to the study of the anisotropic measure of angle
4 (u,v) of Definition 1.2, where u,v € R?\ {0} and F is an asymmetric norm.
Some elementary comparison properties, with the Euclidean angle £(u,v) or
with another angle £ p(u,w), are presented §2.1. We prepare in §2.2 (resp.
§2.3) the proof of the average case (resp. worst case) estimate of Theorem 1.1,
by introducing a helper function ¢ (resp. ¥3) for which we show a L'([0, 27])
norm estimate and a comparison principle with £ .

In the rest of this section, we fix an asymmetric norm F', assumed to be
continuously differentiable on R? \ {0}. That is with the exception of the
following definition and proposition, where we briefly consider the case of non-
differentiable norms, and show that the smoothness assumption holds without
loss of generality. Closely related arguments are found in Lemma 2.11 of [10].
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Definition 2.1. (Generalization of £ (u,v) with no differentiability as-
sumption). Let F be an asymmetric norm, and let u,v € R?\ {0}. We say
that u,v form an F-acute angle iff F'(u+ dv) > F(u) for all 6 > 0. In that case
we let o = Lp(u,v) € [0,7/2] denote the smallest value such that

F(u+ dv) > F(u) + 6 cos(a) F (v), (2.1)
for all § > 0. If u,v do not form an F-acute angle, then we let £ z(u,v) := oco.

Proposition 2.1. Definitions 1.2 and 2.1 agree on differentiable norms.
Also, if F, — F locally uniformly as n — oo, where (Fp,)p>0 and F' are asym-
metric norms, and u,v € R*\ {0}, then

Lp(u,v) < Hn_l}inf Lr (u,v). (2.2)

If Theorem 1.1 holds under the additional assumption F € C*(R?\ {0}), then
it does without it.

Proof.  Under the assumptions of Definition 1.2 one has F(u + dv) =
F(u) + 6(VF(u),v) + o(6) by differentiability of F at u, and F(u + dv) >
F(u) 4+ 6(VF(u),v) by convexity of F, for any § > 0 and any v € R? \ {0}.
Thus Definitions 2.1 and 1.2 agree. The lower semi-continuity property (2.2)
follows from the fact that (2.1) is closed under uniform convergence. Therefore
if a given stencil is (F),, a)-acute for all n > 0, then it is also (F, a)-acute, see
Definition 1.3. Thus N(F, ) < liminf, o N(F,, a), and likewise for the Lh.s.
of (1.3,right). Finally, we observe that any asymmetric norm F is the locally
uniform limit of a sequence of asymmetric norms F,, € C*(R?\ {0}), n > 1,
defined as

Fo(u) = /R F(Rou) pn (6) 46,

where p,,(0) := np(nd), and the mollifier p is smooth, non-negative, compactly
supported, and has unit integral. The statement regarding Theorem 1.1 follows,
which concludes the proof. 0

2.1. Elementary Comparison Properties

This subsection is devoted to elementary comparisons between Ap(u,v)
and the angle between other vectors, see Lemma 2.2, or the Euclidean angle
4(u,v), see Proposition 2.2, where u,v € R?\ {0}. In addition, Lemma 2.1
below was announced and used in the introduction to show that £ p(u,v) is
well defined, and that £ p(u,u) = 0. Throughout this subsection, F' denotes a
fixed asymmetric norm, assumed to be differentiable except at the origin.

Lemma 2.1. For any u,v € R?, with u # 0, one has

(VF(u),u) = F(u), (VF(u),v) < F(v). (2.3)
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Proof. Euler’s identity for the 1-homogeneous function F' yields (2.3, left),
whereas the triangular inequality F'(u+6v) < F(u)+0F (v) for all § > 0 yields
(2.3, right). O

The next lemma shows that the F-angle is non-increasing when an angular
sector is split.

Lemma 2.2. Let u,v form an F-acute angle, and let w := au + v for
some a, 3 > 0. Then

max{£p(u,w), L{p(w,v)} < Lp(u,v).

Proof.  Assume w..o.g. that & = 1, and denote A := cos Lr(u,v). By
convexity of F' one has

(VF(w),v) = (VF(u—+ fv),v)
= (VF(u+ fv) — VF(u),v) + (VF(u),v) > 0+ AF(v).

On the other hand, one obtains noting that A € [0,1] by assumption

(VF(u),w) = (VF(u),u+ Bv) > F(u) + A\BF(v)
> MF(u) + BF(v)) > AF(u+ fv) = AF(w). O

The last proposition of this subsection is an upper bound on the F-angle in
terms of the Euclidean angle and of the anisotropy ratio p(F') of the asymmetric
norm. This upper bound grows non-linearly and perhaps more quickly than
one may expect, namely as the square root of the Euclidean angle, because we
do not make any quantitative assumption on the smoothness of F'. Here and
below we denote ut := (—b,a) for any u = (a,b) € R2.

Proposition 2.2. For any u,v € R?\ {0}, assuming p(F)4(u,v) < 1/2
one has

Lp(u,v) < /5u(F)L(u,v). (2.4)

Proof.  Denote 0 := L(u,v), a := 4Lp(u,v), and p := p(F). Assume
w.l.o.g. that v = u + tan(@) wt. Then
(VE(u),v) = (VE(u),u) + tan(8) (VF (u),u") > F(u) — tan(0) F(~u"),
F(v) = F(u + tan(9) ut) < F(u) + tan(0) F(ut).

