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Abstract

Recently many mathematical models for image processing have been
widely applied in computer visualization. The nonlinear diffusion PDE has
been broadly applied in image processing. In this paper we propose a convec-
tion-diffusion filter by adding a convection term in the modified diffusion equa-
tion as a physical interpretation for removing the noise. We study the dynamics
of such equations by the discretization of this convection-diffusion model. Nu-
merical experiments show that our method is reasonably better in removing
noise.
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1. Introduction. Recently many mathematical models for image process-
ing have been widely applied in computer visualization. The nonlinear diffusion
partial differential equations have been broadly applied in image processing since
the first model was introduced in 1987 [4]. Through the time evolution, diffusion
can effectively remove the noise as well to have edge enhancement simultane-
ously. Since then various nonlinear diffusion filters have been widely proposed in
implementing the image denoising/enhancement, edge detection and flow filed vi-
sualization. A common feature for nonlinear diffusion model is that the diffusion
coefficient is small while the gradient of image is large. However, the diffusion
coefficient is a function of the convolution of the Gaussian kernel and solution
such that this requires an extra cost in computing the nonlinear diffusion co-
efficient. In the numerical experiments we find that when using the nonlinear
diffusion model in denoising the noise is not quite good [5]. Hence, we propose
a convection-diffusion filter by adding a convection term in the modified diffu-
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sion equation as a physical interpretation for removing the noise. The aim of
this paper is to focus on the noise removal algorithm for extracting the target
information (image) precisely. The main idea of our model algorithm is to diffuse
the noise by following the convection direction during time evolution. To prevent
the numerical layer in the discontinuities on the relative coarse grids we use the
Cellular Neural Network (CNN) approach [1, 2, 6].

Here we propose a popular nonlinear convection-diffusion model for image
diminishing as well as image compression. We shall modify nonlinear isotropic
equation [4] and we shall construct both convection and diffusion terms based
on the gradient of image intensity; thus the direction of image smoothing is nor-
malized to the gradient of image intensity. Consider our filter: the convection-
diffusion problem (CD) with manipulation in both diffusion and convection terms
for controlling the smoothing process:



















∂u

∂t
− ε(|∇u|)∆u + β(|∇u|).∇u = 0 in Ω × I,

∂u

∂n
= 0 on ∂Ω × I,

u(x, 0) = u0(x) on Ω,

(1)

where the diffusion coefficient is denoted by ε(|∇u|) ≡ 1

1 + |∇u|2 and the con-

vection vector β(|∇u|) ≡ γ
∇u⊥

|∇u|ǫ
for positive constant γ (the size of convec-

tion vector) with the Evans-Spruck regularization [6] |∇u|ǫ ≡
√

u2
x + u2

y + ǫ for

0 < ε ≪ 1 to avoid the singularity. As the gradient of image intensity is big the
diffusion coefficient ε is inhibited. CD preserves the edges of image and protects
the brightness of the image simultaneously.

It is well known that if the diffusion coefficient ε is sufficiently small in
comparison with the quantity |β|h where the solution is discontinuous then the
Galerkin finite element scheme leads to a severe oscillation [5]. The streamline dif-
fusion finite element method resolves the oscillation problem; however, it causes
some artifacts (overshooting/ down shooting) around the edge of discontinuities.

In this paper we shall study the following convection-diffusion problem:

{

∂u

∂t
= b∇u + cu, in D ≡ (0, 1)2,

u = 0 on ∂D,
(2)

where b(x, t) ≥ β, c(x, t) ≥ 0 and c2
0(x, t) ≡ (c − bx/2) ≥ γ, x, t ∈ D̄, β and γ are

some positive constants. It is known [5] that for this assumptions there exists a
unique solution of the CD problem (2).

In the next section we shall construct the CNN algorithm for studying the
dynamics of the CD equation (2). Section 2 deals also with the CNN model of
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the convection-diffusion equation and its dynamics. Two examples are given in
order to demonstrate the simulation results.

