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PREFACE

The Bulgarian Section of SIAM (BGSIAM) was founded on January 18, 2007 and the
accepted Rules of Procedure were officially approved by the SIAM Board of Trustees
on July 15, 2007. The activities of BGSIAM follow the general objectives of SIAM,
as established in its Certificate of Incorporation.

Being aware of the importance of interdisciplinary collaboration and the role the
applied mathematics plays in advancing science and technology in industry, we ap-
preciate the support of SIAM as the major international organization for Industrial
and Applied Mathematics in order to promote the application of mathematics to
science, engineering and technology in the Republic of Bulgaria.

The 5th Annual Meeting of BGSIAM (BGSIAM’10) was hosted by the Institute of
Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia. It took part on
December 20 and 21, 2010. The conference support provided by SIAM is very highly
appreciated.

Following the established tradition, a wide range of problems concerning recent
achievements in the field of industrial and applied mathematics were presented and
discussed during BGSIAM’10 conference. The meeting provided a forum for exchange
of ideas between scientists, who develop and study mathematical methods and algo-
rithms, and researchers, who apply them for solving real life problems.

More than 50 participants from seven universities, five institutes of the Bulgarian
Academy of Sciences and also from outside the traditional academic departments
took part in BGSIAM’10. They represent most of the strongest Bulgarian research
groups in the field of industrial and applied mathematics. The involvement of younger
researchers was especially encouraged and we are glad to report that 9 from the
presented 22 talks were given by students or young researchers.

LIST OF INVITED LECTURES:

• PETAR POPIVANOV
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
PDE ARISING IN FLUID MECHANICS: SINGULARITIES, CREATION
AND PROPAGATION

• GEORGI POPOV
University of Nantes, France
EFFECTIVE STABILITY OF HAMILTONIAN SYSTEMS

• LYUDMIL ZIKATANOV
Penn State, University Park, PA, USA
ENERGY MINIMIZING COARSE SPACES WITH FUNCTIONAL
CONSTRAINT



• ZAHARI ZLATEV
National Environmental Research Institute, Roskilde, Denmark
RICHARDSON EXTRAPOLATION: ACCURACY, STEPSIZE CONTROL
AND STABILITY

The present volume contains extended abstracts of the conference talks (Part A) and
list of participants (Part B).

Svetozar Margenov
Chair of BGSIAM Section

Stefka Dimova
Vice-Chair of BGSIAM Section

Angela Slavova
Secretary of BGSIAM Section

Sofia, January 2011
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Cellular Nonlinear Network Model for Image
Denoising

Angela Slavova, Victoria Rashkova

1 Introduction

Recently many mathematical models for image processing have been widely applied
in computer visualization. The nonlinear diffusion partial differential equation have
been broadly applied in image processing since the first model was introduced in
1987 [3]. Through the time evolution, the diffusion can effectively remove the noise
as well as having edge enhancement simultaneously. Since then various nonlinear
diffusion filters have been widely proposed in implementing the image denoising /
enhancement, edge detection and flow filed visualization . The common feature for
nonlinear diffusion model is that the diffusion coefficient is small as the gradient of
image is large. However the diffusion coefficient is a function of the convolution of
the Gaussian kernel and solution such that this requires an extra cost in computing
the nonlinear diffusion coefficient. In the numerical experiments we find that when
using the nonlinear diffusion model in denoising the noise is not quite good [6]. Hence
we propose a convection- diffusion filter by adding a convection term in the modified
diffusion equation as a physical interpretation for removing the noise. The aim of this
paper is to focus on the noise removal algorithm for extracting the target information
(image) precisely. The main idea of our model algorithm is to diffuse the noise by
following the convection direction during time evolution. To prevent the numerical
layer in the discontinuities on the relative coarse grids we use the Cellular Nonlinear
Network (CNN) approach [1,2,4].

2 Perona- Malik type nonlinear diffusion equation
and its CNN model

Dynamic properties of Perona-Malik based filters are summarized in [3]. It is well
known that it converges toward a constant steady state solution, representing the
average value of the initial image. In order to obtain a non trivial output image, the
system evolution has to be stopped after a finite time (usually called scale). In the
most general case, the scale depends on the object and on the characteristics of the
input image, and hence is no a priori known time for stopping the image processing.
Let the noisy image be a given scaled intensity map u0(x) : Ω→ [0, 255] for the image
domain Ω ∈ ℜ2 . The nonlinear diffusion equation was first proposed by Perona and
Malik in filtering the noise. They built a sequence of continuous images u(x, t) on
the abstract scale t and through the nonlinear diffusion equation to remove the noise
during the scaling (̈ı¿1