Observing that F(ul) < pF(u) and F(—ut) < pF(u), we obtain

1—ptanf _ F(u) — F(—ut)tan6
1+ ptan® — F(u) 4+ F(ul)tanf
< (VF(u),v) 1 —tan?(a/2)

S TFe) s = 5oy T tan?(a2) (2.5)
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This implies tan?(«/2) < ptanf. We conclude the proof of (2.4) observing
that tan(a/2) > a/2, and tand < (5/4)6, both estimates by convexity of tan
on [0,7/2[ and since 0 < 1/2. Note also that ptané < (5/4)uf < 5/8 < 1 by
assumption, which shows that the Lh.s. of (2.5) is positive, and thus excludes
the case where £ p(u,v) = 0o, see Definition 1.2. O

2.2. Gradient Deviation

We describe and study a function ¢ attached to the asymmetric norm F
of interest, introduced in [10] and used in the proof of the average case estimate
in Theorem 1.1. More precisely, the quantity ¢p(u) is the oriented Euclidean
angle between a given vector u € R?\ {0} and the gradient VF(u). Note that
these two vectors are aligned if F' is proportional to the Euclidean norm. The
main results of this section are an L' estimate of tan ¢, see Corollary 2.1, and
a comparison with the F-angle, see Proposition 2.4.

Definition 2.2. For each u € R? \ {0}, define a signed angle ppr(u) €
|—7/2,7/2] by
(ut, VF(u)) = F(u)tan pp(u). (2.6)

For 6 € R, we abusively denote ¢r(6) := @r((cosf,sinf)).

The next lemma shows, as announced, that |pp(u)| is the Euclidean angle
between the given vector u and its image by the gradient of F', and establishes
a uniform upper bound for pp.

Lemma 2.3. For any u € R?\ {0}, one has

lop(u)] = £(u, VF(u)),  [tanpp(u)| < p(F). (2.7)

Proof. Equality (2.7,left) follows from Euler’s identity (2.3,left) and the

definition (2.6). Estimate (2.7, right) follows from —F(—u') < (u*, VF(u)) <
F(ut) see (2.3,right), and from the upper bound F(+ul) < p(F)F(u) which
holds by Definition 1.1 of the anisotropy ratio. O

We recall in the next proposition, without proof, two key properties of the
function ¢F established in [10]: a one-sided regularity property, and an upper
bound on the integral of tan(pp) on any interval. See the plots of ¢p in
Figure A.1 on page 177.

Proposition 2.3 (Proposition 3.6 in [10]). The function ¢r : R —
|— /2, 7/2[] obeys:

o (Regularity) For all 0 € R, one has ¢=(0) > —1.

o (Integral bound) One has |f99: tanpp(0) do| <Inp(F) for all 6,,0* € R.
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Combining the one-sided regularity property and the integral bound, one
obtains an L' estimate of tan(yr), as shown in the next lemma, which turns
out to be a key ingredient of the proof of the average case estimate (1.3, right),
see §4.2.

Corollary 2.1 (L' estimate of tanpr). One has with C' = 21/3,
27
/ |[tan pp(0)]d8 < C(1 + In u(F)). (2.8)
0

Proof. In view of Proposition 2.3 (Integral bound), of the continuity of
pr, and of its 2w-periodicity, there exists ag € R such that ¢r(ap) = 0. Then
inductively for n > 0 let

e [, be the smallest 8 > a, such that |¢pr(5)| = 7/3,
® ;11 be the smallest a > f3,, such that pr(a) = 0.

The sequences (au,, Br)n>0 are well defined, thanks to the periodicity of ¢p,
except if |pp| < 7/3 uniformly, but in that case the announced result (2.8)
clearly holds. If pp(8,) = 7/3 for some n > 0 then a,4+1 — B, > 7/3, whereas
if op(B8,) = —n/3 one has B, — a,, > /3, by Proposition 2.3 (Regularity).
Therefore a1 — o, > /3 for all n > 0, thus ag > ag + 27, which implies

27 27
/ | tan ¢ (0)|df < / tan(7/3) d + 6 In u(F) < 2mv/3 + 6 In u(F).
0 0

On each interval [ay,, 8,] N [0,27] we used the upper bound |¢r(6)] < /3,
which holds by definition of §,. On each interval [8,, ayn+1] N[0, 27] we used
Proposition 2.3 (Integral bound) and the fact that ¢z does not change sign,
which holds by definition of ;1. O

The last result of this subsection can be regarded as a refinement of Propo-
sition 2.2.

Proposition 2.4 (Estimate of £ in terms of ¢r). Let u,v # 0 be
such that £(u,v) < /3. Then one has, with C = 32,

min { £ p(u,v), 2}2 < CL(u,v) max {£(u,v),| tan gp(u)], |tan or(v)|}. (2.9)
Proof. Denote 0 := L(u,v) and « := £p(u,v). Assuming w.l.o.g. that
|lull = |Jv]] = 1 and det(u,v) > 0 one has
v = (u+u’ tan @) cos ), and u = (v— vt tan)cos.
Using linearity in the first line, and convexity in the second line, we obtain
(v,VF(u)) = {(u+u"tan 0, VF(u)) cos 0
= F(u)(1 + tan pp(u) tan §) cos 6
F(u) = F(v—v*tan®)cosf > (F(v) — (v, VF(v)) tan 0) cos
= F(v)(1 — tan ¢p(v) tan §) cos 6.