2. CNN approach for studying the dynamics of the convection-

diffusion model. It is known that some autonomous CNNs represent an ex-
cellent approximation to nonlinear partial differential equations (PDEs). The
intrinsic space distributed topology makes the CNN able to produce real-time
solutions of nonlinear PDEs. Consider the following well-known PDE, generally
referred to us in the literature as a reaction-diffusion equation:

∂u

∂t
= f(u) + D∇2u,

where u ∈ RN , f ∈ RN , D is a matrix with the diffusion coefficients, and ∇2u
is the Laplacian operator in R2. There are several ways to approximate the
Laplacian operator in discrete space by a CNN synaptic law with an appropriate
A-template.

In our case the CNN model of CD equation (2) is

(3) u̇j(t) = b ∗ A1 ∗ uj + c ∗ uj , 1 ≤ j ≤ N,

where A1 = (1,−2, 1) is one-dimensional discretized Laplacian CNN template.
In this section we will introduce an approximative method for studying the

dynamics of CNN model (3), based on a special Fourier transform. The idea of
using Fourier expansion for finding the solutions of PDEs is well known in physics.
It is used to predict what spatial frequencies or modes will dominate in nonlinear
PDEs. In CNN literature this approach has been developed for analyzing the
dynamics of CNNs with symmetric templates [1].

We shall investigate the dynamic behaviour of CNN model (3) using the
Harmonic Balance Method which is well-known in the control theory and in the
study of electronic oscillators [3] as a describing function method. The method
is based on the fact that all cells in CNN are identical [1], and therefore by
introducing a suitable double transform, the network can be reduced to a scalar
Lur’s scheme [3].

We shall present the algorithm briefly:
1. Apply the double Fourier transform

F (s, z) =
k=∞
∑

k=−∞

z−k

∫

∞

−∞

fk(t) exp(−st) dt,

to CNN equation (3).
2. Find the transform function H(s, z) =, where s = iω0, z = exp(iΩ0,

i =
√
−1, ω0 is a temporal frequency, Ω0 is a spatial frequency.

3. Look for possible solutions of (3) in the form

uj = Um0
sin(ω0t + jΩ0).
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4. The amplitude Um0
, the temporal frequency ω0 and the spatial frequency

Ω0 are unknowns to be determined.
5. Our CNN model (3) is a finite circular array of N cells, so we have a finite

set of spatial frequencies

(4) Ω0 =
2πk

N
, 0 ≤ k ≤ N − 1.

Based on the above considerations the following proposition holds:
Proposition 1. CNN model (3) of the convection-diffusion problem (2), com-

prised of circular array of N cells, has state solution uj(t) with a finite set of

spatial frequencies Ω0 = 2πk/N , 0 ≤ k ≤ N − 1.
We obtain the following simulation results for different values of the parame-

ters β and γ.

Fig. 1. Simulations of CNN algorithm for CD problem (2)

3. Examples. Example 1. Consider the following singularly perturbed
boundary value problem

(5)
−ε∆u + bux + cu = 0, in Ω ≡ (0, 1)2

u = 0, on ∂Ω.

In order to construct a robust numerical method for the considered problem,
it is of key interest to have information on a behaviour of the solution. The state
equation of the CNN model of (5) is

(6) −εA1 ∗ ui + b ∗ A1 ∗ ui + c ∗ ui = 0.
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Fig. 2. Simulation of CNN algorithm for problem (5)

Applying CNN algorithm we obtain simulation results shown in Fig. 2.

Example 2. We consider the following example of (2) on the layer-adapted

Fig. 3. Simulation of CNN algorithm for problem (7)
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mesh

(7) −ε∆u + (1 + x3)ux + (1 + xy)u = 0, in Ω

u = 0, on ∂Ω.

CNN model of the above system is

(8) −εA1 ∗ ui + (1 + x3)A1 ∗ ui + (1 + xy)ui = 0

1 ≤ i ≤ N.

We obtain simulation results of (8) in Fig. 3.
Remark 1. We consider a CNN programmable realization allowing the

calculation of all necessary processing steps in real time. The network parame-
ter values of CNN models are determined in a supervised optimization process.
During the optimization process the mean square error is minimized using Pow-
ell method and Simulated Annealing [7]. The results are obtained by the CNN
simulation system MATCNN applying 4th order Runge-Kutta integration.
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