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A Novel PDE Based Image Denoising

Model with Applications in Nanoindustry

Angela Slavova, Victoria Rashkova ∗

Abstract

Recently many mathematical models for image processing have been
widely applied in computer visualization for nanoindustry. The nonlinear
diffusion PDE have been broadly applied in image processing.
In this paper we propose a convection - diffusion filter by adding a convec-
tion term in the modified diffusion equation as a physical interpretation
for removing the noise. We study the dynamics of such equations by the
discretization of this convection - diffusion model. Numerical experiments
show that our method is reasonably better in removing noise.
AMS Subject Classification: 92B20, 37M05, 37N30, 35Q68, 35K67,
35K57
Key words: convection-diffusion equations, Perona-Malik equation, Cel-
lular Neural Networks (CNN), algorithms, nanoindustry, filters, image de-
noising

1 Introduction

Recently many mathematical models for image processing have been widely
applied in computer visualization. The nonlinear diffusion partial differential
equation have been broadly applied in image processing since the first model was
introduced in 1987 [4]. Through the time evolution, the diffusion can effectively
remove the noise as well as having edge enhancement simultaneously. Since then
various nonlinear diffusion filters have been widely proposed in implementing the
image denoising / enhancement, edge detection and flow filed visualization . The
common feature for nonlinear diffusion model is that the diffusion coefficient is
small as the gradient of image is large. However the diffusion coefficient is a
function of the convolution of the Gaussian kernel and solution such that this
requires an extra cost in computing the nonlinear diffusion coefficient. In the
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numerical experiments we find that when using the nonlinear diffusion model
in denoising the noise is not quite good [6]. Hence we propose a convection-
diffusion filter by adding a convection term in the modified diffusion equation
as a physical interpretation for removing the noise. The aim of this paper is
to focus on the noise removal algorithm for extracting the target information
(image) precisely. The main idea of our model algorithm is to diffuse the noise
by following the convection direction during time evolution. To prevent the
numerical layer in the discontinuities on the relative coarse grids we use the
Cellular Neural Network (CNN) approach [1,2,7].

The principle that physics is doing the computation leads us to uncover
other physical and/or biological effects to implement our topographic sensory
computer architecture. A quite natural choice is to turn to optics, keeping in
mind that a spatial correlation can be made ”instantly”, with the speed of light.
Taking a so called 4f focal plane system using two lenses and a programmable
light valve, containing a plain with programmable light transmissivity in each
pixel, a spatial correlation can be achieved. From this simple effect, a stored
Programmable Opto-electronic Analogic CNN Computer (POAC) has been suc-
cessfully constructed recently [5], using two different lasers (red and green) and
a bacterio-rhodopsine film as the programmable light valve or Local Analog
Memory array. The size of the templates might be as big as 31x31, presently
using an acusto-optical deflector (later replaced by a semiconductor laser array).
Needless to say, this cellular architecture will be a must in many nano-systems,
already emerging.

In Section 2 we present nonlinear diffusion Perona-Malik equation for model-
ing the image de-noise and its properties studied via polynomial CNN (PCNN).
In section 3 we introduce our models: the convection-diffusion filter with ma-
nipulation in both diffusion and convection terms for controlling the smoothing
process. Section 4 deals with CNN model of the convection-diffusion equation
and its dynamics. Two examples are given in order to demonstrate the simula-
tion results.

2 Perona- Malik type nonlinear diffusion equation
and its CNN model

Dynamic properties of Perona-Malik based filters are summarized in [4]. It is
well known that it converges toward a constant steady state solution, repre-
senting the average value of the initial image. In order to obtain a non trivial
output image, the system evolution has to be stopped after a finite time (usually
called scale). In the most general case, the scale depends on the object and on
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the characteristics of the input image, and hence is no a priori known time for
stopping the image processing.

