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Abstract 

The main aim of this study is to propose, develop, validate and apply in intensive simulations an efficient non-

hypersingular traction boundary integral equation method (BIEM) for solution of anti-plane dynamic fracture 

problems for piezoelectric solids with cracks or/and holes. The modelling approach is in the frame of continuum 

mechanics, wave propagation theory and linear fracture mechanics. The simulations reveal the sensitivity of stress 

concentration factor (SCF) and stress intensity factor (SIF) to coupled character of the electromechanical continuum, 

to type and characteristics of the dynamic load, to type of material, to the geometry of the solid and mutual defects’ 

configuration and to defects interaction. 
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1. Introduction 

     Piezoelectric materials (PEM) are extensively applied in many modern technological fields due to their 

coupled electro-mechanical nature. At the same time their brittleness makes them sensitive against defects 

like cracks, holes or other type of imperfections. The understanding of the fracture process of PEM can 

provide useful information to improve the design of the electromechanical devices or to predict their 

lifetime. The present work is an effort in this direction.  

     The commonly used computational tools for evaluation of local generalized stress concentrations near 

defects like cracks and holes are wave function expansion method [1], matched asymptotic expansion [2], 

integral transform and singular integral equation method [3-5], finite element method [6], meshless 

methods [7], multi-domain [8], dual [9], hypersingular [10] and non-hypersingular [11,12] boundary 
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integral equation (BIE) techniques. The literature review shows that more of the obtained results are for 

unbounded solids with simple scenario and there exist few results for dynamic (time-harmonic) anti-plane 

fracture problems in finite piezoelectric solids.  

     The main aim of this study is to propose, develop, validate and use in simulations an efficient non-

hypersingular traction BIEM and apply it for solution of anti-plane dynamic fracture problems for 

piezoelectric finite solids with cracks or/and holes. 

     The paper is organized as follows: The problem formulation via traction BIEs along external solid’s 

boundary and defects’ boundaries is given in Section 2. Validation and numerical results for different 

examples is presented in Section 3, followed by a discussion in Section 4. 

2. Problem statement and its BIEM formulation  

2.1. Problem statement 

Consider finite linear piezoelectric transversely isotropic solid 
2RG   with boundary S  in a Cartesian 

coordinate system 321 xxOx and assume the material symmetry axis and poling axis are along 3Ox axis. 

The solid is subjected to time-harmonic electro-mechanical load with a prescribed frequency .  The 

analysis is carried out for anti-plane case according to plane 03 x and the nonzero field quantities are 

the displacement 3u , stresses 2313 , , electrical displacements 1D , 2D , electrical field components 1E , 

2E , and electric potential  , all depending on 1x , 2x . The material characteristics are 44 15 11, ,c e  . 

Due to time-harmonic behaviour of all field quantities with frequency , the common multiplier tie   is 

suppressed in the following.  

     The solid contains multiple defects like crN finite cracks , 1,2,...cr cr

m m N  with a half-length mc and 

hN circular holes , 1,2,... h

kH k N  of radius kc and centre kC , h
kkH  . 

Denote 1

crcr N cr

m m   , 1

hh N h

k k   , and cr h    and  let us assume that all defects do not intersect 

each other, i.e. cr h     .  

        The mechanical and electrical balance equation in absence of body forces and electric charges can be 

written in a compact form via generalized filed variables , ,K iJ JKu    as  

2

, 0iJ i JK Ku                                                                                                                        (1) 
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;  is density, subscript commas denote 

partial differentiation and the summation convention over repeated indices is applied. The boundary 

conditions on the outer boundary S  is a prescribed displacement     ,J J uu u S x x x  or/and 

traction     , 3,4J J tt t J S  x x x , where u tS S S . Along the electrically impermeable defects 

traction free boundary conditions are assumed ( ) 0,Jt  x x .   
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2.2. BIEM formulation 

The equivalent formulation of the defined above BVP is derived via a system of non-hypersingular 

traction BIEs (2), (3) on the defects line  and on the external boundary S of the piezoelectric solid G  

following the approach proposed in Zhang and Gross [13] for elastic isotropic case and extended by the 

authors for piezoelectric case in [11,12].  
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here: 
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; c
Ju is the generalized crack opening displacement; k

i
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outward normal vector at the observation point along the 
thm crack and 

thk hole; x and y  is the source 

and observation points; *
QKu ,  *

,
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lKMiJKliJM uC  are the fundamental solution of Eq. (1) and its stress, 

derived and discussed in [11,12]; 
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0 0,J Ju t are the variable fields due to the external load on the boundary S of the defect free body, while 

