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ABSTRACT: In this paper we present several models of tsunami waves and tornado. We study shallow water waves.
Two-component Camassa-Holm type system which admits peaked traveling waves is considered. Then we study two-
dimensional Kuramoto-Tsuzuki equation as a model of tornado. Cellular Neural Network (CNN) approach is applied
in order to study the structure of the traveling waves. Numerical simulations of the CNN models in both -tsunami and
tornado models are presented.

1 INTRODUCTION
The study of propagation of tsunami from their small disturbance at the sea level to the size they reach approaching
the coast has involved the interest of several scientists. It is clear that in order to predict accurately the appearance of a
tsunami it is fundamental to built up a good model. From this point of view the most important tool in the context of water
waves is soliton theory [8]. Frequently in the literature it is stated that a tsunami is produced by a large enough soliton.
Solitons arise as special solutions of a widespread class weakly nonlinear dispersive PDEs modeling water waves, such
as the KdV or Camassa-Holm equation [3], representing to various degrees of accuracy approximations to the governing
equations for water waves in the shallow water regime. How the tsunami is initiated? The thrust of a mathematical
approach is to examine how a wave, once initiated, moves, evolves and eventually becomes such a destructive force of
nature. We aim to describe how an initial disturbance gives rise to a tsunami wave. Let h is the average depth of the
water, λ is the typical wavelength of the wave and a is a typical amplitude. There are two important parameters: ε = a

h
,

called amplitude parameter, and the shallowness parameter δ = h
λ

. According to these parameters a rigorous validity
ranges are obtained [1] for the main physical regimes encountered in modelling of two-dimensional water waves:

1. shallow-water, large amplitude (δ ≪ 1, ε ∼ 1), leading at first order to the shallow-water equations [11] and at
second order to the Green-Naghdi model [10];

2. shallow-water, medium amplitude regime ( δ ≪ 1, ε ∼ δ) leading to the Serre equations [16] and to the Camassa-
Holm equation [3];

3. shallow-water, small amplitude or long-wave regime ( δ ≪, ε ∼ δ2) leading at first order to the linear wave equation

φtt − φxx = 0 (1)

with general solution
φ(x, t) = φ+(x− t) + φ−(x+ t), (2)

where the sign ± refers to a wave profile φ± moving with unchanged shape to the right/left at constant unit speed. The
small effects that were ignored at first order (small amplitude, long wave) build up on longer time/spatial scales to have a
significant cumulative nonlinear effect so that on a longer time scale each of the waves that make up the solution (2) to
(1) satisfies the KdV equation [8].

In this paper we shall present one more model - tornado dynamics. Observations of the tornado have a rich history,
provided by many papers only for the 20th century. Brooks was the first observer, who put forward generally accepted
assumption, that the funnel is a part of the parent cloud, the structure and dynamics of which represent a small tropical
storm and having a helical structure[2]. Numerous observations of the parent cloud indicated the presence of long vortices
in the horizontal plane in them; the vertical poles (funnels) are the continuation of which. This fact has no explanation. In
1951 in Texas during a tornado the funnel, passing over the observer, rose, and its edge was at the height of 6 meters with
the inner cavity diameter of 130 meters. The wall thickness was the size of 3 meters. Vacuum in the cavity was absent,
because it was easy to breathe during its passage. The walls was extremely fast spinning (Justice, 1930). Observations of
the actual tornado, therefore, indicate a strong non- linearity and non-equilibrium of processes in atmosphere during the
formation and existence of a tornado, that does not allow to create the perfect model of this exotic phenomenon. In the
framework of the study of this unusual natural phenomenon the following questions are need to be answered:

1. Under what conditions in the atmosphere the appearance of a tornado happens?
2. What causes the existence of distinct lateral boundaries of the tornado? Why don’t these boundaries spread in time?
3. What are the conditions for the existence of dissipative structures observed in the tornado a set of organized

vortices? And what are their conditions of decay?
4. What causes the boundedness of tornadoes in height?
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5. What are the conditions for the existence and stability of stationary and others possible modes.
6. What determines the appearance of the tornado core (trunk) with significantly higher velocities?
For the mathematical modeling of highly non-equilibrium and nonlinear processes in a tornado authors propose the

approach based on the nonlinear equations of momentum transfer with the model sources and sinks function. This
approach can be assigned to the problems with peaking considered by Academician A. A. Samarskii[15]. For the first
time the thermo- dynamic description was used to identify new principles of self-organization in the atmosphere in the
model specification not entered before.

