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Abstract: Time-harmonic behaviour of cracked piezoelectric finite solid is 

studied by Boundary Integral Equation Method (BIEM). Numerical 

solution for Crack Opening Displacement (COD) and Stress Intensity 

Factor (SIF) is shown by using Mathematica. Numerical examples are 

presented to demonstrate the accuracy of the solution and its 

dependance on the crack position and on the dynamic load. 
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Introduction 

Piezoelectric materials (PEM) have wide applications in transducers, 

actuators, wave generators and other smart intelligent systems. Due to 

their brittle structure and under dynamic load in service cracks appear 

and can cause their failure. Mathematical modeling of PEM with internal 

cracks leads to complicated boundary value problems (BVP) that have to 

be solved numerically in order to evaluate the wave field and especially 

its behavior near the crack edges. Recently a number of results about 

the fracture behavior of the piezoelectric solids are reported in the 

literature. Mostly it is considered infinite piezoelectric domains, see 

Shindo and Ozawa [11], Wang and Meguid [14], Narita and Shindo [8], 

Chen and Yu [2], Davi and Milazzo [3], where the BVP is transformed to 

dual integral equations and SIF is obtained as a solution of suitable 

Fredholm integral equations of a second type. For the investigations in 

finite cracked domains, where the influence of the external boundary is 

taking into account, BIEM is a powerful tool, see Gross at al. [5], Dineva 

et al. [4], Rangelov et al. [9], Sladek et al. [11] and Marinov and 

Rangelov [7]. 

The aim of the work is to solve the BVP for anti-plane linear cracks in 

finite PEM solid under time-harmonic mechanical and/or electrical load. 

The BVP is transformed to an equivalent integro-differential equation on 

the crack and on the external boundary. For the numerical solution 

Mathematica code is created and there are demonstrated numerical 

examples are presented. 

Boundary Value Problem 

In a Cartesian coordinate system Ox  in 3R  consider a finite 

transversally isotropic piezoelectric solid 2R , with boundary S  and 

poled in 
3

Ox  direction. Let


  = ,   is an internal linear 
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crack - an open segment. Assume that   is subjected to anti-plane 

mechanical and in-plane electrical time-harmonic load. The only non-

vanishing displacements are the anti-plane mechanical displacement 

),(
3

txu  and in-plane electrical displacement 1,2=),,( itxD
i

, 

),(=
21

xxx . Since all fields are time-harmonic with frequency   the 

common multiplier tie   is suppressed here and in the following. 

Assuming quasi-static approximation of piezoelectricity, the field 

equation in absence of body forces and electric charges is given by the 

balance equations  

0,=0,=
,3

2

3, iiii
Du                         (1) 

 where the summation convention over repeated indices is applied. The 

strain - displacement and electric field - potential relations are  

  ,=,=
,3,3 iiii

Eus                (2) 

 and the constitutive relations, see Landau and Lifshitz [6] are  

  
.=

,=

11315

153443

iii

iii

EseD

Eesc








              (3) 

 The subscript 1,2=i  and comma denotes partial differentiation and 

3i
 , 3is

, 
i

E ,   are the stress tensor, strain tensor, electric field vector 

and electric potential, respectively. Furthermore 0> , 0>
44

c , 

0>
11
  are mass density, the shear stiffness, piezoelectric and dielectric 

permittivity characteristics. Introducing (3) and (2) into (1) leads to the 

coupled system  

  0.=

0,=

11315

3

2

15344
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 where   is Laplace operator. The basic equations can be written in a 

more compact form if the notation ),(=
3
uu

J
, 3,4=J  is introduced. 

The constitutive equations (3) then take the form  

  1,2,=,,=
,

liuC
lKiJKliJ

               (5) 

 where 
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 and 

system (4) is reduced to  

  3,4,=,0,=)( 2

,
KJuuL

KJKiiJ
              (6) 

 where 




4=4=0,

3==,
=

KorJ

KJ
JK


 . 

The boundary conditions on the outer boundary S  are given as a 

prescribed traction 
J

t   

  ,= Sontt
JJ

               (7) 

 where 
iiJJ

nt =  and ),(=
21

nnn  is the outer normal vector. The 

boundary condition along the crack is  

  ont
J

0=                (8) 

 and this means that the crack is free of mechanical traction as well as of 

surface charge, i.e. the crack is electrically impermeable. 