(2.10)
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Assume for a moment that — tan pp(u) tand > 1/2. Recalling that § < /3,
thus tan 6 < 260, we obtain —tan pp(u)d > 1/4 and the announced result (2.9)
is proved. Likewise if tanpp(v)tand > 1/2. In particular, if @« = 400 then
(VF(u),v) <0 Dby Definition 1.2, and therefore — tan pr(u) tand > 1 by (2.10),
so that the result is proved.

In the following, we let ¢, := tanyp(u), t, := tanpp(v). Based on the
previous argument we assume w.l.o.g. that ¢, tan8 > —1/2, ¢, tan6 < 1/2 and
a # 0o. We obtain from (2.10)

(v, VE(u)) _ (v, VF(u)) F(u)

cosa = Fo) = Fu) X Fo) > (1 +t,tanf)(1 — t, tan @) cos® 6.

Taking logarithms yields with ¢ := max{0, —t,, ¢, },
—Incosa < —2In(1 — ttanf) — 2Incos 6. (2.11)

An elementary function analysis shows that —Incosa > a?/2 for a € [0,7/2][,
and —Incos® < 02 for 6 € [0,7/3]. In addition tan§ < 26 for 6 € [0,7/3], and
—In(1 — z) < 2z for x € [0,1/2]. Inserting these bounds in (2.11) yields the
announced result

a?/2 < —Incosa < 4max{—In(1 — ttanf), —Incosf} < 4 max{4td, 20°}.

0

2.3. Regularized Gradient Deviation

We consider in this subsection two 1-Lipschitz regularizations zb} and ¢
of the gradient deviation pp. See the plots of 1/)1{5 in Figure A.1 on page 177.
Note that —pp is already (but also only) one-sided 1-Lipschitz, see Proposi-
tion 2.3 (Regularity). We extend to 7,/11{5 some of the results of §2.2, namely
the L'-norm estimate in Corollary 2.2 and the comparison with the F-angle in
Proposition 2.4, which are used §4.1 in the proof of the worst case estimate in
Theorem 1.1. We recall that pp : R —|— /2, 7/2] is 27-periodic.

Definition 2.3. Define for any 6 € R,

Vi(0) == maxop(@+n) —n,  Yp(0):=minep@—n)+n.  (212)
120 n>0

The functions ¥ and w; define an upper and lower envelope of ¢p: for
any 0 € R,

—m/2 <infor <Yp(0) <pp(0) < Pp(0) <suppr < /2.
R

They play symmetrical roles, up to replacing ¢z with 8 — —pp(—0), which
amounts to reversing the orientation of the plane R2. Hence results established
for ¢;§ automatically extend to .
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Lemma 2.4. The map v}f : R — |- 7/2,7/2[ is 1-Lipschitz.

Proof. By design (2.12,left) the function ¢} is one-sided 1-Lipschitz: for
alld e R, h >0,

YE(O+h) = sglzw(ﬂﬂl) —(n—h) <PEO) + h.
n=

On the other hand one has 95 (6 — h) < 95 (0) + h, for all b > 0, as follows
from the same property of the function ¢r, see Proposition 2.3 (Regularity).
Combining these two estimates, we obtain ¢} (0+h) < ¥ (0)+|h|, for all @ € R
and all h € R (positive or negative), hence 1/)} is 1-Lipschitz as announced. [J

The next lemma and corollary are devoted to estimating the L'([0,2n])
norm of 1/)?;. We denote by |A| the Lebesgue measure of a measurable set
ACR.

Lemma 2.5. Let 8,01 € R be such that 1/);(90) = w}(ﬁl), Then

{{9 € [90,01] ZZJF > ‘PF }! ’{9 € [90701] Q/JF }’ 2 13

Proof. Denote by Ay (resp. Ap) the set appearing in (2.13,left) (resp.
(2.13,right)). Then

91d

d
0= vt = [ Sui= [ Sube [ Sups A A,
F( 1) F( 0) % d6 F Aq do F 1d0 F ‘ 0| | 1|

where we used the observation that %1/}}(0) = 1 for all § € Ay, whereas
Lpf(0) > —1 for a.e. 0 € A;. The result follows. O

Corollary 2.2 (L' estimate of ¥}").

21 2
max{0, tan )} — 1} < 2 max{0, tan pp — 1}.
0

Proof. As observed in the proof of Corollary 2.1 there exists 6y € R such
that ¢p(0g) = 0. Thus ¢r(0) < 7/4 for all 0 € [§y — 7/4, 6], and therefore
(00 — m/4) < 7/4. As a result, the level sets

TN = {0 €R: ¥h(0) >N}, O\ :={0eR: pp(d) > A},

are strict subsets of R for any A > 7w/4. They are also 2m-periodic sets, and
for that reason we denote ®(\) := ®(A) N [0, 27 and W(A) := U(X) N [0, 2x|.
Applying Lemma 2.5 to the closure [0y, 6] of each connected component of
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¥(\), and using periodicity, we obtain [¥(X) \ ®(A)| < [®(\)]. Thus [T(N)] <
2|®()N)|, and therefore, as announced

27 /2

max{0, tan f — 1} :/ 1B(2)] tan A dA

0 /4

/2 27
§2/ |P(A)|tan AdA = 2 max{0,tan pp — 1}. O
w/4 0

From Corollaries 2.1 and 2.2 we obtain
27
max{1,tant}} < Clny, (2.14)
0

where p := max{2, u(F)} and C is an absolute constant. The same result
holds for max{1, —tanx}, by a similar argument, see the comment after Def-
inition 2.3. Finally, we compare the F-angle of two vectors with such integral
quantities.