To gain some insight into the involved processes we have set up a numerical approach via Cellular Neural Networks
(CNN) that treats a vortex as a fluid dynamical system.

2 STUDY OF THE SHALLOW WATER WAVES
An interesting phenomena in water channels is the appearance of waves with length much greater than the depth of
the water. Korteweg and de Vries started the mathematical theory of this phenomenon and derived a model describing
unidirectional propagation of waves of the free surface of a shallow layer of water. This is the well known KdV equation:{

ut − 6uux + uxxx = 0, t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R

where u describes the free surface of the water; for a presentation of the physical derivation of the equation. The beautiful
structure behind the KdV equation initiated a lot of mathematical investigations.

Recently, Camassa and Holm proposed a new model for the same phenomenon:{
ut − uxxt + 3uux = 2uxuxx + uuxxx, t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R.

The variable u(t, x) in the Camassa-Holm (CH) equation represents the fluid velocity at time t in the x direction in
appropriate nondimensional units (or, equivalently, the height of the water’s free surface above a flat bottom). Unlike
KdV, which is derived by asymptotic expansions in the equation of motion, CH is obtained by using an asymptotic
expansions directly in the Hamiltonian for Euler’s equations in the shallow water regime. The novelty of the Camassa
and Holm’s work was the physical derivation of CH equation and the discovery that the equation has solitary waves
(solitons) that retain their individuality under interaction and eventually emerge with their original shapes and speeds.

As an alternative model to KdV, Benjamin, Bona and Mahoney [19] proposed the so-called BBM-equation:

ut + ux + uux − uxxt = 0, t > 0, x ∈ R.

Numerical work of Bona, Pritchard and Scott [19] shows that the solitary waves of the BBM-equation are not solitons.
As noted by Whitham [19], it is intriguing to find mathematical equations including the phenomena of breaking and

peaking, as well as criteria for the occurrence of each. He observed that solutions of the KdV-equation do not break as
physical water waves do. Whitham suggested to replace the KdV-model by the nonlocal equation

ut + uux +K = 0, t > 0, x ∈ R,

for which he conjectured that breaking solutions exist. Here K is a Fourier operator with symbol k(ξ) =
√

(tanhξ)/ξ.
Whitham’s conjecture was proved [19]. The numerical calculations carried out for the Whitham equation do not support
any strong claim that soliton interaction can be expected.

On the other hand, Camassa, Holm and Hyman [3] show that the solitary waves have a discontinuity in the first deriva-
tive at their peak and that soliton interactions occur in CH equation. The advantage of the new equation in comparison
with the well-established models KdV, BBM and the Whitham equation is clear: The Camassa-Holm equation has peaked
solitons, breaking waves, and permanent waves.

In order to derive the model equation of tsunami wave we assume an initial disturbance of the form of a two-
dimensional wave and we are interested in understanding the dynamics of the wave as it propagates across the ocean.
Choose Cartesian coordinates (X,Y ) with the Y -axis pointing vertically upwards, the X-axis being the direction of
wave propagation, and with the origin located on the mean water level Y = 0. Let (U(X,Y, T ), V (X,Y, T )) be the ve-
locity field of the two-dimensional flow propagating in the X-direction over the flat bed Y = −h, and let Y = H(X,T )
be the water’s free surface with mean water level Y = 0. The equation of mass conservation

UX + VY = 0

is a consequence of assuming constant density, a physically reasonable assumption for gravity water waves.Under the
assumption of inviscid flow (which is realistic since experimental evidence confirms that the length scales associated
with an adjustment of the velocity distribution due to laminar viscosity or turbulent mixing are long compared to typical
wave-lengths) the equation of motion is Euler’s equation:{

