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Dynamic Behavior of Cracked Magnetoelectroelastic 
Composites at Different Boundary Conditions 

Y. D. Stoynov  

Faculty of Applied Mathematics and Informatics, Technical University of Sofia, Sofia 1000 Bulgaria. 

Abstract. Magnetoelectroelastic material with a finite crack is considered. The crack is  subjected to an anti-plane mechanical 
and in-plane electric and magnetic load. The fundamental solutions of the coupled system of the governing equations are derived 
in a closed form by the Radon transform. They are implemented in a non-hypersingular traction boundary integral equation 
method (BIEM). 

A program code in Fortran, based on the BIEM, is created. Validation studies show the accuracy of the proposed scheme by 
comparing the results with the available data for impermeable and permeable cracks. Numerical examples display the 
dependence of the dynamic stress intensity factor (SIF) on the normalized frequency for different boundary conditions at the 
crack faces. 

Keywords: Magnetoelectroelastic medium,  anti – plane crack, BIEM, SIF
PACS: 02.30.Jr, 02.70.Pt, 75.50.Gg, 77.84.Lf, 77.84.Dy  

INTRODUCTION 

Magnetoelectroelastic materials (MEEM) are used in engineering structures, because of their electro-magneto-
mechanical coupling effects. These effects exist in single-phase materials and in two-phase piezoelectric/ 
piezomagnetic composites. Magnetoelectric effect in the composite can be a hundred times larger than in a single- 
phase material at temperatures above room. In recent years, there is an increasing interest in fracture mechanics of 
MEEM, which are combination of piezoelectric and piezomagnetic phases. One of the basic and important issues of 
the fracture mechanics of the MEEM is the boundary conditions on the crack faces. For the piezoelectric materials 
there are two kinds of idealized boundary conditions-electrically permeable and impermeable crack [1-2]. For the 
MEEM there are four types of idealized boundary conditions [2]. 

The objective of this research is to consider the four idealized assumptions of electromagnetic boundary 
conditions for MEEM. These assumptions are: 

i) electrically impermeable and magnetically permeable, 
ii) electrically permeable and magnetically impermeable, 
iii) fully impermeable, 
iv) fully permeable. 

STATEMENT OF THE PROBLEM 

 Let us consider linear MEE medium. The interactions between the mechanical, electrical and magnetic fields can 
be expressed by the following coupled constitutive equations [3,4]:

                                                                      σ =Cs – eE – qH, 

                                                                       D=ets + εE + dH,                                                                    (1)

                                                         B=qts + dE + μH, 

where σ, D and B are the second order stress tensor, the electric displacement vector and magnetic induction vector, 
respectively; s, E and H are the second order strain tensor, the electric field vector and the magnetic field vector, 
respectively;  С, ε and μ are the fourth order elastic modulus tensor, the second order dielectric constant tensor and 
the magnetic permittivity tensor, respectively; e, q and d are piezoelectric, piezomagnetic and magnetoelectric 
coefficient tensors.

The MEE composite materials that we study are transversely isotropic with an axis of symmetry and poling 
direction along 3Ox  axis of a rectangular coordinate system 1 2 3Ox x x  and 1 2Ox x is the isotropic plane. Our attention 
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is focused on the case when the MEEM is subjected to an external antiplane mechanical, and inplane electric and 
magnetic load with respect to the isotropic plane 1 2Ox x . The electric and magnetic fields are potential and the 
problem is two-dimensional (the material properties are the same in all planes perpendicular to the axis of 
symmetry). The constitutive equations in this case are [3,5]: 

3 44 3, 15 , 15 ,i i i ic u e q
                                                                       15 3, 11 , 11 ,i i i iD e u d                                                                    (2) 

15 3, 11 , 11 , .i i i iB q u d
Here 44c  is the elastic module, 15e  is the piezoelectric coefficient, 15q  is the piezomagnetic coefficient, 11  is the 
dielectric permittivity, 11  is the magnetic permeability, 11d  is the magnetoelectric coefficient, 3u  is the out-of- 
plane mechanical displacement,  and  are electric and magnetic potential respectively, 3i is the mechanical 
stress, iD  is the inplane electrical displacement, iB  is the inplane magnetic induction, 1,2i  and comma means 
differentiation. Applying the equation of motion in the absence of body forces, the equations of Maxwell in the 
absence of electric charges and current densities and (2) we obtain the system of governing equations [3]: 

2
3

44 3 15 15 2

uc u e q
t

15 3 11 11 0e u d                                                         (3)   
15 3 11 11 0,q u d

where is a two-dimensional Laplace operator and is the density.  In our study the MEEM is subjected to a time-
harmonic external load and all field quantities are harmonic with frequency of the incident wave. In this case we 
can suppress the common factor i te and write the system (3) in the following way: 

2
44 3 15 15 3 0c u e q u

15 3 11 11 0e u d (4) 

15 3 11 11 0,q u d
where 3u ,  and  depend only on 1 2( , ).x x x

A generalized tensor of elasticity , , 1,2; , 3,4,5iJKlC i l J K  is defined as: 
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Using generalized displacement vector 3( , , )Ju u , and generalized stress tensor 3( , , )iJ i i iD B , 1,2,i
3,4,5,J the constitutive equations have the form: 

,iJ iJKl K lC u . 
Here we assume summation under repeated indexes.  