Proposition 2.5 (Estimate of £ in terms of %). Letu,ve R?\{0},
with £(u,v) < 7/3. Let © C R be a corresponding angular sector, with
0| = L(u,v). Then

min{£ p(u,v),2}? < C’/ max{1, tan v}, —tant, }, (2.15)
e
where C' = 4C and C is the constant from Proposition 2.4.

Proof. By angular sector, we mean that up to exchanging v and v one has
© = [0y, 0, where u (resp. v) is positively proportional to (cos6,,sin6,,) (resp.
(cosb,,sinb,)). By Proposition 2.4 one has

£p(u,v)? < Cmax{|OF, |0][tanpp(0.)], 8] [ tan ¢r(6,)[}.

If £p(u,v)? < C|O]? then the announced result (2.15) is proved, since
|©] < 7/3. Otherwise we may assume w.l.o.g that £ (u,v)? < |0]|tan (0.,
Denoting 5 := max{t}, =15} one has 1g(0, + h) > . — h for all h > 0,

where ¢, 1= |pr(6,)|. We conclude by case elimination:
o If p. < m/3, then Lr(u,v)? < |O|tan(r/3), hence (2.15) holds as an-
nounced.

e Otherwise if v, + £(u,v) > 7/2, we obtain

E_Sa*
/ |tanp| > /2 tan(g, — h)dh
C) 0

in(2¢. 1
—In (SICI;(S:ZF)) = In(2sing,) > In(2sin(7/3)) = 73
Thus the r.h.s. of (2.15) is bounded below by C'In(3)/2 > 22, hence (2.15)

holds as announced.
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e Otherwise if v, + £(u,v) < 7/2, then we obtain for all § € ©

tan ¢ (0) > tan(p. — (7/2 — ¢4))

tan .,

A~ =

1
= —cot(2¢4) = 3 (tan ¢, — cot ) >

using that ¢, > 7/3 in the last inequality. Therefore f@ tanyp >
1 |©| tan(y,), which implies (2.15) and concludes the proof. O

3. The Stern-Brocot Tree

We describe a variant of the Stern-Brocot tree [12], an arithmetic structure
which allows to effectively construct and study the minimal (F, «)-acute stencil
considered in Definition 1.3. We formally introduce the Stern-Brocot tree in
this introduction, and then we relate it in § 3.2 with the stencils of Definition 1.3.
We estimate in § 3.3 the cardinality of a subtree, based on the number of its
inner leaves and on a measure of their depth, for use in the proof §4.1 of the
worst case estimate of Theorem 1.1.

Let Z collect all elements of Z? whose coordinates are co-prime, and 7 all
elements of Z? with unit determinant and a non-negative scalar product:

Z :={(a,b) € Z*\ {0} : ged(a,b) = 1},
T :={(u,v) € 2% : (u,v) >0, det(u,v) = 1}.
We often denote T = (u,v) the elements of the set T.

Definition 3.1. For any T = (u,v) € T, we refer to T/ = (u,u +v) € T
and T"” = (u+v,v) € T as its children, and we denote this relation by T' <1 T’
and T < T"”. We also let

S(T) = (u,v),  A(T) = min{|Jul|?,[|v]*}.

By construction one has for any T <1 T € T

S(T) =20, AT =1, S(T)=ST)+AT), AT)=AT). (31)

Definition 3.2. A chain in 7 is a finite sequence Ty < --- < T, where
n > 0. We write T, < T™ iff there exists a chain T, =Ty < --- 1T, =T* in

T for some n > 0.

The next lemma fully describes the graph (7, <1). For that purpose, denot-
ing by (e1,e2) the canonical basis of R? we let

To := {(e1, e2), (2, —e1), (—e1, —€2), (—e2,e1) }.
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Lemma 3.1 ([10, Lemma 2.3]).

o Let T = (u,v) € T. The following are equivalent:

(i) T €T,

(i) Nfull = lvll,

(i11) S(T) < A(T),
(iv) T has no parent.

e The graph (T,<) is the disjoint union of four complete infinite binary
trees, whose roots lie in Tg.

The tree rooted in (e1, e2) is isomorphic to the classical Stern-Brocot tree
[12], an infinite binary tree labeled with rationals, via the mapping (u,v) — p/q
where (p, ¢) = u+ v. Each positive rational appears exactly once as a label, in
its irreducible form, as follows from the first statement of the next proposition.
See also [12].

Proposition 3.1. For each w € Z with ||u| > 1, there exists a unique
(u—,uq) € T such that u = u_ + uy. By convention we let (u_,uy) =
(—ut,ut) if |u|| = 1. For any u,v € Z

(u,v) €T & Ik >0, v=us + ku, (v,u) €T < Ik >0, v=u_ + ku.

Furthermore, ||ux + ku|| > k|lu|| for all k > 0. Also, ||ux| < ||ull with equality
iff llull = lusl = 1.

Proof.  See Proposition 1.2 in [11] for the existence and uniqueness of
(’LL,, u+)'

The announced properties are obvious if ||u]| = 1, hence w.l.o.g. we assume
lull > 1. One has ||ul|? = ||uy]|? +2(uy,u_) + [Ju_||*> > |Jus||?* + 0+ 1, hence
|lu|| > ||ug || as announced, and likewise for u_. One has |Ju; +kul? = k2||u|?>+
2k (u,uy) + [Juy|]® > k2|ul|> +0+1 for all k > 0, hence |luy + ku|| > k|ju|| and
likewise for u_ as announced.