UT + UUX + V UY = − 1
ρ
PX ,

VT + UVX + V VY = − 1
ρ
PY − g,
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where P is the pressure, g is the constant acceleration of gravity and ρ is the constant density of water. We also have
the boundary conditions P = Patm on Y = H(X,T ), where Patm is the (constant) atmospheric pressure at the water’s
free surface, V = HT + UHX on Y = H(X,T ), and V = 0 on Y = −h. This conditions express the fact that water
particles can not cross the free surface, respectively, the impermeable rigid bed, while P = Patm decouples the motion
of the water from that of the air above it in the absence of surface tension; for wavelength larger than a few mm (and
in our case we deal with hundreds of km) the effects of surface tension are known to be negligible. We will consider
irrotational flows with zero vorticity

UY − VX = 0,

a hypothesis that allows for uniform currents but neglects the effects of non-uniform currents in the fluid.
Finding exact solutions to the nonlinear governing equations for water waves is not possible even with the aid of the

most advanced computers. In order to derive approximations to the governing equations it is useful to write them in
non-dimensional form. We assume that the two-dimensional waves under investigation have acquired a certain pattern.
We assume that the wave pattern under investigation represents a weakly irregular perturbation of a wave train in the
sense that averages over suitable times/distances resemble a wave train.Since h is the average depth of the water, the
non-dimensionalisation Y0 of Y should be Y = hy, which is to be understood as replacing the dimensional, physical
variable Y by hy, where y is now a non-dimensional version of the original Y . The non-dimensionalisation of the
horizontal spatial variable is also obvious; if λ is some average of typical wavelength of the wave, we set X = λx. The
corresponding non-dimensionalsation of time is T = λ√

gh
t.

Then the governing equation for irrotational water waves equations in nondimensionalized form is:
δ2Φxx +Φyy = 0 in Γ(t),
Φy = 0, on y = −1,
ξt + εξxΦx + ε

δ2
ϕy = 0 on y = εξ,

Φt +
ε
2
Φ2

x + ε
2δ2

Φ2
y + ξ = 0 on y = εξ,

where x 7→ εξ(x, t) is a parametrization on the free surface at time t, Γ(t) = {(x, y),−1 < y < εξ(x, t)} is the fluid
domain delimited above by the free surface and below by the flat bed {y = −1}, and where Φ(., ., t) : Γ(t) → R is the
velocity potential associated to the flow, so that the two-dimensional velocity field is given by (Φx,Φy).

3 TRAVELING WAVE SOLUTIONS FOR TOW-COMPONENT
CAMASSA-HOLM TYPE SYSTEM

Our aim in this section is to find model equations which admit peaked travelling waves: waves that are smooth except
at their crest and which capture therefore the main features of the waves of greatest height encountered as solutions to
governing equations for water waves [8].

The motion of inviscid fluid with a constant density is described by the well-known Euler’s equations. On the other
hand, the motion of a shallow water over a flat bottom is described by a 3 × 3 semilinear system of first order partial
differential equations. Recently model of the shallow water waves was derived, Camassa-Holm (CH) equation:

ut − utxx + kux + 3uux = 2uxuxx + uuxxx,

attracted a lot of attention. CH is also an integrable equation and its solitary waves are smooth if k > 0 and become
peaked in the limit k → 0. Moreover, the shape of these peaked waves remains stable under small perturbation- these
waves are orbitally stable - so that these wave patterns are recognizable. We point our also that CH models waves in the
presence of vorticity, arising thus as a model of wave-current interactions. This leads to the idea that CH equation might
be relevant to the modeling of tsunamis.

A recent development related to CH consists in its extension to an integrable two-component system of the form:∣∣∣∣ mt + 2uxm+ umx + ρρx = 0
ρt + (uρ)x = 0,where m = u− uxx.