2 timëı¿1
2 ) revolution. Many of such nonlinear diffusion filtering

77



models have been implemented. We briefly review this model as follows. The Perona-
Malik type nonlinear isotropic diffusion equation (ND) is:





ut(x, t)− div(g(|∇Gσ ∗ u|)∇u(x, t)) = 0 in Ω× I
∂u
∂n (x, t) = 0 on ∂Ω× I
u(x, 0) = u0(x) on Ω

(1)

where the initial value u0(x) is the given noisy image in the gray level, I = [0, T ] is
the scaling (time) interval for some T > 0,Ω is a simply bounded rectangular domain
with boundary ∂Ω and n is the outward unit normal vector to ∂Ω; g is a given non-
increasing function. There are several choices for g(s). Select a monotonic decreasing
function

g(s) =
1

1 + s2

and in [3] it is introduced the Gaussian kernel,Gσ ∗u ,for the existence and uniqueness
of (1). Thus, the diffusion coefficient g(|∇Gσ ∗u|) is inhibited as the gradient of image
intensity is big i.e. the diffusion coefficient is small around the image edge. Hence ND
preserves the edges of image and protects the brightness of the image simultaneously.
Perona and Malik considered the Galerkin finite element method for the discretization
of (1). We shall apply polynomial CNN in order to study its dynamics.
The following diffusion functions were proposed by Perona and Malik:

g(‖∇u‖2) = e−( ‖∇u‖
k

)2 , g(‖∇u‖2) = [1 + (
(‖∇u‖
k

)2]−1 (2)

Let us suppose that the continuous space domain is composed by M × M points
arranged on a regular grid, uij represents the pixel value.
In order to implement a general polynomial CNN architecture, let us consider the
following basis function:

f(z) = 1− |1
2
(| z
m

+ 1| − | z
m
− 1|)|

and let approximate the g(.) functions (2) with the following expression:

γ(z) =

Q∑

p=1

Cpf
p(z)

We obtain a general nonlinear PDE based polynomial CNN model:

duij(t)

dt
=

∑

(kl)∈Nij

Γkl(ukl − uij) (3)
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Γkl =

Q∑

p=1

Cp

2h2
[fp(‖∇̃uk,l‖2) + fp(‖∇̃ui,j‖2)]

The polynomial CNN model (PCNN) (3) approximate the functions g(.) with the

expression γ(.) that turns out to be different from zero only for |z| = ‖∇̃ui,j‖2 < m
This practical approximation presents the advantage of stopping the evolution of
the image when the approximated gradient magnitude ‖∇̃ui,j‖2 is greater than the
threshold m. Hence, the output image exhibits a segmented structure. The above
behavior is possible because the PCNN system (3) presents ore than one equilibrium
point and for each initial image, the output corresponds to one of these equilibria.

Conclusion 1 The PCNN model (3) exhibit the coexistence of the constant average
value equilibrium point (that is only admissible for the Perona-Malik discretized mod-
els) and of an infinite set of equilibrium points. As a consequence, the correct output
is obtained without stopping the evolution of the system. This represents a significant
advantage from the algorithmic point of view.

We obtain the following simulation results for different values of the cell parameters:

Fig.1. Simulations of the CNN algorithm for the problem (1).

Example 1. Consider the following singularly perturbed boundary value problem

−ε∆u+ bux + cu = 0, in Ω ≡ (0, 1)2 (4)

u = 0, on ∂Ω.

In order to construct a robust numerical method for the considered problem, it is of
key interest to have information on a behavior of the solution. The state equation of
the CNN model of (4) is:
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−εA1 ∗ ui + b ∗A1 ∗ ui + c ∗ ui = 0 (5)

Applying CNN algorithm we obtain the following simulation results:

Fig.2. Simulation of the CNN algorithm of (4).

Example 2. We consider the following example on the layer-adapted mesh:

−ε∆u+ (1 + x3)ux + (1 + xy)u = 0, inΩ (6)

u = 0, on∂Ω

CNN model of the above system is:

−εA1 ∗ ui + (1 + x3)A1 ∗ ui + (1 + xy)ui = 0 (7)

1 ≤ i ≤ N
We obtain simulation results of (6) on Fig.3.
Remark 1.We consider a CNN programmable realization allowing the calculation of
all necessary processing steps in real time. The network parameter values of CNN
models are determined in a supervised optimization process.During the optimiza-
tion process the mean square error is minimized using Powell method and Simulated
Annealing [5]. The results are obtained by the CNN simulation system MATCNN
applying 4th order Runge-Kutta integration.

Acknowledgments. This work is supported by the Bulgarian National Science Fund
under grant DID 02/15.

80



Fig.3. Simulation of the CNN algorithm of (6).
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