If (u,v) € T, then det(u,v) = det(u,uy), hence v = uy + ku for some
k € R. Since uy,v have integer coordinates, and « has co-prime coordinates,
one has k € Z. By definition 0 < (u,v) = (u,uy) + kllul? < (k + 1)[ul?,
showing that k& > 0 as announced. Likewise for u_, and the reverse implication
is obvious. O

3.1. Angular Partitions

To each element T' = (u,v) of (our variant of) the Stern-Brocot tree one
can associate an angular sector, whose width and covering properties are the
object of this short subsection.
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Lemma 3.2. For all (u,v) € T one has

(lullllol) ™ < £(u,v) < g(\lullllvll)_l-

Proof.  One has sin((u,v)) = det(u,v)/(lull [o]) = (Jull[o])=". Also, by
concavity, one has 2 ¢ < sinp < ¢ for all ¢ € [0,7/2], hence ¢ < arcsint < T ¢
for all ¢t € [0, 1]. O

Definition 3.3. Given T' = (u,v) € T we let ©(T) := [0y, 0,], where u is
positively proportional to (cosf,,sin6,) and 6, € [0,27[, and likewise for v
and 6, €10, 27].

If T € Ty, then O(T) = [kn/2,(k + 1)7/2[ for some 0 < k < 3. By
construction, O(T) = O(T")UO(T") if T" and T" are the children of T, where L
denotes the disjoint union. In addition |O(T)| = £(u,v) for all T = (u,v) € T.

Definition 3.4.

e A sub-forest is a set T, € T which contains the parent, if any, of each of
its elements: for all 7' << T” with T” € T, one has T' € 7.

e An outer leaf of 7, is an element of the set 7 \ 7. whose parent, if any,
lies in 7.. An inner leaf of 7T, is an element of 7T, whose two children lie
outside 7. Their sets are respectively denoted

LAT)CT\T., LYT)CT..

Said otherwise, an element T' € T \ 7, (resp. T' € 7,) is an outer leaf (resp.
inner leaf) of a sub-forest 7. C T, iff T. U{T} (resp. T \ {T'}) also is a sub-
forest. In addition one easily checks that the angular sectors associated with
the outer leaves define a partition of the angular space [0,27[, and that the
angular sectors associated with the inner leaves are pairwise disjoint:

|| e =io,2n, || o) co2a. (3.2)

TeLo(T.) TeLi(T.)

3.2. Stencil Construction

We show in Proposition 3.2 that stencils are in one to one correspondence
with finite sub-forests of T, see Definitions 1.3 and 3.4. This yields an efficient
construction of stencils with minimal cardinality, and a way of counting their
elements, see Corollary 3.1.
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Proposition 3.2. Let (u1,...,uy), n > 4, be a stencil in the sense of
Definition 1.3, and let

L= {(usuig1): 1<i<n},

collect the pairs of consecutive elements, with cu,11 := an. Then L, is the set of
outer leaves of some finite sub-forest T, C T, and in particular #L, = 4+#T..
Any finite sub-forest T, of T can be obtained in this way.

Proof. We proceed by induction on the cardinality of £,. For initial-
ization, we note that #L, > 4, with equality iff £, = 7y, in which case it
collects the outer leaves of the empty sub-forest 7, = (). Otherwise denote
u = u; the element of £, with maximal norm, and observe that u;; = us and
u;—1 = u_ by Proposition 3.1. Since £, C 7o one has |lul| > 1, and therefore
(ti—1,ui41) = (u—,uy) € T, showing that (u1,...,ui—1,Uit1,...,Uy) is also a
stencil in the sense of Definition 1.3. Thus by induction £, U {(u;—1,ui+1)}\
{(wi—1,us), (ui,uiy1)} = L°(T]) for some sub-forest 7] of 7, and therefore
L. = L(T! U{(u;—1,u;+1)}) as announced.

Conversely, we observed in (3.2) that the set of outer leaves of a finite
sub-forest of T defines a partition the angular space, and thus yields a stencil.

Recall that a finite complete rooted binary tree has one more outer leaf
than inner nodes. Since T, collects the inner nodes (possibly none) of four such
trees, and L, their leaves, one has #L, = 4 + #7, as announced. 0

Corollary 3.1. Let F be an asymmetric norm, and let o €]0,7/2]. Define
T(Foa):={(u,v) € T: Lp(u,v) > a or Lr(v,u) > a}. (3.3)
Then T (F, ) is a finite sub-forest of T, and N(F,a) =4+ #T(F,a).

Proof.  The set T(F,«a) is a sub-forest of T by Lemma 2.2, and is fi-
nite by Proposition 2.2. Denote by L°(F,a) the collection of its outer leaves,
and by wuq,...,u, the corresponding stencil, see Proposition 3.2. One has
(wi,uip1) € L2(F,a) €T\ T(F,«), for any 1 < i < n, implying the (F,a)-
acuteness property (1.2) by definition of 7 (F, «). This implies the upper bound
N(F,a) <n=#L°(F,a)=4+#T(F,a).

