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In this paper a polynomial Cellular Neural Network (CNN) model of Newell-Whitehead

equation is introduced. Local activity domain and edge of chaos domain of the parameter

space is found for the model. Numerical simulations of the CNN dynamics confirm the so

called phenomena edge of chaos and help the better understanding of genesis and emergence

of complexity in Newell-Whitehead equation.
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1. Introduction

Reaction-diffusion type of equations are widely used to describe phe-
nomena in different fields, as biology-Fisher model [1], FitzHugh-Nagumo nerve

conduction model [1,10], Vector-disease model, chemistry - Brusselator model,
physics - Sine-Gordon model [9], etc. In his pioneering work, Fisher [1] used a
logistic-based reaction-diffusion model to investigate the spread of an advanta-

geous gene in a spatially extended population.The generalized diffusion equation
with a nonlinear source term which encompasses the Fisher, Newell-Whitehead
and Fitzhugh-Nagumo equations as particular forms and appears in a wide va-

riety of physical and engineering applications. Modulation equations play an
essential role in the description of systems which exibit patterns of nearly peri-
odic nature. The so called Newell-Whitehead equation [7] is derived to describe

the envelope of modulated roll-solutions with two large extended or unbounded
space direction.

Cellular Neural Networks (CNNs) are complex nonlinear dynamical sys-
tems, and therefore one can expect interesting phenomena like bifurcations and

chaos to occur in such nets. It was shown that as the cell self-feedback coeffi-
cients are changed to a critical value, a CNN with opposite-sign template may
change from stable to unstable [3]. Namely speaking, this phenomenon arises as
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Figure 1. 3 × 3 neighborhood CNN.

the loss of stability and the birth of a limit cycles [3]. Moreover, the appearance
of a strange attractor in a periodically driven two-cell CNN have been reported.

In a three-cell autonomous CNN this attractor has properties similar to the
double scroll attractor [3].

Let us consider a two-dimensional grid with 3 × 3 neighborhood system

as it is shown on Fig.1.
The squares are the circuit units - cells, and the links between the cells

indicate that there are interactions between linked cells. One of the key features

of a CNN is that the individual cells are nonlinear dynamical systems, but that
the coupling between them is linear. Roughly speaking, one could say that these
arrays are nonlinear but have a linear spatial structure, which makes the use of

techniques for their investigation common in engineering or physics attractive.
We will give the general definition of a CNN which follows the original

one [2]:

Definition 1. The CNN is a

a). 2-, 3-, or n- dimensional array of
b). mainly identical dynamical systems, called cells, which satisfies two prop-

erties:
c). most interactions are local within a finite radius r, and
d). all state variables are continuous valued signals.
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Definition 2. An M ×M cellular neural network is defined mathematically by
four specifications:

1). CNN cell dynamics;
2). CNN synaptic law which represents the interactions (spatial coupling)

within the neighbor cells;

3). Boundary conditions;
4). Initial conditions.

Now in terms of definition 4 we can present the dynamical systems de-
scribing CNNs. For a general CNN whose cells are made of time-invariant circuit
elements, each cell C(ij) is characterized by its CNN cell dynamics :

(1) ẋij = −g(xij , uij , I
s
ij),

where xij ∈ R
m, uij is usually a scalar. In most cases, the interactions (spatial

coupling) with the neighbor cell C(i + k, j + l) are specified by a CNN synaptic
law:

(2) Is
ij = Aij,klxi+k,j+l + Ãij,kl ∗ fkl(xij , xi+k,j+l) + B̃ij,kl ∗ ui+k,j+l(t) .

The first term Aij,klxi+k,j+l of (2) is simply a linear feedback of the states
of the neighborhood nodes. The second term provides an arbitrary nonlinear

coupling, and the third term accounts for the contributions from the external
inputs of each neighbor cell that is located in the Nr neighborhood.

Complete stability, i.e. convergence of each trajectory towards some sta-
tionary state, is a fundamental dynamical property in order to design CNN’s for

accomplishing important tasks including image processing problems, the imple-
mentation of content addressable memories and the solution of combinatorial
optimization problems [4]. The most basic result on complete stability is cer-

tainly the one requiring that the CNN interconnection matrix Ã be symmetric

[2]. Also some special classes of nonsymmetric CNN’s such as cooperative (ex-
citory) CNN’s, were shown to be completely stable [4]. In the general case,
however, competitive (inhibitory) CNN’s may exhibit stable nonlinear oscilla-
tions [4].

