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ABSTRACT

Integro-differential equations for anti-plane cracks in functionally graded piezo-
electric solid in a frequency domain are solved by using Mathematica. Exponen-
tial variation of the material parameters is considered. The numerical solution
provides crack opening displacement from which the generalized stress inten-
sity factor is determined. A validation and a parametric study is presented to
demonstrate the accuracy of the solution and its dependance on the dynamic
load.
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1 Introduction

Numerical solution of integro-differential equations (IDE) for coupled problems like piezo-
electric system is a tool for fracture mechanics models. The importance of investigation
of functionally graded piezoelectric materials (FGPM) is due to their application in trans-
ducers, actuators, wave generators and other smart intelligent systems. During the man-
ufacturing process and also in service conditions cracks and other defects can appear that
cause failure of these devises. There are mainly two semi-analytical numerical methods for
studying of the elastodynamic problems in inhomogeneous domains. One of them is the
dual integral equation method, see [4], [3], [8], [9] and [12], where anti-plane line cracks in
domains with exponentially varying properties in parallel or perpendicular direction to the
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crack line is studied. The boundary value problem (BVP) is transformed to a dual integral
equations on the crack line and SIF is obtained as a solution of a suitable Fredholm inte-
gral equation. Other method is boundary integral equation method (BIEM) treated in [5]
and [11], where arbitrary shaped anti-plane cracks in domains with quadratic, sinusoidal
or exponential inhomogeneity is investigated. The BVP is transformed to an equivalent
IDE on the crack and crack opening displacement (COD) is found using BIEM. In this
case the solution can be obtained in every point of the domain, together with the stress
intensity factor (SIF) - the leading coefficient in the asymptotic of the solution near the
crack edges.

The aim of the work is to solve an IDE for anti-plane cracked FGPM with exponen-
tially varying properties. Fundamental solution obtained by using the Radon transform is
implemented in the created by Mathematica software numerical code. The applicability
of the method is demonstrated by numerical examples.

2 Statement of the problem

We consider a piezoelectric plane with an arbitrary shaped finite crack Scr = S+
cr ∪ S−

cr -
an open arc, poled in x3 - direction and subjected to time-harmonic loading.

The mechanical and electrical loading is assumed to be such that the only nonvanishing
displacements are the anti-plane mechanical displacement u3(x, t) and the in-plane electri-
cal displacements Di = Di(x, t), i = 1, 2, x = (x1, x2). Since all fields are time-harmonic
with the frequency ω the common multiplier eiωt is suppressed here and in the following.
For such a case, assuming quasi-static approximation of piezoelectricity, the field equation
in absence of body force is given by the balance equation

σi3,i + ρω2u3 = 0, Di,i = 0, (1)

the strain - displacement and electric field - potential relations

si3 = u3,i, Ei = −Φ,i, (2)

and the constitutive relations, see [7]

σi3 = c44si3 − e15Ei,
Di = e15si3 + ε11Ei.

(3)

The subscript i = 1, 2 and comma denotes partial differentiation. Here σi3, si3, Ei, Φ
are the stress tensor, strain tensor, electric field vector and electric potential, respectively.
Furthermore, ρ(x) > 0, c44(x) > 0, ε11(x) > 0 are the inhomogeneous mass density, the
shear stiffness, piezoelectric and dielectric permittivity characteristics. Introducing (3)
and (2) into (1) leads to the coupled system

(c44u3,i),i + (e15Φ,i),i + ρω2u3 = 0,
(e15u3,i),i − (ε11Φ,i),i = 0.

(4)

where the summation convention over repeated indices is applied. The basic equations can
be written in a more compact form if the notation uJ = (u3,Φ), J = 3, 4 is introduced.
The constitutive equations (3) then take the form

σiJ = CiJKluK,l, i, l = 1, 2, (5)
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where Ci33l =

{
c44, i = l
0, i 6= l

, Ci34l =

{
e15, i = l
0, i 6= l

, Ci44l =

{ −ε11, i = l
0, i 6= l

and equation

(4) is reduced to
σiJ,i + ρJKω2uK = 0, J,K = 3, 4, (6)

where ρJK =

{
ρ, J = K = 3
0, J = 4 or K = 4

.