Conversely, let uy, ..., u, be an (F,«a)-acute stencil with minimal cardinal-
ity, and let £, and 7, be as in Proposition 3.2. By Lemma 2.2, and recalling
Definition 3.2, all elements of the set

E={T"eT:3TeL,T=T}

obey the acuteness condition (1.2), hence &€ C T \ T(F,«). On the other
hand, one has & = T \ 7., hence T (F,«) C 7., which yields the lower bound
LT(F,a) < 4T, = #L, — 4= N(F,a). O

Thanks to the tree structure, the set T (F,«) can easily be computed in
practice, as well as the corresponding minimal (F,«)-acute stencil, by e.g.
depth first search as in [10].
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3.3. Cardinality of a Sub-forest

We estimate the cardinality of a sub-forest of 7 based on the number of
inner leaves and on their depth as measured by the function S, see Corollary 3.2
and Definition 3.1. The proof is based on a decomposition of the sub-forest
into a disjoint union of chains. We state, without proof, a lower bound on the
depth of the last element of a chain, which immediate follows from (3.1).

Lemma 3.3. If Ty < --- < Ty, is a chain in T, then S(Ty,) > nA(Tp).

Definition 3.5. Let 7. be a finite sub-forest of 7. Then 7, is the union of
a finite family of chains C1, ..., Cy, each denoted C; = {T§ < --- < T}, }, and
defined as follows:

e (Main loop, iteration variable: i the chain index) Choose an element T
minimizing S in T, \Col- - -UC;_1. If this set is empty, then the algorithm
ends.

e (Inner loop, iteration variable: k the chain element index) Consider the
two children 7", T" of T}. If both lie in 7, then define T}, as the one
minimizing S (any in case of tie). If only one lies in 7, then define it as
T,i 41 If none lies in 7, then the inner loop ends.

Lemma 3.4. With the notations and assumptions of Definition 3.5, the
chains are disjoint and their number I is also the number of inner leaves of T,.
Denote by (u;,v;) = Tg, 1 < i < I, the first element of each chain. Then
the vectors {u; : 1 < i < I, |lug|| < ||vill} are pairwise distinct, and likewise
{vi: 1<i <1 il > [losl]}-

Proof. Assume for contradiction that T,é = Tg for some 0 < i < j < I,
k < n;, £ < n;, where (4,4, k,¢) is minimal for lexicographic ordering. By
construction of the first element of each chain, one has £ > 1. One has k = 0,
since otherwise T} _; = Tj_, contradicting the minimality of (¢,7j,k,¢). Thus
S(TY) < S(T}) = S(T}), contradicting the definition of Tg.

By construction, the chains exhaust 7., are disjoint as shown in the above
paragraph, and each one ends at an inner leaf. Hence their number is the
number of inner leaves, as announced.

Assume that (u,v;) and (u, v;) are the first element of the chains C; and Cj,
with [|u|| < min{||v;|, |lv;||} and ¢ < j. Then v; = uq + ku and v; = uq + lu
for some 1 < k < ¢, by Proposition 3.1. Since (u,u4) < --- < (u,uy + fu), one
has (u,uq +ru) € Ty for all 0 < r < ¢. The two children of T = (u,us + ru)
are " = (u,uq + (r + 1)u) and 7" = (uq + (r + 1)u, uy + ru), and satisfy
S(T")—=S(T") = (uy +(r—1)u,uy +(r+1)u) > 0 for all » > 1. Hence Ty € C},
by construction of C;, see the inner loop, which is a contradiction. The result
follows. O
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Corollary 3.2. Let T, be a sub-forest of T. Then for some absolute con-
stant C,

4T, < C (1 + max S(T)) In (max {2, #L°(T2)}).

Proof. Denote by I := #L!(7.) the number of inner leaves, and s :=
max{S(T) : T € T.} the depth of T, as measured by S. By Lemma 3.4, T, is
the disjoint union of I chains, with ni,...,n; elements, and whose first element
we denote (ug,v1),..., (ur,vr). By Lemma 3.3 one has

I

! I
s+1 1
# =3 <Yl e < 2 ). 6

i=1

where (wy),>1 is an enumeration of Z? \ {0} sorted by non-decreasing norm.
In (3.4,r.h.s.) the constant 4 corresponds to the case |u;|| = ||v;]| and thus to
chains rooted in 7o by Lemma 3.1. The sum comes from the cases ||u;|| < ||vs|
or |lui|| > |lvs|| and from the injectivity property of Lemma 3.4. Observing that
|wr|| < CV/T and using (4.1, left) below, we conclude the proof. O

4. Complexity Estimates

This section concludes the proof of Theorem 1.1, dealing with the worst case
and average case complexity estimates in §4.1 and §4.2 respectively. Most
of the material has been prepared in §2 and §3. The following elementary
estimate serves in several occasions.

Lemma 4.1 ([10, Lemma 2.7]). For all r > 2, one has with C' an abso-
lute constant

1
Z e <Clar. (4.1)

0<lull<r
u€Z?

Corollary 4.1. For any r > 2, one has with C' an absolute constant

#{(u,v) € T : |lu|lllv|| <r} < Crlnr

Proof. We distinguish the cases |[ul| = ||v||, |lu]] < ||v||, and [Ju| > |v||.
In the first case one has (u,v) € Ty, see Lemma 3.1, so that the contribution
of these terms is 4. Otherwise, assuming w.l.o.g. that |ju|| < ||v|, one has
v = ug + ku for some k > 1, see Proposition 3.1. Therefore ||v] > k| ul|, thus
k < r/||lu||?, which is an upper bound for the number of possible choices of v
for a given u. Eventually we conclude the proof using (4.1),

#{(u,v) €T : Jull|jv] <r}-4<2 Z L—H:”QJ <2 Z —HUTHQ <Crlnr.
lulle2 o< ||lull <7

O
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4.1. Worst Case

We establish the upper bound on the cardinality N(F,«) of a minimal
(F, a)-acute stencil, announced in Theorem 1.1. The asymmetric norm F and
parameter « €]0,7/2] are fixed throughout this section.