Following Akamatsu and Nakamura [1] it can be proved that the BVP (6) 

– (8) admits continuously differentiable solution if the usual smoothness 

and compatibility requirements for the boundary data are satisfied. 

Consider the following BVPs  

  
,=

,0=)(
1

1

Sontt

inuL

JJ


              (9) 
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 Since BVP (6) – (8) is linear its solution is a superposition of BVPs (9), 

(10), so 21=
JJJ

uuu   and 21=
JJJ

ttt  . The fields 11 ,
JJ

tu  are obtained 

by the dynamic load on S  in the crack free domain  , while 22 ,
JJ

tu  are 

produced by the load 12 =
J

tt   on   and zero boundary conditions on 

S .  

Non-hypersingular BIEM 

Following Wang and Zhang [13], Rangelov et al. [9], the system of BVPs 

(9), (10) is transformed to an equivalent system of integro--differential 

equations on S .  
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 Here 








Sxxt

xt
xt

J

Jc

J
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2

1

, *

JK
u  is the fundamental solution of Eq. 

(6), *

,

* =
lKQiJKliJQ

uC  is the corresponding stress, and 
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 ||= 222

JJJ
uuu  is the generalized COD on the crack  , 

),(=
21

xxx  and ),(=
21

yyy  denote the position vector of the 

observation and source point, respectively. The functions 

iJQJKJJ
utu ,,, *  additionally depend on the frequency  , which is 

omitted in the list of arguments for simplicity. Equations (11), (12) 

constitute a system of integro-differential equations for the unknown 
2

J
u  on the line   and 1

J
u , 1

J
t  on the external boundary S  of the 

piezoelectric solid. From its solution the generalized displacement 
J

u  at 

every internal point of G  can be determined by using the corresponding 

representation formulae, see Wang and Zhang [13] and Gross et al. [5]. 

In order to solve the system (11), (12) it is necessary to know the 

fundamental solution *

JK
u  and corresponding stress *

lQK
  in a closed 

form. The fundamental solution of Eq. (6) is defined as solution of the 

equation  

  ),,(=2

,
 xu

JMKMJKiiJM
            (13) 

 where   is the Dirac distribution, ,x  are source and field points 

respectively and 
JM

  is the Kronecker symbol. The fundamental solution 

for the piezoelectric solids under anti-plane mechanical and in-plane 

electrical loading is derived in Rangelov et al. [9] using the Radon 

transform, see also Marinov and Rangelov [7]. 

Numerical Solution 

The numerical procedure for the solution of the boundary value problem 

follows the numerical algorithm developed and validated in Rangelov et 

al. [9] and Dineva et al. [4]. The outer boundary S  and the crack   are 

discretized by quadratic boundary elements (BE). In order to model the 

correct asymptotic behavior of the displacement (like r ) and the 
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traction (like r1/ ) near the crack tips special crack-tip quarter-point BE 

is used. Applying the shifted point scheme, the singular integrals 

converge in Cauchy principal value (CPV) sense, since the smoothness 

requirements of the approximation )(1

crJ
SCu   are fulfilled. Due to 

the form of the fundamental solution as an integral over the unit circle, all 

integrals in (11), (12) are two dimensional. In general there appear two 

types of integrals - regular integrals and singular integrals, the latter 

including a weak " rln " type singularity and also a strong "
r

1
" type 

singularity. The regular integrals are solved using Quasi Monte Carlo 

method, while the singular integrals are solved with a combined method - 

partially analytically as CPV integrals. After the discretization procedure 

an algebraic linear complex system of equations is obtained and solved. 

The program code based on Mathematica 8 has been created following 

the above outlined procedure. 

The mechanical dynamic SIF 
III

K , the electrical displacement intensity 

factor 
D

K  and the electric intensity factor 
E

K  are obtained directly from 

the traction nodal values ahead of the crack-tip, see SKBW92. In a local 

polar coordinate system ),( r  with the origin the crack edge the 

formulae are  

 
),(

1
=,2lim=

,2lim=,2lim=

444315

1144

2

15
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4
0
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0

tcte
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ErEK

rtKrtK

r
E

r
D

r
III











       (14) 

 where Jt  is the generalized traction at the point ),( r  close to the 

crack-tip. 