Along the crack line it is supposed

tJ = 0 on Scr, (7)

where tJ = σiJni and n = (n1, n2) is the outer normal vector to S+
cr. The boundary

condition (7) means that the crack faces are free of mechanical traction as well as of
surface charge, i.e. the crack is electrically impermeable.

We further assume that the mass density and material parameters vary in the same
manner with x, through function h(x) = e2〈a,x〉, where 〈., .〉 means the scalar product in
R2, and a = (a1, a2), such that

c44(x) = c044h(x), e15(x) = e015h(x), ε11(x) = ε011h(x), ρ(x) = ρ0h(x). (8)

One way to solve the problem (6), (7) numerically is to transform it into the equivalent
integro-differential equation along the crack Scr. This can be done if we are able to use
an appropriate fundamental solution for the equation (6).

3 Fundamental solution and free field solution

3.1 Fundamental solution

The fundamental solution of the equation (6) is defined as solution of the equation

σ∗
iJM,i + ρJKω2u∗KM = −δJMδ(x, ξ), (9)

where σ∗
iJK = CiJMlu

∗
KM,l, J,K,M = 3, 4, i, l = 1, 2, δ is the Dirac function, x = (x1, x2),

ξ = (ξ1, ξ2) and δJM is the Kronecker symbol. For the considered inhomogeneity function
h(x) the fundamental solution is obtained in [10] as follows. First the equation (9) is
transformed by a suitable change of functions to an equation with constant coefficients.
In a second step we apply Radon transform which allows the construction of a set of
fundamental solutions depending on the roots of the characteristic equation of the obtained
ODE-system. Finally, using both the inverse Radon transform and the inverse change of
functions, the fundamental solutions of equation (6) is obtained in a closed form. In the
first step the smooth transformation u∗KM = h−1/2U∗

KM applied to (9) gives

C0
iJKiU

∗
KM,ii + [ρ0JKω2 − C0

iJKia
2
i ]U

∗
KM = h−1/2(ξ)δJMδ(x, ξ). (10)

To solve the equation (10) we use the Radon transform, see Zayed [16]. In R2 it is
defined for the set f ∈ = of rapidly decreasing C∞ functions is defined as, , f̂(s,m) =
R[f(x)] =

∫
〈m,x〉=s f(x)dx =

∫
f(x)δ(s − 〈m,x〉)dx with the inverse transform f(x) =

1
4π2

∫
|m|=1K(f̂(s,m)|s=〈m,x〉dm, K(f̂) =

∫∞
−∞

∂σ f̂(σ,m)
s−σ dσ. Applying the Radon transform

to both sides of (10) we get with pJK = C0
iJKia

2
i

[C0
iJKim

2
i ∂

2
s + (ρ0JKω2 − pJK)]Û∗

KM = −h−1/2(ξ)δJMδ(s− 〈ξ,m〉), (11)
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These two systems of two linear second order ordinary differential equations are solved

following [13]. Denote γ = (ρ0ω2 − a0p)a
−1
0 , a0 = c044 +

e0215
ε011

, ω0 =
√

a0
ρ0
|a|. Due to the

frequency ω we obtain the solutions of (11) as follows:
(i) γ > 0, i.e. ω > ω0, k =

√
γ,

Û∗
33 = h−1/2(ξ) i

2ka0
eik|s−τ |, Û∗

34 = h−1/2(ξ) i
2ka0

e015
ε011

eik|s−τ |

Û∗
43 = Û∗

34, Û∗
44 = h−1/2(ξ)[ i

2ka0
(
e015
ε011

)2eik|s−τ | + 1
ε011

1
2|a|e

|a||s−τ |];
(12)