It is known [3] that some autonomous CNNs represent an excellent ap-
proximation to nonlinear partial differential equations (PDEs). In this paper
we will present the receptor-based model by a reaction-diffusion CNNs. The

intrinsic space distributed topology makes the CNN able to produce real-time
solutions of nonlinear PDEs. Consider the following well-known PDE, generally
referred to us in the literature as a reaction-diffusion equation [1]:

∂u

∂t
= f(u) + D∇2u,
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where u ∈ R
N , f ∈ R

N , D is a matrix with the diffusion coefficients, and ∇2u
is the Laplacian operator in R

2. There are several ways to approximate the

Laplacian operator in discrete space by a CNN synaptic law with an appropriate
A-template [8,9].

In this paper we shall study the Newell-Whitehead equation [7] of the

form:

(3)
∂u

∂t
=

∂2u

∂x2
+ au − bu3,

where a and b are positive parameters. Partial differential equations of diffusion
type have long served as models for regulatory feedbacks and pattern formation.

Such systems cause some difficulty, since both existence and behavior of the
solutions are more difficult to establish. Many aspects of qualitative behavior
have to be investigated numericallly. For this purpose we apply the Cellular

Neural Networks (CNN) approach for studying such models.
In Section 2 we shall construct our Polynomial Cellular Neural Network

(PCNN) model for Newell-Whitehead equation (3). In Section 3 we shall define

the local activity parameter domain as well as edge of chaos phenomena. This
will help us to understand better the genesis and emergence of complexity. Nu-
merical simulations of the CNN dynamics will show the so called phenomena

edge of chaos [5,6].

2. Polynomial Cellular Neural Network Model

In a recently proposed VLSI development [11] a first CNN based hard-
ware implementation with polynomial weight functions has been presented. Let
us consider a m-layer polynomial CNN with cells C l(i) (arranged in a one-

dimensional grid on each layer) assuming only coupling between adjacent layers
with the following state equation

(4) ẋl
i(t) = f l(x1

i , . . . , x
l
i, . . . , x

m
i ) +

1
∑

i1=−1

. . .

1
∑

in=−1

xl
i+in

ain ,

where l = 1, . . . ,m, ij is the jth component of the index vector i (with ij ∈
{−1, 0, 1}∀j ∈ N), i is the spatial coordinate vector and ain are the elements of
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the following A -template:

ain =































−2n i1 = i2 = . . . = in = 0

1
n
∑

j=1
|ij | = 1

0
n
∑

j

|ij | > 1.

For the purpose of modelling, a concrete representation of f l(.) is needed
that covers a wide class of possible functions. Consider the following simplified

representation of f l(.)

(5) f l(x1
i , . . . , x

m
i ) = Pl,l(x

l
i) + Pl,l−1(x

l−1
i ) + Pl,l+1(x

l+1
i ),

with functions Pl,l′(.) defined by the polynom

Pl,l′(x
l′

i ) =

K
∑

k=0

b
(k)
ll′

(xl′

i )k

For the reaction-diffusion Newell-Whitehead equation (3), the correspond-
ing polynomial CNN model can be write as the following system:

(6)
duj

dt
= A1 ∗ uj + f(uj), 1 ≤ j ≤ N,

where A1 : (1,−2, 1) is one-dimensional discretized Laplacian template, ∗ is
convolution operator,the variable u from (3) is mapped to e reaction-diffusion
CNN with polynomial order three and the cell states uj represent the solution

u leading to state equations given by (6). Here,

f(uj) = b1(uj) + b2(uj)
2 + b3(uj)

3 + v1

is Taylor series expansion of the functions f(u) = au − bu3.

In order to use a general CNN structure for a broad class of nonlinearities,
a Taylor serie expansion (TSP) of the feedback function may be helpful, leading
directly to above mentioned CNN with polynomial weight functions. Therefore

the template coefficients in equation (6) are identified by the series expansion
coefficients of the feedback function.

A numerical integration of (6) with the initial conditions uj(0) = 0 leads

to the solution which is shown on Fig.2:

Remark 1. In order to model a system represented by solutions of (3) using
PCNN (6) the coefficients bi have to be determined in an optimization process.
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Figure 2. Simulation of PCNN model (6).

Thereby the solutions in Fig.3 was used as reference. During the optimization
process the mean square error

emse =
∑

i

∑

j

2
∑

l=1

(ul
j − ũl

j)
2

n

can be minimized using Powells method and Simulated Annealing [11]. In each

step emse is calculated by taking the reference ul
j(t) and the output ũl

j of PCNN
obtained by simulation system MATCNN applying 4th- order Runge-Kutta in-
tegration. In order to minimize the computational complexity and to maximize
the significance of the mean square error only outputs of 10 cells are taken into

account.