The governing equations can be written in the compact form: 
2

, 0iJ i JK Ku , 

where 
, 3

0, , 4 5JK

J K
J K or

. We consider the case when the crack is horizontal along 1Ox axis and occupies the 

interval (-c,c), where c=5mm . The interaction of the incident wave with the crack , where is the 
upper bound and is the lower bound of the crack, induces scattered waves. The total wave field at any point can 
be found as a superposition of the incident and scattered wave fields: 

in sc
J J Ju u u

and 
in sc

J J Jt t t . 

257

Downloaded 10 Oct 2012 to 81.161.246.35. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



Here Ju  is the total generalized displacement, Jt  is the total generalized traction defined as J iJ it n ,  where 

1 2( , )n n n  is the normal vector to the crack, in
Ju and in

Jt  are the displacement and traction of the incident wave 
field and sc

Ju  and sc
Jt  are the displacement and traction of the scattered by the crack wave field. The incident wave 

field is known (see [6]). The scattered field has to be determined so that the Sommerfeld’s radiation condition at 
infinity and the boundary conditions at the crack faces are satisfied.   

We will consider the following types of electromagnetic boundary conditions: 

Electrically impermeable and magnetically permeable crack (type I) In this case the crack is free of mechanical 

tractions and surface charges, but continuity of the magnetic potential is assumed: 

3 0t , 4 0t , 5
crt B , 0 , crB B B . Here  and  B  are the magnetic potential and 

the normal component of the magnetic induction at ,  and  B  are the magnetic potential and the normal 
component of the magnetic induction at and crB  is the normal component of the magnetic induction inside the 
crack. Therefore the boundary conditions on  can be written as: 

, 3,4sc in
J Jt t J , 5 5

sc cr int B t . 
Electrically permeable and magnetically impermeable crack (type II) The crack is free of mechanical tractions and 
surface currents, but continuity of the electric potential is assumed: 

3 0t , 4
crt D , 5 0t , 0 , crD D D . Here  and  D  are the electric potential and 

the normal component of the electric displacement at ,  and D  are the electric potential and the normal 
component of the electric displacement at and crD  is the normal component of the electric displacement inside 
the crack. Therefore the boundary conditions on  can be written as: 

, 3,5sc in
J Jt t J , 4 4

sc cr int D t . 
Fully impermeable crack (type III) The crack faces are free of mechanical traction, surface charges and currents: 

3 0t , 4 0t , 5 0t  or , 3,4,5sc in
J Jt t J on . 

Fully permeable crack (type IV) The crack is free of mechanical traction, but continuity of electric and magnetic 
potentials is assumed: 

3 0t , 4
crt D , 5

crt B . 

We will solve the respective boundary value problem for (1) transforming it into an equivalent integro –
differential system of equations on the crack  and then solve this system numerically. 

NON-HYPERSINGULAR BIEM 

Following Wang and Zhang [7] for the piezoelectric case we obtain the BIE: 
* 2 *

,( ) ( ) ( ) [( ( , , ) ( , ) ( , , ) ( , ))in
J iJKl i PK P QP QK P lt x C x n x x y u y u x y u y

                                                       *
,( , , ) ( , )] ( ) ( )PK P lx y u y n y d y                                                                 (5) 

Here x is the observation point, x , y is the integration variable (also called collocation point), ij is the 

Kronecker symbol, *
QKu  is the fundamental solution, * *

,iPK iPM l MK lC u , in
Jt  is the incident plane wave and 

J J Ju u u  are the unknown crack opening displacements (COD). The fundamental solution and the 

incident plane wave can be found in [6]. We reduce the BIE (5) to a system of linear equations and solve it 
numerically. The traction field in every point x can be found by the corresponding representation formula (see 
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[6]). The stress concentration near crack tips is computed using the formula:
1

3 1lim 2 ( ))III x c
K t x c , where c is 

the half-length of the crack.

NUMERICAL REALIZATION 

The numerical solution scheme follows the procedure developed in Rangelov et al. [8] A FORTRAN program is
created and the numerical results are obtained using PC – Core 2 Duo CPU  E8500,  3.16GHz and 2.53GHz, 3GB 
RAM. The MEE material that we used is piezoelectric/piezomagnetic composite BaTiO3/CoFe2O4. The material 
constants of the used materials can be found in [6]. 