Let the noisy image be a given scaled intensity map u0(x) : Ω → [0, 255] for
the image domain Ω ∈ <2 . The nonlinear diffusion equation was first proposed
by Perona and Malik in filtering the noise. They built a sequence of continu-
ous images u(x, t) on the abstract scale t and through the nonlinear diffusion
equation to remove the noise during the scaling (time) revolution. Many of
such nonlinear diffusion filtering models have been implemented. We briefly re-
view this model as follows. The Perona- Malik type nonlinear isotropic diffusion
equation is:





ut(x, t)− div(g(|∇Gσ ∗ u|)∇u(x, t)) = 0 in Ω× I
∂u
∂n(x, t) = 0 on ∂Ω× I
u(x, 0) = u0(x) on Ω

(1)

where the initial value u0(x) is the given noisy image in the gray level, I = [0, T ]
is the scaling (time) interval for some T > 0, Ω is a simply bounded rectangular
domain with boundary ∂Ω and n is the outward unit normal vector to ∂Ω; g is
a given non- increasing function. There are several choices for g(s). Select a
monotonic decreasing function

g(s) =
1

1 + s2

and they introduced the Gaussian kernel,Gσ∗u , for the existence and uniqueness
of (1). Thus, the diffusion coefficient g(|∇Gσ ∗ u|) is inhibited as the gradient
of image intensity is big i.e. the diffusion coefficient is small around the image
edge. Hence ND preserves the edges of image and protects the brightness of the
image simultaneously. Perona and Malik considered the Galerkin finite element
method for the discretization of (1). We shall apply polynomial CNN in order
to study its dynamics.
The following diffusion functions were proposed by Perona and Malik:

g(‖∇u‖2) = e−(
‖∇u‖

k
)2 , g(‖∇u‖2) = [1 + (

(‖∇u‖
k

)2]−1(2)

Let us suppose that the continuous space domain is composed by M × M
points arranged on a regular grid, uij represents the pixel value
In order to implement a general polynomial CNN architecture, let us consider
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the following basis function:

f(z) = 1− |1
2
(| z

m
+ 1| − | z

m
− 1|)|

and let approximate the g(.) functions (2) with the following expression:

γ(z) =
Q∑

p=1

Cpf
p(z)

We obtain a general nonlinear PDE based polynomial CNN model:

duij(t)
dt

=
∑

(kl)∈Nij

Γkl(ukl − uij)(3)

Γkl =
Q∑

p=1

Cp

2h2
[fp(‖∇̃uk,l‖2) + fp(‖∇̃ui,j‖2)]

The polynomial CNN model (PCNN) (3) approximate the functions g(.)
with the expression γ(.) that turns out to be different from zero only for |z| =
‖∇̃ui,j‖2 < m This practical approximation presents the advantage of stopping
the evolution of the image when the approximated gradient magnitude ‖∇̃ui,j‖2

is greater than the threshold m. Hence, the output image exhibits a segmented
structure. The above behavior is possible because the PCNN system (3) presents
ore than one equilibrium point and for each initial image, the output corresponds
to one of these equilibria.

Conclusion 1 The PCNN model (3) exhibit the coexistence of the constant
average value equilibrium point (that is only admissible for the Perona-Malik
discretized models) and of an infinite set of equilibrium points. As a consequence,
the correct output is obtained without stopping the evolution of the system. This
represents a significant advantage from the algorithmic point of view.

3 Convection- diffusion equation

Here we propose a popular nonlinear convection- diffusion model for image
demising as well as image compression. Starting from the nonlinear isotropic
diffusion described in previous section we modify (1) and construct both con-
vection and diffusion terms based on the gradient of image intensity; thus the
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direction of image smoothing is normalized to the gradient of image intensity.
Consider our filter: the convection- diffusion problem (CD)





∂u
∂t − ε(|∇u|)∆u + β(|∇u|).∇u = 0 in Ω× I
∂u
∂n = 0 on ∂Ω× I
u(x, 0) = u0(x) on Ω

(4)

where the diffusion coefficient is denoted by ε(|∇u|) ≡ 1
1+|∇u|2 and the con-

vection vector β(|∇u|) ≡ γ ∇u⊥
|∇u|ε ) for positive constant γ (the size of convec-

tion vector) with the Evans- Spruck regularization [] |∇u|ε ≡
√

u2
x + u2

y + ε for
0 < ε ¿ 1 to avoid the singularity. Since the diffusion coefficient ε is inhibited
as the gradient of image intensity is big, CD preserves the edges of image and
protects the brightness of the image simultaneously.