,c c

J Ju t are variable field induced by the load 0c

J Jt t  on the defects  boundary  with zero boundary 

conditions on the external boundary S , see [12]. Equations (2), (3) are integro-differential equations for 

the unknowns 0 0,J Ju t  and , ,c c c

J J Ju u t resp. After discretization by quadratic boundary elements and 

special crack-tip elements near the crack-tips in order to model adequately the asymptotic behaviour of 

displacement as r and stress as 1/ r ( r is the distance to the crack-tip), an algebraic system of 

equations for the unknowns is obtained and solved. The singular integrals converge in CPV sense, if the 

smoothness requirements in the approximation are fulfilled. The disadvantages of the standard quadratic 

approximation concerning the smoothness in all irregular points like crack-tips, corner points and odd 

nodes of the mesh is overcome by the usage of shifted point method, presented in details in [14]. The 

most essential quantities that characterize the mechanical and electric field concentrations are SIFs and 

SCFs. The stress intensity factors SIFs are obtained directly from the traction nodal values ahead of the 
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crack-tip: mechanical  
1

3 1SIF-III lim 2
x c

t x c


  and electrical  
1

4 1SIF-IV lim 2
x c

t x c


 . They are 

normalized by the maximum amplitude of the traction 0  of the incident wave, 

where
2

15
0 44

11

e
i c  



 
  

 
.  The SCFs (mechanical SCF-M and electrical SCF-E) are defined as the 

ratio of the stress and electric field along the circumference to the maximal amplitude of the incident 

stress at the same point.  Knowing solution of the algebraic system, the displacement and traction in each 

one point of the considered solid can be obtained by using the representation formulae.  

 

3. Numerical illustration of validation and simulation study 

In order to validate the proposed BIEM three benchmark examples for a finite quadratic plate with size 

cb 10  and with a circular hole-horizontal crack system (Fig.1a) subjected to incident SH wave with 

normalized frequency 1

44c c     are solved  in the following  cases: (i) the distance between both 

defects is ch 5  and comparison with results in [15] for a single hole in a plane under SH-wave 

propagating in positive 1Ox direction; (ii) ch  and comparison with results in [16] for a hole-horizontal 

crack system in a plane of two different PZT-4 with 2

15 44 11( / )m e c   under normal to the crack SH-wave 

; (iii) ch 5 and comparison with results in [3] for a single crack in a plane under mechanical load with 

amplitude  and electrical one with amplitude 11 15( / )s e  .  

 

 (a)  (b) 
 

Fig. 1 Piezoelectric solid with a hole-crack system: (a) hole-horizontal crack; (b) hole-vertical crack. 

 

As far as the existing in the literature solutions are only for unbounded domains, we test our procedure by 

representing the infinite domain as a truncated square with a size cb 10 . At distance between both 

defects ch 5 , the hole-crack interaction is very weak and the solution of the boundary-value problem 

for the system hole-crack recovers solutions for the single hole and single crack. Figures 2, 3 present all 

(i)-(iii) cases and demonstrate that the proposed numerical scheme works with high accuracy and 

convergence in the considered frequency interval. Fig. 4a, b present SCFs at observer p. A  0.0,h  of a 
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hole-crack system in finite piezoelectric plate vs frequency of incident SH-wave with 0 at different 

distances between hole and crack (see Fig. 1b, c) cch 5.0;25.0 and at different configurations of both 

defects- hole-horizontal crack and hole-vertical crack. All simulations done show that dynamic stress 

concentration fields near the defects expressed by the SCFs along the hole's boundary and SIFs near the 

crack-tips are influenced significantly by the hole-crack configuration, its geometry, type and 

characteristics of the applied load and phenomena like defect-defect and wave-defect  interactions.  

 

  
Fig. 2 SCFs at p. A  0.0,h  versus Ω for a hole-horizontal crack 

system (Fig.1a) at ch 5  and ch  under time-harmonic load. 

Fig. 3 SIF-III at p. A  0.0,h  versus Ω for a hole-horizontal 

crack system (Fig.1a) at ch 5  under time-harmonic load. 

 

                  
  

Fig. 4a, b: SCFs at p.  A  0.0,h  for a hole-horizontal /vertical crack system (Fig.1a, b) versus Ω of time-harmonic load: (a) SCF-

M; (b) SCF-E.  
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4. Conclusion 

     The numerical results reveal the sensitivity of the dynamic stress and electric field concentrations in a 

piezoelectric solid with different type of defects to the geometry of the considered scenario, to the 

coupled character of the electromechanical continuum, to the type and characteristics of the dynamic 

load, to the defects existence and their interaction. The application of the near-field solutions is in 

computational fracture mechanics of PEM, while the knowledge for the wave far-field solutions can be 

used for non-destructive evaluation of multifunctional materials and the smart structures based on them. 
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