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waves in magnitoelectroelastic materials  

 
Yonko D. Stoynov 

 
Faculty of Applied Mathematics and Informatics, Technical University of Sofia. 

 
 
            Abstract: In this paper the dynamic behavior of cracked magnetoelectroelastic materials  under 
antiplane mechanical and inplane electric and magnetic load is investigated. The boundary value problem 
for the coupled system of governing equations is reduced to a non-hypersingular traction boundary 
integral equation using generalization of the well-known J-integrals in elastostatics. 
           Software based on the Boundary Integral Equation Method (BIEM) is developed using 
FORTRAN. Validation with the results for piezoelectric materials obtained by the dual integral equation 
method is given. The numerical examples show the dependence of the Stress Intensity Factor (SIF) on 
the normalized frequency of the incident wave for different materials and different boundary conditions. 
            Keywords: magnetoelectroelastic medium,  anti – plane  crack, BIEM, SIF.   
            PACS: 02.30.Jr, 02.70.Pt, 75.50.Gg, 77.84.Lf, 77.84.Dy 
  

1. Introduction       
 

Magnetoelectroelastic materials (MEEM), possessing magnetoelectric coupling 
property, have increasing applications in modern engineering structures. Since these 
materials are brittle, they are sensitive to cracks. During the service life they are 
subjected to external loads, which may lead to crack extension and eventually to 
disintegration of the materials and/or loosing of their functional properties. Hence 
fracture mechanics analysis has an important role in the design of the MEEM. 

One of the basic issues of the fracture mechanics of the MEEM is the 
electromagnetic boundary conditions along the crack. For the piezoelectric materials 
there are two types of idealized boundary conditions-electrically permeable and 
impermeable. These assumptions will be generalized to MEEM to address the 
magnetically permeable and impermeable cracks (see [1]). 

The objective of this paper is to consider MEEM, subjected to time-harmonic 
loads and give numerical results for different boundary conditions along crack faces.  

 

2. Statement of the problem 
 

Let’s consider linear MEE medium subjected to an external electromagnetic 
field. The constitutive equations, which give relation between the mechanical, electrical 
and magnetic field can be found in [2-3]. We assume that the medium is transversely 
isotropic with an axis of symmetry along 3Ox  direction of a rectangular coordinate 
system 1 2 3Ox x x . The medium is subjected to an external antiplane mechanical, and 
inplane electric and magnetic load with respect to the plane 1 2Ox x . The electric and 
magnetic fields are potential and the problem is two-dimensional (the material 
properties are the same in all planes perpendicular to the axis of symmetry). The 
constitutive equations in this case are: 

3 44 3, 15 , 15 ,� � �� � �i i i ic u e q  

15 3, 11 , 11 ,� � �� � �i i i iD e u d  

15 3, 11 , 11 , .� 	 �� � �i i i iB q u d  

 

(1) 
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Here 44c  is the elastic module, 15e  is the piezoelectric coefficient, 15q  is the 
piezomagnetic coefficient, 11�  is the dielectric permittivity, 11	  is the magnetic 
permeability, 11d  is the magnetoelectric coefficient, 3u is the mechanical displacement, 
�  and �  are electric and magnetic potential respectively, 3�i is the mechanical 
stress, iD  is the inplane electrical displacement, iB  is the inplane magnetic induction, 

1,2�i  and comma means differentiation. Applying the equation of motion, the 
equations of Maxwell and (1) we obtain the system of governing equations in the 
absence of body forces, electric charges and current densities: 

2
3

44 3 15 15 2� � 
 �� � � � � �
�

uc u e q
t  

15 3 11 11 0� � �� � � � � �e u d  

15 3 11 11 0,� 	 �� � � � � �q u d  

 
(2) 

where� is a two-dimensional Laplace operator and 
 is the density. Eliminating ��  
and ��  from the second and third equation of (2) and substituting in the first one we 
obtain a reduced equation for the mechanical displacement. This equation is hyperbolic. 
Therefore the system (2) is hyperbolic. In the case of time-harmonic load with a given 
frequency   the system (2) can be written in the following way: 

2
44 3 15 15 3 0� � 
� � � � � � �c u e q u  

15 3 11 11 0� � �� � � � � �e u d  

15 3 11 11 0,� 	 �� � � � � �q u d  

 
(3) 

where 3u , �  and �  depend only on 1 2( , ).�x x x We can substitute ��  and ��  from 
the second and third equation of (2) in the first one and obtain an elliptic equation. 
Therefore the system (3) is elliptic. Using a generalized tensor of elasticity 