However it is well known that if the diffusion coefficient ε is sufficiently small
in comparison with the quantity |β|h where the solution is discontinuous then
the Galerkin finite element scheme leads to severe oscillation. The streamline dif-
fusion finite element method resolves the oscillation problem; however it causes
some artifacts (overshooting/ down shooting) around the edge of discontinuities.
To avoid above phenomena we have proposed a CNN approach.

Consider now the following convection-diffusion problem:

{
∂u
∂t = b∇u + cu, in D ≡ (0, 1)2

u = 0 on ∂D,
(5)

where b(x, t) ≥ β, c(x, t) ≥ 0 and c2
0(x, t) ≡ (c−bx/2) ≥ γ, x, t ∈ D̄, β and γ are

some positive constants. It is known [] that for this assumptions there exists an
unique solution of the CD problem (5).

In the next section we shall construct the CNN algorithm for studying the
dynamics of the CD equation (5).

4 CNN approach for studying the dynamics of the
convection-diffusion model

CNN is simply an analogue dynamic processor array, made of cells, which contain
linear capacitors, linear resistors, linear and nonlinear controlled sources. Let us
consider a two-dimensional grid with 3× 3 neighborhood system as it is shown
on Fig.1.
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Fig.1. 3× 3 neighborhood CNN.

The squares are the circuit units - cells, and the links between the cells
indicate that there are interactions between linked cells. One of the key features
of a CNN is that the individual cells are nonlinear dynamical systems, but that
the coupling between them is linear. Roughly speaking, one could say that these
arrays are nonlinear but have a linear spatial structure, which makes the use of
techniques for their investigation common in engineering or physics attractive.

We will give the general definition of a CNN which follows the original one:

Definition 1 The CNN is a
a). 2-, 3-, or n- dimensional array of
b). mainly identical dynamical systems, called cells, which satisfies two prop-

erties:
c). most interactions are local within a finite radius r, and
d). all state variables are continuous valued signals.

Definition 2 An M ×M cellular neural network is defined mathematically by
four specifications:

1). CNN cell dynamics;
2). CNN synaptic law which represents the interactions (spatial coupling)

within the neighbor cells;
3). Boundary conditions;
4). Initial conditions.
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Suppose for simplicity that the processing elements of a CNN are arranged
on a 2-dimensional (2-D) grid (Fig.1). Then the dynamics of a CNN, in general,
can be described by:

ẋij(t) = −xij(t) +
∑

C(k,l)∈Nr(i,j)

Ãij,kl(ykl(t), yij(t)) +(6)

+
∑

C(k,l)∈Nr(i,j)

B̃ij,kl(ukl, uij) + Iij ,

yij(t) = f(xij),(7)

1 ≤ i ≤ M, 1 ≤ j ≤ M,

xij , yij , uij refer to the state, output and input voltage of a cell C(i, j); C(i, j)
refers to a grid point associated with a cell on the 2-D grid, C(k, l) ∈ Nr(i, j) is
a grid point (cell) in the neighborhood within a radius r of the cell C(i, j), Iij is
an independent current source. Ã and B̃ are nonlinear cloning templates, which
specify the interactions between each cell and all its neighbor cells in terms of
their input, state, and output variables. Moreover, as we mentioned above the
cloning template has geometrical meanings which can be exploited to provide
us with geometric insights and simpler design methods.

Now in terms of definition 2 we can present the dynamical systems describ-
ing CNNs. For a general CNN whose cells are made of time-invariant circuit
elements, each cell C(ij) is characterized by its CNN cell dynamics :

ẋij = −g(xij , uij , I
s
ij),(8)

where xij ∈ Rm, uij is usually a scalar. In most cases, the interactions (spatial
coupling) with the neighbor cell C(i + k, j + l) are specified by a CNN synaptic
law:

Is
ij = Aij,klxi+k,j+l +(9)

+ Ãij,kl ∗ fkl(xij , xi+k,j+l) +
+ B̃ij,kl ∗ ui+k,j+l(t).

The first term Aij,klxi+k,j+l of (9) is simply a linear feedback of the states
of the neighborhood nodes. The second term provides an arbitrary nonlinear
coupling, and the third term accounts for the contributions from the external
inputs of each neighbor cell that is located in the Nr neighborhood.