Validation Studies 

We validated our numerical tool with the results of  Zhou and Wang (2005) [9] for a fully permeable crack. The 
crack is  divided into 7 and 15 boundary elements (BE). The results obtained with a mesh of 7 and 15 BE are 
compared with those of Zhou and Wang. The comparison is given in Fig.1. We see good coincidence of the results. 

FIGURE 1. The normalized SIF *

3

III
III in

KK
t c

 versus the normalized frequency 111c a for composite material, where 

2
15

44
11

2
15

4444
15

11

ea c ,
2

15
44 44

11

( )
44 4444

qc c , 11 15
15 15

11
15 151

d qe e ,
2

11
11 11

11

( ) .11 1111 11
d

Another test with the results for piezoelectric material of Wang and Mequid [10] and Ma et al. [11] is presented 
in Figure 2. The crack is fully impermeable. We see very close coincidence of the results. 

A test with the results of Rangelov et al [1] for the piezoelectric material BaTiO3 is also shown. The crack is 
fully permeable. The test is given in Figure 3.
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Parametric Studies 

The aim of parametric studies is to show the sensitivity of the SIF to the type of the material and the type of the 
external load for different electromagnetic boundary conditions on the crack. 

0.4
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1.6

2

0.1 0.3 0.5 0.7 0.9 1.1

BIEM
Wang and Megiud
MA (2005)

*
IIIK

FIGURE 2. The normalized SIF versus the normalized frequency for piezoelectric material, an impermeable crack. The 

normalized frequency is 1c a , where 
2
15

44
11

ea c

0.6
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0.1 0.3 0.5 0.7 0.9 1.1

Rangelov et al.(2010)
 BIEM

*
IIIK

FIGURE 3. The normalized SIF versus the normalized frequency for the piezoelectric material BaTiO3. The normalized 

frequency is 1
44c c

In Fig.ure 4 the normalized SIF is plotted versus the normalized frequency for  piezoelectric material BaTiO3,
piezomagnetic material CoFe2O4 and composite. The crack is fully permeable. The external load is an incident plane 
wave. The maximum value is achieved at 1.0 . The graphics show sensitivity of the SIF to the type of the 
material. 
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A comparison of a fully permeable and fully impermeable crack is given in Figure 5. MEE composite is 

subjected to the electromechanical external load: 11
3 4 5

15

, , 0.in in int t D t
e

The comparison shows that SIFs 

obtained for 

FIGURE 4. Normalized SIF versus the normalized frequency for three different materials 

permeable cracks do not depend on the amplitude of the applied electrical load. The SIFs obtained for impermeable 
cracks depend significantly on the amplitude of the applied electrical load.

FIGURE 5. Normalized SIF versus the normalized frequency for MEEM under electromechanical load. Fully permeable and 
fully impermeable crack 

In Figure 6 MEE composite is subjected to magnetomechanical external load: 11
3 4 5

15

, 0, .in in int t t B
q

 Type II 

and type III cracks are compared. The SIFs obtained for both types of cracks depend significantly on the amplitude 
of the applied magnetic load. The results show sensitivity of the SIFs to the type of the electromagnetic boundary 
conditions. 
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In Figure 7 MEE composite is subjected to electromechanical external load: 11
3 4 5

15

, , 0.in in int t D t
e

 Type I 

and type III cracks are compared. The results show sensitivity of the SIFs to the amplitude of the applied electrical 
load for type I and type III cracks.  

FIGURE 6. Normalized SIF versus the normalized frequency for MEEM under magnitomechanical load. Type II and type III 
cracks 

                 
FIGURE 7. Normalized SIF versus the normalized frequency for MEEM under electromechanical load. Type I and type III 
cracks 
                      

In Figure 8 MEE composite is subjected to an incident plane wave. The four different types of electromagnetic 
boundary conditions are compared. The comparison shows close results for type I and type III cracks and also for 
type II and type IV cracks. It also shows that the SIFs are more sensitive to the electrical permeability than the 
magnetic permeability of the crack.  

CONCLUSIONS 

 The present work is focused on the boundary conditions for MEEM with antiplane cracks. As a solution method 
the BIEM is used. The parametric studies reveal the significant differences that may occur when using different 
boundary conditions.  

 Here we performed a pure theoretical analysis for the MEEM with cracks. As B. Wang and J. Han mentioned, it 
is possible to use the present results to determine the type of the crack boundary conditions via appropriate 
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experiments. The present software can be developed further and results for MEEM with more than one crack under 
static and dynamic loads can also be obtained. 

  

             
 FIGURE 8. Normalized SIF versus the normalized frequency for MEEM under an incident plane wave. The four different types 
of crack are compared 
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