(3)

We are looking for travelling wave solutions of (3), i. e. u(t, x) = u(ξ), m(t, x) = m(ξ), ξ = x − ct, c = const.
Substituting u(ξ), m(ξ) in (2.19) we get from the second equation that −cρ

′
+ (uρ)

′
= 0 ⇒ cρ(ξ) = u(ξ)ρ(ξ) − α,

α = const ⇒ ρ = α
u−c

; m = u− u
′′

. Therefore, the first equation in (3) implies:

−cm
′
+ (um)

′
+ u

′
m+ ρρ

′
= 0 ⇒

−c(u
′
− u

′′′
) + (um)

′
+ u

′
(u− u

′′
) + ρρ

′′
= 0

and after an integration with respect to ξ we get that

−cu+ cu
′′
+ u2 − uu

′′
+

1

2
u2 − 1

2
(u

′
)2 +

1

2
ρ2 =

β

2
= const,

i. e.

−cu+ cu
′′
+

3

2
u2 − uu

′′
− 1

2
(u

′
)2 +

α2

(u− c)2
=

β

2
. (4)
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Assuming c > 0 we make in (4) the change u = c(1 + z). In the case c < 0 we shall make the change u = c(1− z).
We shall confine ourselves to the case when c > 0 and z = u

c
− 1 as the other case is treated similarly. Consequently,

ρ = α
cz

, z ̸= 0 and then (4) can be written as:

−c2(1 + z) + c2z
′′
+

3

2
c2(1 + z)2 − c2(1 + z)z

′′
− 1

2
c2(z

′
)2 +

1

2

α2

c2z2
=

β

2
⇒

zz
′′
+

1

2
(z

′
)2 − 3

2
z2 − 2z − α2

2c4z2
+

β − c2

2c2
= 0. (5)

We multiply (5) by z
′

then integrate in ξ and having in mind that zz
′
z
′′
+ 1

2
(z

′
)3 = 1

2
(z(z

′
)2)′ we obtain:

1

2
z(z

′
)2 − z3

2
− z2 +

α2

2c4z
+

β − c2

2c2
z =

γ

2
= const,

i. e.

z2(z
′
)2 = z4 + 2z3 +

c2 − β

c2
z2 + γz − α2

c4
. (6)

Put c2−β
c2

= β1 ⇔ β = c2(1− β1), −α2

c4
= α1 < 0 ⇔ α = ±c2

√
−α1, i. e. α → 0 ⇔ α1 → 0.

Let us fix c > 0. Then β1 ∈ R, γ ∈ R and α1 < 0 are arbitrary real constants.
Put P4(z) = z4 + 2z3 + β1z

2 + γz + α1.

If γ = 0 we write P̃4(z) = z4 + 2z3 + β1z
2 + α1. Define now w = ˜̃P4(z) = z2(z2 + 2z + β1). Evidently,

˜̃P4(z) = 0 ⇔ z1,2 = 0, z3,4 = −1±
√
1− β1. We shall assume further on that

0 < β1 < 1 ⇔ 0 < 1− β1 < 1 ⇔ −1 < z3 < 0, −2 < z4 < −1. (7)

Consider now the cross points of the biquadratic parabola w = ˜̃P4(z) and the straight line w = −α1 > 0, 0 <
−α1 ≪ 1 ⇔ 0 < |α| ≪ 1. Geometrically we have the Fig.1.

Figure 1:

Evidently, the curve w = ˜̃P4(z) crosses the line w = −α1, |α1| ≪ 1 at the points z
′
4 < z4 < z3 < z

′
3 < z

′
2 <

0 < z
′
1. Therefore P̃4(z)=0 ⇔ P̃4(z

′
j) = 0, zj, 1≤j≤4 being 4 simple roots of the algebraic equation P̃4(z) = 0. As

it is known from Analysis, the simple roots of the algebraic equations depend continuously on the coefficients of the
corresponding polynomials. This way we come to the Proposition 1.

Proposition 1. Consider the 4th order polynomial P4(z), fix the constant c > 0 and suppose that 0 < β1 < 1. Then
one can find some 0 < ε0 such that if |γ| ≤ ε0, |α| ≤ ε0, then P4(z) = 0 has 4 simple roots z

′
4 < z

′
3 < z

′
2 < 0 < z

′
1.