(ii) γ = 0, i.e. ω = ω0

Û∗
33 = −h−1/2(ξ) 1

2a0
|s− τ |, Û∗

34 = −h−1/2(ξ) 1
2a0

e015
ε011

|s− τ |
Û∗
43 = Û∗

34, Û∗
44 = −h−1/2(ξ)[ 1

2a0
(
e015
ε011

)2|s− τ |].
(13)

(iii) γ < 0, i.e. ω < ω0, k =
√

|γ|,

Û∗
33 = −h−1/2(ξ) 1

2ka0
ek|s−τ |, Û∗

34 = −h−1/2(ξ) 1
2ka0

e015
ε011

ek|s−τ |

Û∗
43 = Û∗

34, Û∗
44 = −h−1/2(ξ)[ 1

2ka0
(
e015
ε011

)2ek|s−τ | − 1
ε011

1
2|a|e

|a||s−τ |].
(14)

In order to obtain the fundamental solution we finally have to apply inverse Radon trans-
form to Û∗

KJ . Since the functions Û∗
KJ are linear combinations of eiq|s−τ |, eq|s−τ | and

|s− τ |, for the first part of the inverse Radon transform the formulas

K(eiq|s−τ |) = −iq{iπeiqβ − 2[ci(qβ) cos(qβ) + si(qβ) sin(qβ)]}|β=|s−τ |,
K(eq|s−τ |) = q{2[chi(qβ) cosh(qβ)− shi(qβ) sinh(qβ)]}|β=|s−τ |,
K(|s− τ |) = 2 lnβ|β=|s−τ |,

(15)

are used where ci(η) = − ∫∞
η

cos t
t dt, si(η) = − ∫∞

η
sin t
t dt are the cosine integral and sine

integral functions and chi(η) = − ∫ η
0

cosh t−1
t dt + ln η + C, shi(η) = − ∫ η

0
sinh t

t dt are the
hyperbolic cosine and sine integral functions with Euler’s constant C, see Bateman and
Erdelyi [2].

After having obtained Û∗
KJ by completing inverse Radon transforms the final form of

the fundamental solution is derived from the smooth transformation.

3.2 Free field solution

We are asking for a solution of Eq. (6) of the form

u(x, η) = h−1/2(x)U(x, η) = h−1/2peik<x,η>,
p = (p1, p2), η = (η1, η2), |η| = 1,

(16)

where p is a polarization vector, k is wave number and η is a direction of the incident
wave. Again there are three cases with respect to ω.

(i) ω > ω0. In this case k = ±
√

ρ0ω2

a0
− |a|2, the corresponding polarization vector is

p = (1,
e015
ε011

) and

u(x, η) = e−<a,x>

(
1
e015
ε011

)
eik<x,η>

t3(x, η)|Scr = a0 < ikη − a, n > e<a+ikη,x>, t4(x, η)|Scr = 0.

(17)
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(ii) ω = ω0. In this case k = 0, the corresponding polarization vector is p = (1,
e015
ε011

)

and

u(x, η) = e−<a,x>

(
1
e015
ε011

)

t3(x, η)|Scr = −a0 < a, n > e<a,x>, t4(x, η)|Scr = 0.

(18)

(iii) ω < ω0. In this case k = ±i
√

|ρ0ω2

a0
− |a|2|, the corresponding polarization vector

is p = (1,
e015
ε011

) and

u(x, η) = e−<a,x>

(
1
e015
ε011

)
e|k|<x,η>

t3(x, η)|Scr = a0 < |k|η − a, n > e<a+|k|η,x>, t4(x, η)|Scr = 0.