, , 1,2; , 3,4,5� �iJKlC i l J K : 
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a generalized displacement vector 3( , , )� ��Ju u , 3,4,5�J  and a generalized stress 
tensor 3( , , )� ��iJ i i iD B , 1,2,�i  3,4,5,�J  the governing equations have the compact 
form: 

2
, 0,� 
 � �iJ i JK Ku  (4) 

where 1,2,�i , 3,4,5,�J K
, 3

0, , 4 5





� ��

� � ��
JK

J K
J K or

and we assume summation for 

repeated indexes. 
The material is subjected to an incident wave. The interaction of the incident 

wave with the crack � �� � � �� , where �� is the upper bound and �� is the lower 
bound of the crack, induces scattered waves. The total wave field at any point can be 
found as a superposition of the incident and scattered wave fields: 

� �in sc
J J Ju u u  

and 
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� �in sc
J J Jt t t . 

Here Ju  is the total generalized displacement, Jt  is the total generalized traction 
defined as ��J iJ it n ,  where 1 2( , )�n n n  is the normal vector to the crack, in

Ju   and in
Jt  

are the displacement and traction of the incident wave field and sc
Ju  and sc

Jt  are the 
displacement and traction of the scattered by the crack wave field. The incident wave 
field is known (see [4]). The scattered field has to be determined so that the 
Sommerfeld’s radiation condition at infinity and the boundary conditions at the crack 
faces are satisfied.   

We will consider the following types of electromagnetic boundary conditions: 

Electrically impermeable and magnetically permeable crack (type I) In this case the 

crack is free of mechanical tractions and surface charges, but continuity of the magnetic 

potential is assumed:    

3 0�
�

t , 4 0�
�

t , 5 �
�

crt B , 0� � �� �� � � � , � �� �crB B B . Here ��  and  �B  are 

the magnetic potential and the normal component of the magnetic induction at �� , ��  

and  �B  are the magnetic potential and the normal component of the magnetic 
induction at �� and crB  is the normal component of the magnetic induction inside the 
crack. Therefore the boundary conditions on �  can be written as: 

, 3,4� � �sc in
J Jt t J , 5 5� �sc cr int B t . 

Electrically permeable and magnetically impermeable crack (type II) The crack is free 
of mechanical tractions and surface currents, but continuity of the electric potential is 
assumed:    

3 0�
�

t , 4 �
�

crt D , 5 0�
�

t , 0� � �� �� � � � , � �� �crD D D . Here ��  and  �D  are 

the electric potential and the normal component of the electric displacement at �� , ��  

and �D  are the electric potential and the normal component of the electric displacement 
at �� and crD  is the normal component of the electric displacement inside the crack. 
Therefore the boundary conditions on �  can be written as: 

, 3,5� � �sc in
J Jt t J , 4 4� �sc cr int D t . 

Fully impermeable crack (type III) The crack faces are free of mechanical traction, 
surface charges and currents: 

3 0�
�

t , 4 0�
�

t , 5 0�
�

t  or , 3,4,5� � �sc in
J Jt t J on � . 

Fully permeable crack (type IV) The crack is free of mechanical traction, but continuity 
of electric and magnetic potentials is assumed: 

3 0�
�

t , 4 �
�

crt D , 5 �
�

crt B . 

We will solve the respective boundary value problem for (4) transforming it into 
an equivalent integro – differential system of equations on the crack �  and then solve 
this system numerically. 
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3. Boundary integral equation 
 
 

It can be proven that if 1 2 3( , , )Ju x x x  satisfies (4), the following equality is 

fulfilled: 

where S is a closed surface in the space, enclosing domain D, the vector 1 2 3( , , )n n n n�  
is an outer normal vector to S, js�  is the Kronecker’s delta. The equality (5) can be 
considered as a generalization of the well-known J-integrals in elastostatics (see [5-6]). 
Following Wang and Zahng [7] for the piezoelectric case we obtain  the  BIE: 
                                                     

* 2 *
,( ) ( ) [( ( , , ) ( , ) ( , , ) ( , ))� � ��   
    �

��

� � � � ��in
J iJKl i JK J QJ QK J lt C x n x x y u y u x y u y  

*
,( , , ) ( , )] ( ) ( ).� ��  � � �JK J lx y u y n y d y  

 

 (6) 

Here *
QKu  is the fundamental solution, * *

,� �iPK iPM l MK lC u , in
Jt  is the incident plane wave 

and J J Ju u u
� �

� � �
� �

 are the unknown COD. The fundamental solution and the 

incident plane wave can be found in [4]. We reduce the BIE (6) to a system of linear 
equations and solve it numerically. The traction field in every point 2 \x R� � can be 
found by the corresponding representation formula (see [4]). The stress concentration 
near crack tips is computed using the formula:

1
3 1lim 2 ( )III x c

K t x c�
��

� ) , where c is the 

half-length of the crack. 
 