According to [13] the equation ∣∣∣∣∣ (z
′
)2 = P4(z)

z2
≥ 0

z(0) = z0 ∈ [z
′
3, z

′
2]

(8)

possesses a smooth periodic solution z(ξ), z(0) = z0, z
′
3 ≤ z(ξ) ≤ z

′
2, i. e. z ̸= 0. In fact, P4(z) ≥ 0 for z ∈ [z

′
3, z

′
2]

(see Fig.1), while P4(z) < 0 for z ∈ (z
′
4, z

′
3) or z ∈ (z

′
2, z

′
1). At first we construct the solution of z

′
=

√
P4(z)

−z
> 0,

z(0) = z0 as z ∈ [z
′
3, z

′
2] ⇒ −z > 0, i. e.

ξ =

∫ z

z
′
3

−λdλ√
P4(λ)

= H(z) and for z0 = z
′
3. (9)

Evidently, H
′
(z) > 0 for z ∈ (z

′
3, z

′
2), H ′(z′3) = ∞, H ′(z′2) = ∞, i. e.

(
H−1(ξ)

)′
> 0, H(z′3) = 0. Put

0 <
T

2
=

∫ z′2

z′3

−λdλ√
P4(λ)

⇒ H(z′2) =
T

2
, z = z(ξ), 0 ≤ ξ ≤ T

2
, z′(0) = z′

(
T

2

)
= 0. Then we continue z(ξ)
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as an even function on the interval −T

2
≤ ξ ≤ 0, i. e. z(−ξ) = z(ξ). One can see easily that z(ξ) satisfies the ODE

z′2 =
P4(z)

z2
on

[
−T

2
,
T

2

]
. Our last step is to continue z(ξ) as a smooth periodic function with period T on the real

line R1
ξ . According to [13], for z′3 ≤ z ≤ z′2

−ξ = −H(z) =

∫ z

z′3

λdλ√
P4(λ)

=
2√

(z′1 − z′3)(z
′
2 − z′4)

{
(z′3 − z′4)×

Π

(
δ,

z′2 − z′3
z′2 − z′4

, q

)
+ z′4F (δ, q)

}
,

where q =

√
(z′2 − z′3)(z

′
1 − z′4)

(z′1 − z′3)(z
′
2 − z′4)

, δ = arcsin

√
(z′2 − z′4)(z − z′3)

(z′2 − z′3)(z − z′4)
and F , Π are respectively (see [13]). Certainly,

H(z) = |ξ| for |ξ| ≤ T

2
, z′3 ≤ z ≤ z′2.

This way we expressed a class of periodic solutions of (3) – travelling wave type – by the famous Legendre’s elliptic
functions. In fact z ̸= 0 is periodic with period T and u = c(1 + z), ρ =

α

cz
.

Remark 1. Consider the ODE (8), where P4(z) = z4+2z3+β1z
2+γz+α1, β1, γ, α1 < 0 being arbitrary constants.

Certainly, P4(z) = 0 possesses at least two real roots as P4(0) = α1 < 0. We assume that k1 = k2 < 0 is a double
root of P4(z), while k1 < k3 < 0 < k4 are simple roots. We have supposed that k3 < 0 < k4 as k2

1k3k4 = α1 < 0.
Therefore, k1 < z < k3 ⇒ P4(z) > 0. Then the Cauchy problem∣∣∣∣ z2z′2 = P4(z) = (z − k1)

2(z − k3)(z − k4)
z(0) = k3

possesses a smooth solution z(ξ), ξ ∈ R1, such that z(−ξ) = z(ξ), ∀ξ ∈ R1, z′(0) = 0, z′(ξ) < 0 for ξ > 0. This is
a soliton, of course (see Fig.2). Moreover, we can give an explicit formula for the solution as the corresponding integral

ξ =

∫ z

k3

λdλ

(λ− k1)
√

(λ− k3)(λ− k4)
≡ H1(z) > 0, k1 < z < k3, H ′

1(z) < 0, H1(k3) = 0, lim
z→k1

H1(z) = +∞,

H ′
1(k3) = −∞ can be calculated by using the standard Euler’s substitutions.