(19)

4 Non-hypersingular BIEM

The non-hypersingular traction based BIE is derived following the procedure given by [6]
and [15] . Using superposition principle the displacements and the traction are represented
as uJ = uinJ + uscJ , tJ = tinJ + tscJ where uinJ , tinJ is the free field solution and its traction on
Scr derived in section 3.2. From the boundary condition (7) we have tscJ = −tinJ on Scr.
Let us introduce the smooth change of functions

uJ(x, ω) = e−<a,x>WJ(x, ω). (20)

and suppose that WJ(x, ω) satisfies Sommerfeld-type condition on infinity, more specifi-
cally

W3 = o(|x|−1),W4 = o(e−|a||x|) for |x| → ∞. (21)

Condition (21) ensure uniqueness of the scattering field uscJ for a given incident field uinJ .
Following Akamatsu and Nakamura [1] it can be proved that the boundary value problem
(BVP) (6), (7) admit continuous differentiable solutions.

For uJ , u
∗
JK we apply the Green formula in the domain ΩR \Ωε, ΩR is a disk with large

radius R and Ωε is a small neighborhood of Scr. Applying the representation formulae
for the generalized displacement gradient uK,l, see [15] an integro-differential equation on
∂ΩR ∪ ∂Ωε is obtained. Using the condition (20) integrals over ∂ΩR go to 0 for R → ∞.
Taking the limit ε → 0, i.e. x → Scr and using the boundary condition (7), i.e. tscJ = −tinJ
on Scr the following system of BIE is equivalent to the BVP (6), (7)

−tinJ (x) = CiJKlni(x)

∫

Scr

[(σ∗
ηPK(x, y)∆uP,η(y)− ρQPω

2u∗QK(x, y)∆uP (y))δλl

−σ∗
λPK(x, y)∆uP,l(y)]nλ(y)dS, x ∈ Scr

(22)

Here, u∗JK is the fundamental solution of (9), derived in section 3.1, σ∗
iJQ = CiJKlu

∗
KQ,l is

the corresponding stress, and ∆uJ = uJ |S+
cr
−uJ |S−

cr
is the generalized COD. Equation (22)

constitute a system of integro-differential equations for the unknown ∆uJ on the crack
line Scr. From its solution the generalized displacement uJ at every internal point of the
plane can be determined by using the corresponding representation formulae, see [11].
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5 Numerical realization and results

5.1 Numerical realization

The numerical procedure for the solution of the boundary value problem follows the nu-
merical algorithm developed and validated in [6] and [11]. The crack Scr is discretized by
quadratic boundary elements (BE) away from the crack-tips and special crack-tip quarter-
point BE near the crack-tips to model the asymptotic behavior of the displacement and
the traction. Applying the shifted point scheme, the singular integrals converge in Cauchy
principal value (CPV) sense, since the smoothness requirements ∆uJ ∈ C1+α(Scr) of the
approximation are fulfilled. Due to the form of the fundamental solution as an integral
over the unit circle, all integrals in Eq. (22) are two dimensional. In general there appear
two types of integrals - regular integrals and singular integrals, the latter including a weak
”ln r” type singularity and also a strong ”1

r” type singularity. The regular integrals are
solved using quasi Monte Carlo method, while the singular integrals are solved with a
combined method - partially analytically as CPV integrals.

After the discretization procedure an algebraic linear complex system of equations is
obtained and solved. The program code based on Mathematica has been created following
the above outlined procedure.

The mechanical dynamic SIF KIII , the electrical displacement intensity factor KD and
the electric intensity factor KE are obtained directly from the traction nodal values ahead
of the crack-tip. For example, in case of a straight crack, the interval (−c, c) on the Ox1
axis, the expressions are

KIII = limx1→±c t3
√
2π(x1 ∓ c), KD = limx1→±c t4

√
2π(x1 ∓ c),

KE = limx1→±cE3

√
2π(x1 ∓ c), E3 =

e15
e215+c44ε11

(−e15t3 + c44t4),
(23)

where tJ is the generalized traction at the point (x1, 0) close to the crack-tip.
Mathematic’s code consists of the following parts:
(i) Definition of the material parameters, crack geometry, BE and quadratic approxi-

mation;
(ii) Definition of the fundamental solution, its derivatives and the asymptotic for small

arguments;
(iii) Definition of the integro-differential equations and the anti-plane load;
(iv) Solution of the integrals and forming the system of linear equations for the un-

knowns COD;
(v) Solution of the linear system;
(vi) Formulae for the solution in every point of the plane;
(vii) Evaluation of the SIF - the leading coefficients in the asymptotic of the solution

near the crack edges.
The main points in the solution procedure are (iv) and (v). In (iv) the integrals over the

