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An exponentially inhomogeneous transversely isotropic magnetoelectroelastic (MME)
medium with a finite crack is studied. The crack is impermeable and subjected to
anti-plane mechanical and in-plane electric and magnetic dynamic loads. The problem
is solved by a non-hypersingular traction boundary integral equation method (BIEM)
based on the usage of the analytically derived fundamental solution. A numerical
scheme based on the collocation method and on the parabolic type of approximation
of the field variables is proposed.
Program codes in Mathematica and Fortran are developed and validated by com-
parison tests for anisotropic elastic and piezoelectric materials. Illustrative examples
reveal the dependence of the stress, electric and magnetic concentration fields near the
crack-tips on the frequency and direction of the external load and on the magnitude
and direction of the material gradient.

1 Introduction

The MEE composites are brittle and highly sensitive to the presence of defects like
cracks, holes, impurities, etc. that can reach a critical size during service and thus
compromise the structure safety, see Chue and Hsu [1].
The concept for functionally graded materials (FGM) was proposed in the last years,
see Ma and Lee [2]. To enhance the promising applications, it is necessary to better
understanding this new class of multifunctional intelligent composite materials in the
context of their fracture state evaluation.
The solution of general boundary value problems for continuously inhomogeneous
magneto-electric-elastic solids requires advanced numerical tool due to the high math-
ematical complexity arising from the electro-magneto-elastic coupling plus smooth
variation of material characteristics.
The aim of this note is to propose nonhypersingular traction BIEM for the solution
of the problem for wave propagation in a smooth exponentially inhomogeneous MEE
plane with a finite crack subjected to an incident SH-wave. The BIEM technique
is based on a frequency dependent fundamental solution derived analytically by the
usage of an appropriate algebraic transformation for the displacement vector and the
Radon transform.

2 Statement of the problem

In a Cartesian coordinate system consider a linear MEE medium poled in Ox3 direc-
tion and subjected to a time-harmonic anti-plane mechanical load on Ox3 axis and
in-plane electrical and magnetic loads in the plane Ox1x2. The only non-vanishing
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fields are the anti-plane mechanical displacement u3, the in-plane electrical displace-
ment Di, the in-plane magnetic induction Bi, the electric field Ei = −ϕ,i and the
magnetic field Hi = −ψ,i, where ϕ, ψ are electric and magnetic potentials correspond-
ingly. The constitutive relations in the plane Ox1x2 are, see Soh and Liu [3]

σiK = CiKJluJ,l, x ∈ R2 \ Γ, (1)

where x = (x1, x2), Γ = Γ+ ∪ Γ− is a finite crack - an open arc. Here coma denotes
partial differentiation, small indexes i, l = 1, 2, capital indexes K, J = 3, 4, 5 and it
is assumed summation in repeating indexes. The generalized displacement is uJ =
(u3, φ, ϕ), and the generalized stress tensor is σiJ = (σi3, Di, Bi), where σi3 is the
stress. Generalized elasticity tensor CiJKl is defined as: CiJKl = 0 for i 6= l and
Ci33i = c44; Ci34i = Ci43i = e15; Ci35l = Ci53l = q15; Ci44l = −ε11; Ci45l = Ci54l =
−d11; Ci55l = −µ11.
Functions c44(x), e15(x), ε11(x) are: elastic stiffness, piezoelectric coupled coefficient
and dielectric permittivity, while q15(x), d11(x), µ11(x) are piezomagnetic, magneto-
electric coefficients and magnetic permeability correspondingly. It is assumed that
c44(x), ε11(x) and µ11(x) are positive that corresponds to a stable material, see [3].
Suppose that the material parameters CiJKl and density ρ depend in the same manner
exponentially on x

CiKJl(x) = C0
iKJle

2<a,x>, ρ(x) = ρ0e2<a,x>, (2)

where <,> means the scalar product in R2, a = (a1, a2) and we use the notations
a1 = r cosα, a2 = r sinα, r = |a| is the magnitude and α is the direction of the
material inhomogeneity.
Assuming the quasistatic approximation of MEE material in the absence of body
forces, electric charges and magnetic current densities, the balance equation is