Figure 2:

The case when P4(z) has a triple root or a pair of complex roots w, w ∈ C1\R1 can be studied in a similar way
and we omit the details. They are left to the reader. We complete our study. We are ready now to discuss more general
problems concerning larger classes of travelling wave solutions.

4 MODELING TORNADO DYNAMICS
In the non-equilibrium thermodynamics it is accepted to characterize the processes within the system under the influence
of the external environment by the so-called entropy production σi per unit volume of the layer. There are also other
local thermodynamic characteristics- the external ow of entropy σε and the rate of change of entropy Ṡ, equal to their
sum. It is believed that in the self-organization systems full change of the entropy decreases with time: Ṡ < 0. This
approach allows one to record the system of equations for the velocity components in the case of an incompressible fluid
in dimensionless form as two-dimensional Kuramoto-Tsuzuki equation[15] for the atmospheric layer:

∂Φ

∂t
= v1(1 + ic1)(

∂2Φ

∂x2
+

∂2Φ

∂y2
) + qΦ− α1(1 + ic2)|Φ|2Φ (10)

where Φ = νx + iνy , v2/v1 is related to viscosity, α2/α1 due to sinks.
Geometrically we have the following tornado pressure field oscillation. On the Figure 3 isobaric surfaces and the

pressure gradient field (orthogonal to the surface) are displayed [15].
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Figure 3: Tornado isobaric surfaces.

5 CELLULAR NEURAL NETWORK APPROACH
It is known [4,5,14,17] that some autonomous CNNs represent an excellent approximation to nonlinear partial differen-
tial equations (PDEs). The intrinsic space distributed topology makes the CNN able to produce real-time solutions of
nonlinear PDEs. There are several ways to approximate the Laplacian operator in discrete space by a CNN synaptic law
with an appropriate . An one-dimensional discretized Laplacian template will be in the following form:

A1 = (1,−2, 1),

This is the two-dimensional discretized Laplacian A2 template:

A2 =

 0 1 0
1 −4 1
0 1 0

 .

Let us use 2-D grid given on Fig.3:
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Figure 4: 3× 3 CNN.

The squares are the circuit units - cells, and the links between the cells indicate that there are interactions between
linked cells. One of the key features of a CNN is that the individual cells are nonlinear dynamical systems, but that the
coupling between them is linear. Roughly speaking, one could say that these arrays are nonlinear but have a linear spatial
structure, which makes the use of techniques for their investigation common in engineering or physics attractive.

We will give the general definition of a CNN which follows the original one:
Definition 1. The CNN is a
a). 2-, 3-, or n- dimensional array of
b). mainly identical dynamical systems, called cells, which satisfies two properties:
c). most interactions are local within a finite radius r, and
d). all state variables are continuous valued signals.
Definition 2. An M ×M cellular neural network is defined mathematically by four specifications:
1). CNN cell dynamics;
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2). CNN synaptic law which represents the interactions (spatial coupling) within the neighbor cells;
3). Boundary conditions;
4). Initial conditions.
Now in terms of definition 2 we can present the dynamical systems describing CNNs. For a general CNN whose cells

are made of time-invariant circuit elements, each cell C(ij) is characterized by its CNN cell dynamics :

ẋij = −g(xij , uij , I
s
ij), (11)

where xij ∈ Rm, uij is usually a scalar. In most cases, the interactions (spatial coupling) with the neighbour cell
C(i+ k, j + l) are specified by a CNN synaptic law:

Isij = Aij,klxi+k,j+l + Ãij,kl ∗ fkl(xij , xi+k,j+l) + (12)

+B̃ij,kl ∗ ui+k,j+l(t).

The first term Aij,klxi+k,j+l of (12) is simply a linear feedback of the states of the neighborhood nodes. The second
term provides an arbitrary nonlinear coupling, and the third term accounts for the contributions from the external inputs
of each neighbor cell that is located in the Nr neighborhood.

Definition 3. For any cloning template A which defines the dynamic rule of the cell circuit, we define the convolution
operator ∗ by the formula

A ∗ zij =
∑

C(k,l)∈Nr(i,j)

A(k − i, l − j)zkl,

where A(m,n) denotes the entry in the pth row and rth column of the cloning template, p = −1, 0, 1, and r = −1, 0, 1,
respectively.