It is known that some autonomous CNNs represent an excellent approxi-
mation to nonlinear partial differential equations (PDEs). The intrinsic space
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distributed topology makes the CNN able to produce real-time solutions of non-
linear PDEs. Consider the following well-known PDE, generally referred to us
in the literature as a reaction-diffusion equation:

∂u

∂t
= f(u) + D∇2u,

where u ∈ RN , f ∈ RN , D is a matrix with the diffusion coefficients, and ∇2u
is the Laplacian operator in R2. There are several ways to approximate the
Laplacian operator in discrete space by a CNN synaptic law with an appropriate
A-template.

In our case the CNN model of CD equation (5) is:

u̇j(t) = b ∗A1 ∗ uj + c ∗ uj , 1 ≤ j ≤ N,(10)

where A1 = (1,−2, 1) is one dimensional discretize Laplacian CNN template.
In this section we will introduce an approximative method for studying the

dynamics of CNN model (9), based on a special Fourier transform. The idea
of using Fourier expansion for finding the solutions of PDEs is well known in
physics. It is used to predict what spatial frequences or modes will dominate
in nonlinear PDEs. In CNN literature this approach, has been developed for
analyzing the dynamics of CNNs with symmetric templates [1].

We shall investigate the dynamic behavior of CNN model (10) by use of
Harmonic Balance Method well known in control theory and in the study of
electronic oscillators [3] as describing function method. The method is based on
the fact that all cells in CNN are identical [1], and therefore by introducing a
suitable double transform, the network can be reduced to a scalar Lur’s scheme
[3].

We shall present the algorithm briefly:
1. Apply the double Fourier transform:

F (s, z) =
k=∞∑

k=−∞
z−k

∫ ∞

−∞
fk(t)exp(−st)dt,

to the CNN equation (10).
2. Find the transform function H(s, z) =, where s = iω0, z = exp(iΩ0,

i =
√−1, ω0 is a temporal frequency, Ω0 is a spatial frequency.
3. Look for possible solutions of (10) in the form:

uj = Um0sin(ω0t + jΩ0)

4. The amplitude Um0 , the temporal frequency ω0 and the spatial frequency
Ω0 are unknowns to be determined.
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5. Our CNN model (10) is a finite circular array of N cells we have finite
set of spatial frequencies:

Ω0 =
2πk

N
, 0 ≤ k ≤ N − 1.(11)

Based on the above considerations the following proposition hold:

Proposition 1 CNN model (10) of the convection-diffusion problem (5), con-
sisting of circular array of N cells, has state solution uj(t) with a finite set of
spatial frequencies Ω0 = 2πk/N , 0 ≤ k ≤ N − 1.

We obtain the following simulation results for different values of the param-
eters β and γ:

Fig.2. Simulations of the CNN algorithm for CD problem (5).

Example 1. Consider the following singularly perturbed boundary value
problem

−ε∆u + bux + cu = 0, in Ω ≡ (0, 1)2(12)

u = 0, on ∂Ω.

In order to construct a robust numerical method for the considered problem,
it is of key interest to have information on a behavior of the solution. The state
equation of the CNN model of (12) is:
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−εA1 ∗ ui + b ∗A1 ∗ ui + c ∗ ui = 0(13)

Applying CNN algorithm we obtain the following simulation results:

Fig.3. Simulation of the CNN algorithm for the problem (12).

Example 2. We consider the following example of (4) on the layer-adapted
mesh:

−ε∆u + (1 + x3)ux + (1 + xy)u = 0, inΩ(14)

u = 0, on∂Ω

CNN model of the above system is:

−εA1 ∗ ui + (1 + x3)A1 ∗ ui + (1 + xy)ui = 0(15)

1 ≤ i ≤ N

We obtain simulation results of (14) on Fig.4.
Remark 1.We consider a CNN programmable realization allowing the cal-

culation of all necessary processing steps in real time. The network parameter
values of CNN model, described by the dynamical system (11), are determined
in a supervised optimization process.During the optimization process the mean
square error is minimized using Powell method and Simulated Annealing [8].
The results are obtained by the CNN simulation system MATCNN applying
4th order Runge-Kutta integration.
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Fig.4 Simulation of the CNN algorithm for the problem (14).
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