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The study of propagation of tsunami from their small disturbance at the sea level to
the size they reach approaching the coast has involved the interest of several scien-
tists. It is clear that in order to predict accurately the appearance of a tsunami it is
fundamental to built up a good model. From this point of view the most important
tool in the context of water waves is soliton theory [6]. Frequently in the literature
it is stated that a tsunami is produced by a large enough soliton. Solitons arise as
special solutions of a widespread class weakly nonlinear dispersive PDEs modeling
water waves, such as the KdV or Camassa-Holm equation [1,5], representing to vari-
ous degrees of accuracy approximations to the governing equations for water waves in
the shallow water regime. How the tsunami is initiated? The thrust of a mathemati-
cal approach is to examine how a wave, once initiated, moves, evolves and eventually
becomes such a destructive force of nature.
In Constantin and Johnson [4] the model of the motion of the water before arrival of
a tsunami wave is proposed. They require that a flat free surface for the background
state excludes linear vorticity functions, unless the flow is trivial. So, nonlinear vor-
ticity distributions are introduced in order to admit nontrivial flows with a flat free
surface. Consider the following dynamical system

ϕtt + ϕxx = −f(ϕ), (1)

f(ϕ) =

{
ϕ− ϕ|ϕ|−1/2 if ϕ 6= 0
0 if ϕ = 0.

(2)
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Fig.1. Bifurcation diagram of the nonlinear vorticity distribution.

By applying Cellular Neural Networks (CNN) approach [2,3,8] we shall study the
wave propagation of the model (1), (2).
CNN model of our system (1), (2) will be the following:
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dvj

dt
= A1 ∗ uj + f(uj), (3)

duj

dt
= vj , 1 ≤ j ≤ N

Our objective in this paper is to study the structure of the travelling wave solutions
of the CNN model (3). There has been many studies on the travelling wave solutions
of spatially discrete or both spatially and time discrete systems [7,9]. The study of
travelling wave solutions can proceed as follows. Consider solutions of (3) of the form:

zj = Φ(j − ct),
zj = col(uj , vj) for some continuous functions Φ : R1 → R1 and for some unknown
real number c. Denote s = j − ct. Let us substitute (4) in our CNN model (3). Then
Φ(s) and c satisfies the system of the form:

−cΦ′

(s) = G(Φ(s+ r0),Φ(s+ r1), . . . ,Φ(s+ rn)+ (4)

+F (Φ(s+ r0) = 0,

here r0 = 0, ri are real numbers for i = 1 to n. Equation (5) is called bistable
because it has three spatially homogeneous solutions Φ(s) ≡ z−, z0, z+ satisfying
z− < z0 < z+, and

G(z, z, . . . , z) > 0 for z ∈ (−∞, z−) ∪ (z0, z+),

G(z, z, . . . , z) < 0 for z ∈ (z−, z0) ∪ (z+,∞),

Recently, Mallet-Paret [7] showed that (5) has a unique monotone solutions satisfying
the boundary conditions:

lims→−∞Φ(s) = z− and lims→∞Φ(s) = z+. (5)

More precisely, it is proved that under some assumptions, there is a unique c∗ such
that (5) has a monotone solutions satisfying (6) iff c = c∗, and such solution is also
unique up to a phase shift if c = c∗ 6= 0. Indeed, the solution Φ(s) of (5) and
lims→∞Φ(s) = z+ can be represented as

Φ(s) = z+ − γeσs − Φ̃(s)e2σs,

for s≫ 1, σ+ < 0, γ > 0, Φ̃(s) is a bounded and C1-function.
Suppose that our CNN model (3) is a finite circular array of L = N.N cells. For this
case we have finite set of frequences [2,3]:

Ω =
2πk

L
, 0 ≤ k ≤ L− 1. (6)

The following proposition then hold:
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Proposition 1. Suppose that zj(t) = Φ(j − ct) is a travelling wave solutions of the
CNN model (3) with Φ ∈ C1(R1,R1) and Ω = 2πk

L , 0 ≤ k ≤ L− 1. Then there exist
constants c∗ < c∗ < 0 such that
(i) if c ≤ c∗ then Φ(s; c) is nondecreasing and satisfies

lims→−∞Φ(s) = z0 and lims→∞Φ(s) = z+; (7)

(ii) if c = c∗ > c∗, then Φ(s; c) is nondecreasing and satisfy (6);
(iii) if c∗ < c < 0, then Φ(s; c) is nondecreasing and unbounded.
Let us introduce the following energy function for our CNN model (3):

E(uj, vj) =
1

2
u2

j +
1

2
v2

j −
2

3
|vj |3/2. (8)

We obtain the following simulation results in the plane (u, v)which present tow closed
curves representing the solution set of the equation u2

j = 4
3 |vj |3/2 − v2

j :
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Fig.2.

The stationary points of (3) are (±1, 0), or (0, 0). If the energy function E < 0 the set
of solutions consists of the interiors of the two closed curves given on Fig.2. By virtue
of (12), once a solution of (1) intersects the boundary of these two closed curves at a
point other than (0, 0), it will remain in that set having the asymptotic limit (−1, 0),
or, correspondingly (1, 0). Notice that on the boundary of the two closed curves
(Fig.2) we have E = 0, while within these sets E < 0, with the minimum attained at
(±1, 0) where E = − 1

6 .
Let us consider the following initial conditions for our CNN model (3):

∣∣∣∣
uj(0) = a
vj(0) = 0.

(9)

If z+ → a, for s → ∞, the number of intersections approaches infinity. Denote
by Ω+, Ω− the sets of points (a, 0), where a ∈ (−∞, 0) ∪ (0,∞) and suppose that
the corresponding solution of (3) has asymptotic limit (1, 0), (−1, 0) respectively. It
is easy to prove that all intersections being transversal to the horizontal axis are
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stable under small perturbations [5]. Therefore, for any integer M ≥ 1 by continuous
dependence on the initial data it might be proved that as a → ∞ the number M of
intersections approaches infinity.
In our case Φ : [0,∞)→ [0,∞) is defined implicitly by

r =

∫ 1/4

Φ

dt√
4
3 |t|3/2 − t2

, r ∈ [0, I]

where

I =

∫ 1/4

0

dt√
4
3 |t|3/2 − t2

and extend to s ≥ 1 by setting Φ equal to zero here. Simulations of the implicit
solution Φ are given below:

Fig.3. Real part of the solution Φ.
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Fig.4. Implicitly solution Φ.

Remark 1. Notice that

Φ
′′

+ + Φ+ − Φ+|Φ+|−1/2 = 0,

with

Φ+(0) =
1

4
,Φ

′

+(0) = −1

4

√
5

3
,Φ+(I) = Φ

′

+(I) = 0.

Since lims→∞Φ0(s) = 0, there exists some s0 > 0 such that |Φ0(s)| < 1
4 for s ≥ s0.

So we claim
−Φ+(s− s0) ≤ Φ0(s) ≤ Φ+(s− s0), s ≥ s0.
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