6 TRAVELING WAVE SOLUTIONS OF OUR CNN MODELS
Our next step is to construct CNN model of the two-component Camassa-Holm type system (3). In our case we have the
following N ×N CNN system:∣∣∣∣∣ duij

dt
− d

dt
(A2 ∗ uij) + 2A1 ∗ uij(uij −A2 ∗ uij) + ρijA1 ∗ ρij = 0

dρij
dt

+ ρijA1 ∗ uij + uijA1 ∗ ρij = 0
, (13)

where 1 ≤ i, j ≤ N .
Our objective in this paper is to study the structure of the travelling wave solutions of the CNN model of two component

Camassa-Holm type system (13). We shall study the travelling wave solutions of the CNN model (13) of the form:

∣∣∣∣ uij = Θ1(icosΩ+ jsinΩ− ct),
ρij = Θ2(icosΩ+ jsinΩ− ct),

(14)

for some continuous functions Θ1,Θ2 : R1 → R1 and for some unknown real number c. As we mentioned above
s = icosΩ + jsinΩ − ct. Let us substitute (14) in our CNN model (13). Therefore we consider solution Θ1(s; c),
Θ2(s; c) of:

∣∣∣∣∣ −cΘ
′
1(s; c) +G1(Θ1(s; c),Θ2(s; c)) = 0,

−cΘ
′
2(s; c) +G2(Θ1(s; c),Θ2(s; c)) = 0,

(15)

where G1(Θ1,Θ2), G2(Θ1,Θ2) ∈ R1 are satisfying∣∣∣∣ lims→±∞Θ1(s; c) = 0,
lims→±∞Θ2(s; c) = 0,

(16)

for some c > 0. We shall investigate the basic properties of the solutions of (13).
Suppose that our CNN model (13) are finite circular arrays of L = N.N cells. For this case we have finite set of

frequences [3]:

Ω =
2πk

L
, 0 ≤ k ≤ L− 1. (17)

The following proposition then hold:
Proposition 2. Suppose that uij(t) = Θ1(icosΩ + jsinΩ− ct), ρij = Θ2(icosΩ + jsinΩ− ct) are the travelling

wave solutions of the CNN model (13) of the two component Camassa-Holm type system (3) with Θ1,Θ2 ∈ C1(R1,R1)
and Ω = 2πk

L
, 0 ≤ k ≤ L− 1. Then there exist constants c > 0 and s0 > 0 such that

(i) for s < s0 the solutions Θ1(s; c), Θ2(s; c) of (15) satisfying (16) is increasing;
(ii) for s > s0 the solutions Θ1(s; c), Θ2(s; c) of (15) satisfying (16) is decreasing;
(iii) for s = s0 the solutions Θ1(s; c), Θ2(s; c) of (15) have maximum of angle type with positive opening, peakon.
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Moreover, the solutions Θ1(s; c), Θ2(s; c) are either non vanishing everywhere or compactly supported, i.e.
Θ1(s; c) = 0, Θ2(s; c) = 0 for |s− s0| ≥ d, d being an appropriate positive constant.

Remark 2. There has been many studies on travelling wave solutions of spatially and time discrete systems [12].
However, as far as we know travelling wave solutions of peakon type have been hardly studied in such discrete systems.
For this reason we apply CNN approach and the numerical simulations of our CNN model (13) confirm the proposed
results.

The simulations of the CNN model (13) give us the following Figure 5:

Figure 5: Peakon wave solution of (13).

CNN model of the two-dimensional Kuramoto-Tsuzuki equation (10) is:

dΦij

dt
= v1(1 + c1)A2 ∗ Φij + qΦij − α1(1 + ic2|Φij |2Φij , (18)

where A2 is two-dimensional discretized Laplacian template, ∗ is a convolution operator [4]. After simulation of this
model we get the following result:
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Figure 6: Simulation of CNN model of Kuramoto-Tsuzuki equation.