Mathematic's code consists of the following parts: 

(i) Definition of the material parameters, S  and   geometry, BE and 

quadratic approximation; 
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(ii) Definition of the fundamental solution, its derivatives and the 

asymptotic for small arguments; 

(iii) Definition of the integro--differential equations (11), (12) and the anti-

plane load; 

(iv) Solution of the integrals and forming the system of linear equations 

for the unknowns 211 ,,
JJJ

utu  ; 

(v) Solution of the linear system; 

(vi) Formulae for the solution in every point of  ; 

(vii) Evaluation of the SIF - the leading coefficients in the asymptotic of 

the solution near the crack edges. 

The main points in the solution procedure are (iv) and (v). In (iv) the 

integrals over the BE are two-dimensional (in the intrinsic coordinates in 

the domain ][0,21,1][),(  z ) with regular and singular kernels: 

with weak singularity as )log( rO  and with strong singularities )(1/rO . 

The regular integrals are solves using AdaptiveMonteCarlo Method with 

300 points. The singular integrals are solved analytically with respect to 

r  and numerically with respect to  , see Dineva et al. [4]. The 

difficulties in (v) (due to the fact that the material parameters vary in the 

rate of 1010 : for mechanical stiffness 
44

c , 10  for the piezoelectric 

parameter 
15

e  and for the dielectric parameters 
11
  in the rate of 1010 ) 

are got over using functions Solve or FindInstance. 

Numerical results 

The material used in the numerical examples is PZT-4, whose data 

are 2100

44
N/m102.56= c , 20

15
C/m12.7=e , mC/V1064.6= 100

11

  

and 330 kg/m107.5=  . The length of the crack   is mm5=2c , 

while the rectangular domain   have dimension mm40mm20  . 
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Crack center is at the origin, it is inclined with angle   with respect to 

1
Ox  axis and is discretized by 7 BE with lengths

j
l : mmll 0.375==

71
, 

mm0.5==
62

ll , mm1.0==
53
ll , mm1.25=

4
l .  

 

Figure 1 Cracked rectangular finite solid. 

The boundary S  is discretized by 20 BE. Time-harmonic load is uniform 

electromechanical tension in 
2

Ox  direction with amplitudes 

26

0
m/N10400=   and 25

0
m/C10= D , see Figure (1). 

Validation of the numerical code for the finite solid   is done using 

truncation method. The problem (11), (12) is solved in the center cracked 

square 
a

  with a side a2  with ca 10> . In this case the outer 

boundary 
a

S  does not influence significantly on the result in the 

considered frequency range and comparison of the SIF with those in 

Wang and Meguid [14] for the cracked plane gives good coincidence. 
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In the presented examples the normalized frequency is 




 )/(=
11

2

15

44

0 e
cc  . In the figures there are plotted the absolute 

values of the normalized SIFs 
c

K
K III

III


0

* =  and 
c

K
K E

E


0

* = . 

 

Figure 2 Normalized mechanical SIF versus normalized frequency under 

electromechanical load with amplitudes 
26

0
m/N10400=  , 

25

0
m/C10= D . 

In Figure (2) it is given the BIEM solution for *

III
K  versus (0,0.5) . It 

is observed the peak around 0.18= , which corresponds to 

resonance frequency of the considered BVP and shows the influence of 

the boundary S  on the SIF. Note that in the truncation domain the peak 

is around 0.71=  and its value is 1.31 with comparison with the peak 

of 28.11 in the finite domain. 
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(a)     (b) 

Figure 3 Normalized SIFs versus inclined crack angle k
10

=


 , 

,50,= k  at normalized frequency 0.2= and under electromechanical 

load with amplitudes
26

0
m/N10400=  ,

25

0
m/C10= D :a)

*

III
K , b)

*

E
K  

In Figure (3) it is presented the dependance of SIFs *

III
K  and *

E
K  for 

fixed normalized frequency 0.2=  on the position of the crack with a 

center at the origin and inclined with angle k
10

=


 , ,50,= k  with 

respect to 
1

Ox  axis. Due to the symmetry of the crack with respect to the 

applied load, SIFs in the left and right crack-tips are equal. The 

maximum values are for (2,3)k , around 
6

=


  wile for a crack 

parallel to the direction of the applied tension, i.e. 
2

=


 , both SIFs are 

zero. 

Conclusion 

Time-harmonic anti-plane crack problem for piezoelectric finite solid is 

solved numerically by means of non-hypersingular traction BIEM and 

Mathematica code is developed. Numerical examples for SIF 
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computation are presented and analyzed. The proposed numerical 

solution and programme code can be applied for solution of crack 

interaction problems in finite PEM as well as for solution of the 

corresponding inverse problems. 
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