4. Numerical realization 
 

The numerical solution scheme follows the procedure developed in Rangelov et 
al. [8] A FORTRAN program is created and the numerical results are obtained using  
PC – Core 2 Duo CPU  E8500,  3.16GHz and  2.53GHz, 3GB RAM. The MEE 
material that we used is piezoelectric/piezomagnetic composite 3 2 4/BaTiO CoFe O . The 
material constants of the used materials can be found in [4].  
 

4.1 Validation studies 
 
We validated our numerical tool with the results of Zhou and Wang [9] for a fully 
permeable crack. The crack is horizontal along the Ox1 axis and occupies the interval  
(-c,c), where c=5mm. It is  divided into 7 and 15 boundary elements (BE). The results 
obtained with a mesh of 7 and 15 BE are compared with those of Zhou and Wang. The 
comparison is given in Fig.1. We see good coincidence of the results. 

2
, ,

1[ ( ) ] 0
2
� 
  � �� � ��� ,

1[ (1
2 ,( ,�� Ji J i JK J K js Jj J s j

S

u u u u n dS , (5) 
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FIGURE 1. The normalized SIF *

3

III
III in

KK
t c�

�  versus the normalized frequency 

1
 �� � 11�c a   for composite material, where 
2
15

44
11�

� �
2
15

44� �44
15

11�
ea c , 

2
15

44 44
11

( )
	

� �44 44� �44
qc c , 

 
11 15

15 15
11	

� �15 15� �1
d qe e , 

2
11

11 11
11

( ) .� �
	

� �11 11
(� �11 �11�
d

 
Another test with the results of Narita and Shindo [10] is presented in Fig. 2. 

The crack is fully impermeable and the material is 3BaTiO . We see very close 
coincidence of the results. 

 

FIGURE 2. The normalized SIF *

3

III
III in

KK
t c�

�  versus the normalized frequency 

1
44
 �� � c c   for the piezoelectric material 3BaTiO . 
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                                 4.2 Parametric studies 
 

The aim of parametric studies is to show the sensitivity of the SIF to different 
electromagnetic boundary conditions on the crack for different materials. In Fig. 3-6 the 
normalized frequency is 1

44 .
 �� � c c  
In Fig. 3 the normalized SIF is plotted versus the normalized frequency for  the 

piezoelectric material 3BaTiO . We see that the results for type II crack are close to the 
results for type IV and the results for type I are close to the results for type III. 

 
FIGURE 3. Normalized SIF versus the normalized frequency for different boundary 
conditions. 

In Fig. 4 the normalized SIF is plotted versus the normalized frequency for  
piezomagnetic material 2 4CoFe O . We see close results for the considered four types of 
cracks. 

 
FIGURE 4. Normalized SIF versus the normalized frequency for different boundary 
conditions. The material is 2 4.CoFe O  

In Fig. 5 the normalized SIF is plotted versus the normalized frequency for  
MEE composite. Similar to the results for 3BaTiO  we see that the results for type II 
crack are close to the results for type IV and the results for type I are close to the results 
for type III. 
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FIGURE 5. Normalized SIF versus the normalized frequency for different boundary 
conditions. The material is MEE composite. 

In Fig. 6 the normalized SIF is plotted versus the normalized frequency for a 
branched crack. The crack is divided into 7BE. The angle between the right crack-tip 

element (the branched element) and the Ox1 axis is 
4
�� � . The length of the branched 

lement is 0.75. The other BE are horizontal along the 1Ox axis with the following 
coordinates: -5.0,-4.25,-3.25,-1.25,1.25,3.25,4.25. The material is MEE composite. 

 
FIGURE 6. Normalized SIF versus the normalized frequency for a branched crack. The 
material is MEE composite. 

 
5. Conclusions 

 
       The present work is focused on the boundary conditions for MEEM with 

antiplane cracks. As a solution method the BIEM is used. The parametric studies reveal 
the significant differences that may occur when using different boundary conditions. 
They also show that the electric boundary conditions have stronger influence on the SIF 
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than the magnetic ones when we consider MEE composite or the piezoelectric material 
3.BaTiO   
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