BE are two-dimensional (in the intrinsic coordinates in the domain (z, ϕ) ∈ [−1, 1]×[0, 2π])
with regular and singular kernels: with weak singularity as O(log r) and with strong
singularities O(1/r). The regular integrals are solves using AdaptiveMonteCarlo Method
with 300 points. The singular integrals are solved analytically with respect to r and
numerically with respect to ϕ, and due to their oscillatory behaviour they are treated as
0.5 by two dimensional integral and solved again with AdaptiveMonteCarlo Method. The
difficulties in (v) (due to the fact that the material parameters vary in the rate of 1010:
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for mechanical stiffness c44, 10 for the piezoelectric parameter e15 and for the dielectric
parameters ε11 in the rate of 10−10) are got over using functions Solve or FindInstance.
The existing analytical solution of [14] for the homogeneous case FGPM helps for the
validation of the BIEM solution.

5.2 Numerical results

The material used in the numerical examples is PZT-4, whose data are c044 = 2.56 ×
1010N/m2, e015 = 12.7C/m2, ε011 = 64.6 × 10−10C/V m and ρ0 = 7.5 × 103kg/m3. The
crack half-length is c = 5mm, it lies on the interval (−c, c) ∈ Ox1 and is discretized by
5 BE. In the figures it is plotted the absolute value of the normalized SIF K∗

III = KIII

τ
√
πc
,

τ = tin3 versus normalized frequency Ω = c
√

ρ0/a0ω.
The validation study is presented in Figure 1 for the homogeneous PEM. The BIEM

result is compared in with the result of [14]. It is observed that the maximum difference
between both results obtained by different methods is about 7% - 10%.

In Figure 2 is given the BIEM solution for rc = 0.2, α = π/2 and for α = 0. In
this case the critical value of the normalized frequency is Ω0 = 0.2 where a jump of the
SIF appears. For Ω0 > Ω the dynamic behaviour is simple vibration, while for Ω0 < Ω
the dynamic behaviour is wave propagation and the curve is similar to the homogeneous
case in Figure 1. Also for α = 0 the SIF at the left crack-tip is higher then at the right
crack-tip, while for α = π/2 the value of the SIF in both crack-tips is equal.

For rc = 0.3 and α = π/3 it is presented the result for normalized SIF K∗
III in Figure

3. Again the jump of the SIF appear at the critical Ω0 = 0.3. It is observed that the
maximum value of SIF on Figure 3 is less then the maximum value of SIF on Figure 2.
Numerical examples show the depends on the magnitude r and on the direction α of the
material inhomogeneity as well as the different behaviour of the SIF with respect to the
critical value Ω0.
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0.1 0.3 0.5 0.7 0.9 1.1 1.3

BIEM Wang, Meguid [1 ]3

K
III
*

Figure 1: Normalized SIF KIII of a finite crack in a piezoelectric homogeneous plane.

6 Conclusions

Presented is numerical solution of integro-differential equations for anti-plane cracked
FGPM. Using the derived with Radon transform fundamental solutions an efficient BIEM
and a Mathematica program code is developed. Numerical examples for SIF computation
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Figure 2: Normalized SIF KIII of a finite crack in a piezoelectric inhomogeneous plane,
rc = 0.2
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Figure 3: Normalized SIF KIII of a finite crack in a piezoelectric inhomogeneous plane,
rc = 0.3.

are presented. The proposed methodology, numerical solution and program code can be
applied for problems in non-destructive material testing as well as for solution of inverse
problems in finite solids.
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