Remark 3. We consider a CNN programmable realization allowing the calculation of all necessary processing steps
in real time. The network parameter values of CNN models, are determined in a supervised optimization process.During
the optimization process the mean square error is minimized using Powell method and Simulated Annealing [18]. The
results are obtained by the CNN simulation system MATCNN applying 4th order Runge-Kutta integration.
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8 CONCLUSIONS AND DISCUSSION
To quantify the dynamics of tsunami waves as they impact on costal areas is a challenging mathematical and physical
problem of outmost importance. In this paper we discuss mathematical models of tsunamis and tornado- two-component
CH type system and two-dimensional Kuramoto-Tsuzuki equation. In order to study the dynamics of our models we use
CNN approach in order to discretized the governing equation over a suitable grid. We study the traveling wave solutions
for the CNN model. For two-component CH system we obtain peakon solutions and present numerical simulations of the
corresponding CNN model.

Let us conclude with a brief discussion of the wave dynamics as the tsunami propagate towards the coast. The pre-
vious considerations show that from initiation until reaching towards the costal region, a good approximation in non-
dimensional variables of tsunami waves is provided by the solutions of the corresponding model equation. In the original
physical variables this means that up until near-shore the wave profile remained unaltered propagating at constant speed√
gh0. The linear model breaks down when the tsunami waves enter the shallower water of the coastal regions and for

understanding of the tsunamis close to the shore the appropriate equations are those modeling he propagation of long
water over variable depth. Before the waves reach the breaking state, their front steepens and dispersion, no matter how
weak, becomes relevant. In this region faster wave fronts can catch up slower ones(but they can never overtake them) as
a manifestation of the ”confluence of shocks” and can result in large amplitude wave fronts building up behind smaller
ones.

Let us take for example the tsunami of 2004 in the Indian Ocean. For modeling purposes, outside of the Bay of
Bengal the two-dimensional character of the tsunami waves can not be taken any more more for granted since diffraction
around islands and reflection from steep shores alter this feature considerably. The earthquake that generated the tsunami
changed the shape of the ocean floor by raising it by a few m to the west of the epicenter and lowering it to the east (over
100 km in the east-west direction and about 900 km in the north-south direction).

The initial shape of the wave pattern that developed into the tsunami wave featured therefore to the west of the epicenter
a wave of elevation followed by a wave of depression (that is, with water levels higher, respectively lower than normal),
while to the east of the epicenter the initial wave profile consisted of a depression followed by an elevation.The fact that
as the tsunami waves reached the shore in either direction, the shape of the initial disturbance (first wave of elevation,
then wave of depression, respectively vice-versa) was not altered is of utmost importance in validating a theory for
the wave dynamics on this occasion. This observation suggests that perhaps the shape of the tsunami waves remained
approximately constant as they propagated across the Bay of Bengal. These clearly show a leading wave of elevation,
followed by a wave of depression, a feature common both to the initial wave profile west of the epicenter and to the
tsunami as it entered the coastal regions of India and Sri Lanka. These measurements also confirm another essential
feature of tsunami waves: even though these waves reach large amplitudes due to the diminishing depth effect as they
approach the shore (waves as high as 30m were observed near the city Banda Aceh on the west coast of the northern tip
of Sumatra about 160 km away from the epicenter of the earthquake), tsunami waves are barely noticeable at sea due to
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their small amplitude. Indeed, the satellite data shows that the maximum amplitude of the waves, whether positive or
negative with respect to the usual sea level, was less than 0.8m over distances of more than 100 km.
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[16] F. Serre, Contribution á l’étude des écoulements permanents et variables dans les canaux, La Houille Blanche, 3,
pp. 374-388, 1953.

[17] A.Slavova,Cellular Neural Networks: Dynamics and Modelling, Kluwer Academic Publishers, 2003.

[18] R. Tetzlaff, F. Gollas, Modeling complex systems by reaction-diffusion Cellular Nonlinear Networks with polyno-
mial Weight-Functions,Proc. IEEE CNNA2005,Taiwan, 2005.

[19] G.B.Whitham, Linear and Nonlinear Waves, J.Whiley and Sons, New York, 1980.


