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Abstract- The nonlinear diffusion PDE have
been broadly applied in image processing. In
this paper we propose a convection - diffusion
filter by adding a convection term in the mod-
ified diffusion equation as a physical interpre-
tation for removing the noise. We study the
dynamics of such equations by the discretiza-
tion of this convection - diffusion model via
Cellular Nonlinear Networks (CNN). Numer-
ical experiments show that our method is rea-
sonably better in removing noise.
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I. INTRODUCTION

Recently many mathematical models for image
processing have been widely applied in computer
visualization. The nonlinear diffusion partial dif-
ferential equation have been broadly applied in
image processing since the first model was intro-
duced in 1987 [4]. Through the time evolution,
the diffusion can effectively remove the noise as
well as having edge enhancement simultaneously.
Since then various nonlinear diffusion filters have
been widely proposed in implementing the im-
age denoising / enhancement, edge detection and
flow filed visualization . The common feature for
nonlinear diffusion model is that the diffusion co-
efficient is small as the gradient of image is large.
However the diffusion coefficient is a function of
the convolution of the Gaussian kernel and so-
lution such that this requires an extra cost in

computing the nonlinear diffusion coefficient. In
the numerical experiments we find that when us-
ing the nonlinear diffusion model in denoising the
noise is not quite good [5]. Hence we propose a
convection- diffusion filter by adding a convection
term in the modified diffusion equation as a phys-
ical interpretation for removing the noise. The
aim of this paper is to focus on the noise removal
algorithm for extracting the target information
(image) precisely. The main idea of our model
algorithm is to diffuse the noise by following the
convection direction during time evolution. To
prevent the numerical layer in the discontinuities
on the relative coarse grids we use the Cellular
Neural Network (CNN) approach [1,2,6].
Here we propose a popular nonlinear

convection- diffusion model for image demising
as well as image compression. We shall modify
nonlinear isotropic equation [4] and we shall con-
struct both convection and diffusion terms based
on the gradient of image intensity; thus the di-
rection of image smoothing is normalized to the
gradient of image intensity. Consider our filter:
the convection- diffusion problem (CD) with ma-
nipulation in both diffusion and convection terms
for controlling the smoothing process:


∂u
∂t − ε(|∇u|)∆u+
+β(|∇u|).∇u = 0 in Ω× I
∂u
∂n = 0 on ∂Ω× I
u(x, 0) = u0(x) on Ω

(1)

where the diffusion coefficient is denoted by
ε(|∇u|) ≡ 1

1+|∇u|2 and the convection vector

β(|∇u|) ≡ γ ∇u⊥

|∇u|ϵ ) for positive constant γ (the
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size of convection vector) with the Evans- Spruck

regularization [6] |∇u|ϵ ≡
√
u2
x + u2

y + ϵ for 0 <

ε ≪ 1 to avoid the singularity. Since the diffu-
sion coefficient ε is inhibited as the gradient of
image intensity is big, CD preserves the edges of
image and protects the brightness of the image
simultaneously.
It is well known that if the diffusion coeffi-

cient ε is sufficiently small in comparison with
the quantity |β|h where the solution is discon-
tinuous then the Galerkin finite element scheme
leads to severe oscillation [5]. The streamline dif-
fusion finite element method resolves the oscilla-
tion problem; however it causes some artifacts
(overshooting/ down shooting) around the edge
of discontinuities. To avoid above phenomena we
have proposed a CNN approach.
In this paper we shall study the following

convection-diffusion problem:

{
∂u
∂t = b∇u+ cu, in D ≡ (0, 1)2

u = 0 on ∂D,
(2)

where b(x, t) ≥ β, c(x, t) ≥ 0 and c20(x, t) ≡
(c−bx/2) ≥ γ, x, t ∈ D̄, β and γ are some positive
constants. It is known [5] that for this assump-
tions there exists an unique solution of the CD
problem (2).
In the next section we shall construct the CNN

algorithm for studying the dynamics of the CD
equation (2). Section 2 deals also with CNN
model of the convection-diffusion equation and
its dynamics. Two examples are given in order
to demonstrate the simulation results.

II. CNN APPROACH FOR STUDYING THE
DYNAMICS OF THE

CONVECTION-DIFFUSION MODEL

Partial Differential equation (PDE) based
models have recently shown to be useful for
multiscale analysis [8,9]. They can be classi-
fied in three main categories: a) linear isotropic
filters; b) nonlinear isotropic filters; c) nonlin-
ear anisotropic filters. The main disadvantage
of PDE based techniques is that from a com-
putational point of view they are rather time-
consuming and therefore they are not suitable for
real-time image processing. For this purpose we
shall apply CNN algorithm for studying the CD
model (2).
It is known that some autonomous CNNs rep-

resent an excellent approximation to nonlinear

partial differential equations (PDEs). The intrin-
sic space distributed topology makes the CNN
able to produce real-time solutions of nonlinear
PDEs. Consider the following well-known PDE,
generally referred to us in the literature as a
reaction-diffusion equation:

∂u

∂t
= f(u) +D∇2u,

where u ∈ RN , f ∈ RN , D is a matrix with
the diffusion coefficients, and ∇2u is the Lapla-
cian operator in R2. There are several ways to
approximate the Laplacian operator in discrete
space by a CNN synaptic law with an appropri-
ate A-template.
In our case the CNN model of CD equation (2)

is:

u̇j(t) = b ∗A1 ∗ uj + c ∗ uj , 1 ≤ j ≤ N, (3)

where A1 = (1,−2, 1) is one dimensional dis-
cretize Laplacian CNN template. The convolu-
tion operator ∗ is defined below:

Definition 1 For any cloning template A which
defines the dynamic rule of the cell circuit, we
define the convolution operator ∗ by the formula

A ∗ zij =
∑

C(k,l)∈Nr(i,j)

A(k − i, l − j)zkl,

where A(m,n) denotes the entry in the pth row
and rth column of the cloning template, p =
−1, 0, 1, and r = −1, 0, 1, respectively.

In this section we will introduce an approxima-
tive method for studying the dynamics of CNN
model (3), based on a special Fourier transform.
The idea of using Fourier expansion for finding
the solutions of PDEs is well known in physics.
It is used to predict what spatial frequences or
modes will dominate in nonlinear PDEs. In CNN
literature this approach, has been developed for
analyzing the dynamics of CNNs with symmetric
templates [1].
We shall investigate the dynamic behavior of

CNN model (3) by use of Harmonic Balance
Method well known in control theory and in the
study of electronic oscillators [3] as describing
function method. The method is based on the
fact that all cells in CNN are identical [1], and
therefore by introducing a suitable double trans-
form, the network can be reduced to a scalar
Lur’s scheme [3].
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We shall present the algorithm briefly:
1. Apply the double Fourier transform:

F (s, z) =
k=∞∑
k=−∞

z−k

∫ ∞

−∞
fk(t)exp(−st)dt,

to the CNN equation (3).
2. Find the transform function H(s, z) =,

where s = iω0, z = exp(iΩ0, i =
√
−1, ω0 is

a temporal frequency, Ω0 is a spatial frequency.
3. Look for possible solutions of (3) in the

form:
uj = Um0sin(ω0t+ jΩ0)

4. The amplitude Um0 , the temporal frequency
ω0 and the spatial frequency Ω0 are unknowns to
be determined.
5. Our CNN model (3) is a finite circular array

of N cells we have finite set of spatial frequencies:

Ω0 =
2πk

N
, 0 ≤ k ≤ N − 1. (4)

Based on the above considerations the follow-
ing proposition hold:

Proposition 1
CNN model (3) of the convection-diffusion prob-
lem (2), consisting of circular array of N cells,
has state solution uj(t) with a finite set of spatial
frequencies Ω0 = 2πk/N , 0 ≤ k ≤ N − 1.

We obtain the following simulation results for
different values of the parameters β and γ:

Fig.1. Simulations of the CNN algorithm for
CD problem (2).

III. EXAMPLES

Example 1. Consider the following singularly
perturbed boundary value problem

−ε∆u+ bux + cu = 0, in Ω ≡ (0, 1)2 (5)

u = 0, on ∂Ω.

In order to construct a robust numerical
method for the considered problem, it is of key
interest to have information on a behavior of the
solution. The state equation of the CNN model
of (5) is:

−εA1 ∗ ui + b ∗A1 ∗ ui + c ∗ ui = 0 (6)

Applying CNN algorithm we obtain simulation
results shown on Fig.2.

Fig.2. Simulation of the CNN algorithm for the
problem (5).

Example 2. We consider the following exam-
ple of (2) on the layer-adapted mesh:

−ε∆u+ (1 + x3)ux + (1 + xy)u = 0, inΩ (7)

u = 0, on∂Ω

CNN model of the above system is:

−εA1 ∗ui+(1+x3)A1 ∗ui+(1+xy)ui = 0 (8)

1 ≤ i ≤ N

We obtain simulation results of (8) on Fig.3.
Remark 1.We consider a CNN programmable

realization allowing the calculation of all neces-
sary processing steps in real time. The network
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Fig.3. Simulation of the CNN algorithm for the
problem (7).

parameter values of CNN models, are determined
in a supervised optimization process.During the
optimization process the mean square error is
minimized using Powell method and Simulated
Annealing [7]. The results are obtained by the
CNN simulation system MATCNN applying 4th
order Runge-Kutta integration.
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V. CONCLUSION

In this paper a convection-diffusion equation
for processing image denoising is studied. In or-
der to construct a robust numerical method we
apply CNN approach. By means of harmonic bal-
ance method we prove that the solutions of the
CNN model exist and they have a finite set of
spatial frequencies Ω0 = 2πk/N , 0 ≤ k ≤ N − 1.
Computational results are presented for two test
problems with known solutions in order to verify
the obtained theoretical results.
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