Lemma 4.2. T(F,«) has at most Cln(u)/a? inner leaves, each obeying
S(T) < 5u/a?, where p:= max{2, u(F)} and C is an absolute constant.

Proof. The set T(F,«) is introduced in Corollary 3.1, and the quantity
S(T) in Definition 3.1. Denoting by L'(F, ) the set of inner leaves of T (F, a),
see Definition 3.4, we obtain

PHL(F, o) < Z max{ 4 r(u,v), £ (v, u)}>

TEL (F,a)
T=(u,v)

27
SC’/ max {1, tan ¢, — tan . } < C’'lnp.
0

We successively used (i) the inclusion £/(F,«) C T (F,«) and definition (3.3)
of T(F,a), (ii) Proposition 2.5 and (3.2), (iii) the integral upper bound (2.14).
The first announced point follows.

On the other hand, for each T' = (u,v) € T(F,«) one has by (3.3) and

Proposition 2.2
o < £p(u,v) < V/5pd(u,v),
and therefore since det(u,v) =1
o?/(5u) < £(u,v) = arctan(1/(u,v)) < 1/{u,v),
implying as announced that S(T') := (u,v) < 5u/a’. O

Corollary 4.2. #7(F,a) < Ct;1n 12—2“, with p := max{12, u(F)} and C
an absolute constant.

Proof. The announced estimate immediately follows from Lemma 4.2 and

Corollary 3.2. Note that 12—2“ > (}rn/§2 > 1. O

4.2. Average Case

Throughout this section, we denote by F an asymmetric norm, which is
continuously differentiable except at the origin. In the following, x>1 : R —
{0,1} denotes the indicator function of the set [1, cof.

Recall that T (F, «) is a family of pairs (u, v) of vectors, playing symmetrical
roles, see (3.3). Our first lemma breaks this symmetry, and lets v (or v) play a
preferred role through the introduction of auxiliary sets Z, (F, d, u), for suitable
§>0,0e{+,—}
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Definition 4.1. For each u € Z, 0 € {+,—}, § > 0, let Z,(F,d,u) collect
all v € Z such that

[tan pp(u)| > d|ulll|v|l, (u,v) >0, det(u,v) =o0l. (4.2)

Lemma 4.3. Let § = o?/C, where C is from Proposition 2.4. Then
T(F,«) is a subset of

{(u,v) € T : afull||lv] < CU{(u,v) € T :v € Z{(F,0,u)}
U{(u,v) €T :ue Z_(F,4,v)}.

Therefore for some absolute constant C’,

C/
#T(F,a) < —|Inal+ S> 0 #Z.(F6u). (4.3)
u€Z oe{+,—}
Proof.  Let (u,v) € T(F,a), so that £p(u,v) > a or £p(v,u) > a, see
(3.3). Then by Proposition 2.4, and recalling that ||ull|jv]|£(u,v) < 1, see

Lemma 3.2, we obtain
1
Julllolla? < € mas { o tan op ()], | tan ep(0)]

The announced inclusion follows, implying the cardinality estimate by Corol-
lary 4.1. O

The next lemma estimates the cardinality of each Z,(F,d,u) individually.
Recall that uy is defined in Proposition 3.1.

Lemma 4.4. For eachu € Z, 0 € {+,—}, § > 0, one has Z,(F,6,u) =0
if lu|l > w(F)/6, and else

| tan pr(u)|

| tan o (u)|
ST 7) (4.4)

#Z(F,0,u) <
O]lulll[uc]|

—|—X21(

Proof. From definition (4.2, right) we obtain v = u, + ku for some k > 0.
One has ||uy + ku|| > max{||uc||, k|lu| }, see Proposition 3.1, hence the inequal-
ity k < (tan op(u))/(d]|u||?) which accounts for the first contribution in (4.4).
The second contribution corresponds to the case k = 0.

Finally, if ||u| > w(F)/0 then (4.2,1eft) yields |tan@p(u)| > §lul|||v|| >
w(F), since ||v]| > 1, in contradiction with |tan o (u)| < p(F) see (2.7). This
concludes the proof. O

In view of (4.3) and towards the average case estimate of 7 (F o Ry), where
Ry denotes the rotation of angle 6 € [0, 27], we consider the following integral.
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Let 0 < 6 <1 be fixed.

27
Z #Z,(F o Ry,6,u)dd
uez 0
- /27r | tan o (Rou)| |tang0F(R9u)|> a0 (4.5)

X>1(
lull <p(F) /870 O ull® - S|l |||

tan tan 0
. / | 90F2 +X21(‘ or( )‘)de,
O] Ol | [
lull<u(F)/6
where implicitly v € Z in each of the sums. Recall that ¢ is defined both on
non-zero vectors and on reals, by taking the argument see Definition 2.2, and
that on R it is 27w-periodic.

The first contribution of (4.5) is separable w.r.t. § and u, hence can be
bounded as follows:

2 2
[tanp(9)] 1 / 1
T Adl = | tan o (6)|df E —
/ 3lull® 3 Jo ul]?

lull<n(F)/s 70 0<lul|<u(F)/s
C 1
< — s .
< 6111(#)111(5), (4.6)

where p := max{2, u(F)}. We used Corollary 2.1 to upper bound the integral
w.r.t. #, and Lemma 4.1 for the summation over u.

In contrast, the second contribution in (4.5) is non-separable, motivating
the following lemma.