σiK,i + ρKJω
2uJ = 0. (3)

where ρQJ =

{
ρ,Q = J = 3
0, Q, J = 4 or 5

and ω is the frequency of the applied time-harmonic

load.
The boundary condition on the crack is

tJ |Γ = 0. (4)

where tJ = σiJni is the generalized traction and n = (n1, n2) is the normal vector
to Γ. That means the crack is impermeable, i.e. the crack line is free of mechanical
traction, electric charge and magnetic current. In the following we will study the case
ω > ω0 when the dynamic behavior of the MEE material is characterized with a wave
propagation phenomena. The total generalized displacement uJ and traction tJ field
is a sum of an incident SH-wave and scattered by the crack wave, i.e. uJ = uin

J + usc
J

and tJ = tinJ +tsc
J . Here ω0 =

√
detM

(ε0
11

µ0
11

−d02
11

)ρ0 |a|, whereM =




c044 e015 q015
e015 −ε011 −d0

11

q015 −d0
11 −µ0

11


.
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Suppose that UJ(x, ω) = e<a,x>uJ(x, ω) satisfies Sommerfeld–type condition at infin-
ity, more specifically U3 = o(|x|−1), U4 = o(e−|a||x|), U5 = o(e−|a||x|) for |x| → ∞.
This condition ensures uniqueness of the scattering field usc

J for a given incident field
uin

J and it can be proved that the boundary value problem (BVP) (3), (4) admits
continuous differentiable solutions.
The non-hypersingular traction BIE is derived following Wang and Zhang [4] for
the homogeneous, Rangelov et al. [5] for the inhomogeneous piezoelectric case and
Stoynov and Rangelov [6, 7] for the MEE case. The following system of BIE, that is
equivalent to the BVP (3), (4) is obtained

−tinJ (x, ω) = CiJKl(x)ni(x)
∫
Γ+ [(σ∗

ηPK (x, y, ω)△uP,η(y, ω)

− ρQP (y)ω2u∗QK(x, y, ω)△uP (y, ω))δλl

− σ∗
λPK(x, y, ω)△uP,l(y, ω)]nλ(y)dΓ, x ∈ Γ+.

(5)

where u∗JQ is the fundamental solution of (3), obtained with Radon transform in
Stoynov and Rangelov [7], σ∗

iJQ = CiJMlu
∗
MQ,l is its stress, ∆uJ = uJ |Γ+ − uJ |Γ− is

the generalized crack opening displacement, x, y denote the field and the source point
respectively. Equation (5) is traction non-hypersingular BIE on the crack line Γ for the
unknown ∆uJ . Once having a solution or the generalized crack opening displacement,
the generalized displacement uJ can be obtained at every point in R2 \Γ by using the
corresponding representation formulae, see Stoynov and Rangelov [7].

3 Numerical realization

The numerical procedure for the solution of the BVP follows the numerical algorithm
developed and validated in Rangelov et al. [5] for the inhomogeneous piezoelectric ma-
terial and in Stoynov and Rangelov [7] for the homogeneous MEE case. The crack Γ
is discretized by quadratic boundary elements (BE) away from the crack-tips and spe-
cial crack-tip quarter-point BE near the crack-tips to model the asymptotic behavior
of the displacement and the traction. Applying the shifted point scheme, the singu-
lar integrals converge in Cauchy principal value (CPV) sense, since the smoothness
requirements ∆uJ ∈ C1+α(Γ) of the approximation are fulfilled.
In the numerical examples the crack Γ with a half-length c = 5mm, occupying an
interval (−c, c) on Ox1 axis is considered. The crack is divided into 7 BE with lengths
correspondingly: l1 = l7 = 0.15c, l2 = · · · = l6 = 0.34c, 1st BE is a left quarter point
BE, 7th BE is a right quarter point BE and the rest BE are ordinary BEs.
The material is magnetoelectroelastic composite BaT iO3/CoFe2O4 with reference
material constants C0