3. Edge of chaos in the Newell-Whitehead CNN model

The theory of local activity provides a definitive answer to the funda-
mental question: what are the values of the cell parameter for which the in-
terconnected system may exibit complexity? The answer is given in [4,5] - the
necessary condition for a nonconservative system to exibit complexity is to have

its cell locally active. The theory which will be presented below and which
follows [5] offers a constructive analytical method for uncovering local activity.
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In particular, for diffusion CNN model, one can determine the domain of the
cell parameters in order for the cells to be locally active, and thus potentially

capable of exhibiting complexity. This precisely defined parameter domain is
called the edge of chaos [5,6].

We apply the following constructive algorithm:

1. Map Newell-Whitehead equation (3) into the following associated discrete-

space version which we shall call Newell-Whitehead PCNN model:

(7)
duj

dt
= A1 ∗ uj + f(uj), 1 ≤ j ≤ N

2. Find the equilibrium points of (7). According to the theory of dynamical
systems the equilibrium points u∗ of (7) are these for which :

(8) A1 ∗ u∗ + f(u∗) = F (u∗) = 0

Equation (8) may have one, two or three real roots u∗

1, u∗

2, u∗

3, respec-

tively. In general, these roots are functions of the cell parameters a, b.
In other words, we have u∗

k = u∗

k(a, b), k = 1, 2, 3.
3. Calculate now the Jacobian matrix of (8)about each system equilibrium

point E∗

1 = (u∗

1), E∗

2 = (u∗

2), E∗

3 = (u∗

3). In our particular case the asso-
ciate linear system in a sufficient small neighborhood of the equilibrium
points E∗

i can be given by

dz

dt
= DF (E∗

i )z, i = 1, 2, 3,

DF (E∗

i ) = J is the Jacobian matrix of each of the equilibrium point and

can be computed by:

(9) Jps =
∂Fp

∂us

|u=E∗

i
, 1 ≤ p, s ≤ N.

In our particular case the Jacobian matrix is:

(10) J = A1 + (a − 3b(u∗)2)Id,

Id is the identity matrix.

4. Calculate the trace Tr(E∗

k) =
N
∑

q=1
λq = trace [A1 + (a − 3b(u∗)2)Id].

5. We shall identify the cell state variables uj as follows: uj is associated
with the node-to-datum voltage at node (j) of a two-dimensional grid
G of linear resistors. The importance of the circuit model is not only in

the fact that we have a convenient physical implementation, but also in
the fact that well-known results from classic circuit theory can be used
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to justify the cells’ local activity [4]. In this sense, if there is at least
one equilibrium point for which the circuit model of the cell acts like a

source of ”small signal” power, in a precise sense defined in [4], i.e. if
the cell is capable of injecting a net small-signal average power into the
passive resistive grids then the cell is said to be locally active.

Definition 3. Stable and Locally Active Region SLAR(Ek) at the equi-

librium point Ek for Newell-Whitehead PCNN model (7) is such that
Tr < 0.

In our particular case we have:

(11) Tr(E∗

1 = 0) = −2 + a

(12) Tr(E∗

1,2 = ±

√

a + 1

b
) = −5 − 2a

In order the condition of Definition 3 to fulfill it is necessary the cell
parameters to satisfy the following inequalities: a > −5/2, b > 0. Then

(13) SLAR(Ek) : a > −5/2, b > 0

6. Edge of chaos.

In the literature [4,5,6] the so called edge of chaos (EC) means a region

in the parameter space of a dynamical system where complex phenomena and
information processing can emerge. We shall try to define more precisely this
phenomena till know known only via empirical examples. Moreover, we shall
present an algorithm for determining the edge of chaos for reaction-diffusion

CNN models as the Newell-Whitehead PCNN model (7).
We determine the Stable Local Activity Region for each point in the cell

parameter space by (13). We shall identify the edge of chaos domain EC in the

cell parameter space by using the following definition [4,5]:

Definition 4. A reaction-diffusion CNN is said to be operating on the edge of
chaos EC iff there is at least one equilibrium point Ek, k = 1, 2, 3 which belongs
to SLAR(Ek).

The following theorem then hold:

Theorem 1. PCNN model of Newell-Whitehead equation (3) is operating in

the edge of chaos regime iff a > −5/2, b > 0. For this parameter values there is
at least one equilibrium point which belongs to SLAR(Ek).
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Figure 3. EC domain for Newell-Whitehead PCNN model.

The edge of chaos domain EC for the Newell-Whitehead PCNN model
(7) is given on Fig.3:

Remark 2. By introducing the edge of chaos domain we determine the exact

cell parameter values for which the equilibrium points of the Newell-Whitehead
PCNN model (7) are both locally active and stable. In other words there exists
a domain in which our PCNN model exibits complexity.
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