Lemma 4.5. For allr > 2, 0 € {+,—}, one has with C an absolute con-
stant r
Z X>1 (7) <Crlar. (4.7
2 g

Proof. For each u € Z one has (u,us) € T and (u_,u) € T. Hence (4.7)
is bounded by the cardinality of {(u,v) € T : |Jul|||v]] < r}, which is estimated
in Corollary 4.1. O

The second contribution of (4.5) is bounded as follows, denoting r(6) :=
max{2, |tan ¢ (0)|/d},

/2” XZl(M)da < C/O% r(6) Inr(6) 6

llull <p(F) /670 Slullflue |

< C/()Q”maX{ZW;F(Qﬂ} In (%)de = ClnTM In (%)’

where we used successively (i) Lemma 4.5, (ii) the uniform upper bound
|tan o (0)] < u(F) see Lemma 2.3, and (iii) the L' estimate of | tan ¢ | estab-
lished in Corollary 2.1. Together with (4.6), this proves that (4.5) is bounded
by CIHT” In £. In view of Lemma 4.3, this concludes the proof of Theorem 1.1.
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Appendix

A. Semi-Lagrangian Discretization of Finslerian Eikonal
Equations

We present an elementary introduction to numerical methods for the com-
putation of generalized traveltimes and distance maps, focusing on single pass
semi-Lagrangian methods [16, 6, 15, 4, 1, 10, 9], at the expense of alternative
approaches such as [8, 4], which is the context underlying of the problem stud-
ied in this paper. An open source code implementing this method is available
on the author’s webpage github.com/Mirebeau.

Figure A.1l. Left: Unit sphere {F = 1} of a norm F', which is asymmetric in the
second and third row. The origin is marked with a point. Center: Minimal (F, «)-
acute stencil for a = 7/2 (solid), 7/3 (dashed), m/4 (dotted). Right: Function ¢p
(solid), 1} (dashed, above), ¥ (dotted, below). Vertical bars correspond to the
angles of the stencil points.

The main result of this section is Proposition A.1 known as acuteness im-
plies causality [15]. Tt requires that the numerical method be based upon
strictly acute stencils, in the sense of Definition 1.3 with o < /2. Under this
condition, one can compute an approximate travel time Ty (x), at a given dis-
cretization point x € ), where h is the grid scale, in terms of suitable neighbor
values T, (z + hu;) and Tp,(z + hu;11) no greater than T}, (z) — he, where € > 0
is uniform over the domain. As a result, Tj, can be efficiently computed in a
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single pass over the domain using the fast-marching algorithm, similar to Di-
jkstra’s method on graphs, which deals with vertices in the order of increasing
values of Tj. In addition let us mention that uniform causality, a.k.a. € > 0, is
a stable property which is also satisfied by suitably small perturbations of the
numerical scheme, such as those related to second order accuracy [14] and to
source factorization [8].

Consider a bounded domain Q C R?, equipped with a Finslerian metric
F :QxR% (z,u) — Fu(u). In other words, F is a continuous mapping, and
F. () is an asymmetric norm for each z € 2 in the sense of Definition 1.1. The
Finslerian distance from z to y € § is defined as

1
dr(z,y) == inf / Foo (D) dt,
vy JO

Tuy = {7y € Lip([0,1],9) : 7(0) =z, 4(1) = y}.

One is interested in the distance from the boundary, T'(z) := min{dr(x,y) :
y € 90} often referred to as the “escape time” from the domain, which under
mild assumptions is the unique viscosity solution [2] to the following (general-
ized) eikonal PDE, written in Bellman form:

iné Fo(u) +(VT(z),u) =0, VxeQ, T(z) =0, Vze . (A1)
ueSt

Note that the PDE remains equivalent if the unit circle S? is replaced with any
curve enclosing the origin. In particular, we can consider the closed polygonal
line defined by a stencil, see Definition 1.3, possibly depending on x € Q and
denoted wu1(x),...,Up()(z) where n(x) > 4. In the following, the explicit
dependency w; = u;(x) w.r.t. the base point x € Q is often omitted readability,
and by convention uy ()41 = u1.

Consider a grid scale h > 0, and introduce the sets €, := QN hZ? and
oy, == (R?\ Q) N hZ? devoted to the discretization of 2 and 9. Semi-
Lagrangian numerical schemes for the eikonal equation mimick (A.1) as follows:
find T}, : hZ? — R such that

i in F((1—s)u i
1 iy (7 o+ i)
T (1 — S)Th(iE + huz) + STh(l‘ + hui+1) - Th(z)
h

equals 0 for all z € Qp, with again the boundary condition T} (z) = 0 for all
x € 0.

(A.2)

Proposition A.1 (Acuteness implies causality [15]). Assume that
u1 (), ..., Un(e) () is an (Fy, a)-acute stencil, where o €10, 7/2[. Assume also
that (A.2) vanishes, and that the minimum is attained for some 1 < i < n(x)
and s €]0,1[. Then

Ty (z) > hcos(a) Fy(u;) + Thx + huy),
Th(x) > hcos(a)Fg(tiv1) + Th(x + huigq).
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Proof. A standard analysis based on Lagrange’s optimality conditions
shows that

hATV Fp((1 = s)u; + sui1) + (Tf?ix:h};?i)l)) = Ta(@) G) ’

where A is the matrix of columns u; and u;41, see the Appendix of [15] or the
Appendix of [10]. Considering this vector equality componentwise yields the
announced result. O
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