iJKl given in Song and Sih [8].
The described numerical scheme is validated by benchmark examples describing frac-
ture behaviour of a line finite crack in an infinite plane subjected to a normal incident
time–harmonic SH–wave in three different kinds of material, more specifically: (a)
graded elastic anisotropic, see Daros [9]; (b) graded piezoelectric, see Rangelov et al.
[5]; (c) homogeneous MEE composite, see Stoynov and Rangelov [7].
The dynamic fracture state of MEE is characterized by the leading term of the asymp-
totic of the generalized displacement and the generalized traction near the crack–tips
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presented by the generalized intensity factor (GIF). For the considered MEE media
GIFs are stress intensity factor KIII , electric field intensity factor KE and magnetic
field intensity factor KH . For the straight crack on Ox1, Γ = (−c, c) they are defined
as

KIII = limx1→±c t3
√

2π(x1 ∓ c),
KE = limx1→±cE2

√
2π(x1 ∓ c),

KH = limx1→±cH2

√
2π(x1 ∓ c)

(6)

where t3 and E2, H2 are calculated at the point (x1, 0) close to the crack-tip.
In the figures the normalized frequency is Ω = ck0, k0 =

√
ρ0/c044ω and normalized

GIFs mechanical stress intensity factor K∗
III = KIII

tin
3

√
πc

, electric field intensity factor

K∗
E = 10KE

tin
3

√
πc

and magnetic field intensity factor K∗
H = 104KH

tin
3

√
πc

, are plotted.

Fig. 1 shows the frequency dependence of the GIF K∗
III , K

∗
E and K∗

H for the left crack
tip, at different magnitudes of the material gradient β = 2rc for β = 0.0; 0.2; 0.4; 0.6,
at direction of material inhomogeneity along the crack, i.e. α = 0 and in the case
of a normal incident wave, i.e. θ = π/2. Analysis of these results leads to the
following observations: (a) there is a frequency Ω = 1.1 where dynamic overshoot
occurs and this frequency is not shifted when the material inhomogeneity is involved;
(b) the magnitude of the material gradient has influence on all stress, electric field
and magnetic induction concentration near the crack. A comparison between the
results for the homogeneous material and for the inhomogeneous one with magnitude
rc = 0.3 showsK∗

III , K
∗
E and K∗

H increase with about 19%, 24% and 22% respectively
when the observer point is near the left crack-tip.
The sensitivity of the generalized stress concentration with respect to the direction
of the material gradient α = kπ/2, k = 0.0, 0.1 · · ·1 is demonstrated on Fig. 2, where
case (a) is for the right crack tip and case (b) is for the left crack tip correspondingly.
The fixed parameters are: Ω = 1.0, θ = π/2 and β = 0.2, 0.4, 0.6. The obtained
results show that stress concentration fields are different at both crack-tips and even
they have quite different behaviour: (a) the right crack-tip shows the maximal values
for GIF in the case when the direction of material gradient is α = π/2, while in
contrast, the left crack-tip has its maximal values of GIF at α = 0.0. These presented
results show that in functional graded MEE material the local stress fields depend on
the magnitude and direction of material gradient r, α.

4 Conclusion

A dynamic fracture analysis of an exponentially inhomogeneous MEE cracked plane
subjected to time-harmonic anti-plane mechanical and in-plane electromagnetic loads
is presented in this study. The results show the sensitivity of the GSIFs to the type
of the material inhomogeneity characteristics, to the coupled nature of MEE continua
and to the properties of the applied dynamic electro-magneto mechanical load. The
presented method can be successfully used for the more complex problems of crack
interactions, cracks with arbitrary shapes and composites with different combinations
of piezoelectric and piezomagnetic constituents.
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Figure 1: GIF versus normalized frequency Ω at the left crack–tip for different values
of the magnitude β at a direction of material inhomogeneity α = 0.0 and a wave
incident angle θ = π/2: (a)K∗

III ; (b) K∗
E ; (c) K∗

H .
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