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1 Introduction

Recently many mathematical models for image processing have been widely applied
in computer visualization. The nonlinear diffusion partial differential equation have
been broadly applied in image processing since the first model was introduced in
1987 [3]. Through the time evolution, the diffusion can effectively remove the noise
as well as having edge enhancement simultaneously. Since then various nonlinear
diffusion filters have been widely proposed in implementing the image denoising /
enhancement, edge detection and flow filed visualization . The common feature for
nonlinear diffusion model is that the diffusion coefficient is small as the gradient of
image is large. However the diffusion coefficient is a function of the convolution of
the Gaussian kernel and solution such that this requires an extra cost in computing
the nonlinear diffusion coefficient. In the numerical experiments we find that when
using the nonlinear diffusion model in denoising the noise is not quite good [6]. Hence
we propose a convection- diffusion filter by adding a convection term in the modified
diffusion equation as a physical interpretation for removing the noise. The aim of this
paper is to focus on the noise removal algorithm for extracting the target information
(image) precisely. The main idea of our model algorithm is to diffuse the noise by
following the convection direction during time evolution. To prevent the numerical
layer in the discontinuities on the relative coarse grids we use the Cellular Nonlinear
Network (CNN) approach [1,2,4].

2 Perona- Malik type nonlinear diffusion equation
and its CNN model

Dynamic properties of Perona-Malik based filters are summarized in [3]. It is well
known that it converges toward a constant steady state solution, representing the
average value of the initial image. In order to obtain a non trivial output image, the
system evolution has to be stopped after a finite time (usually called scale). In the
most general case, the scale depends on the object and on the characteristics of the
input image, and hence is no a priori known time for stopping the image processing.
Let the noisy image be a given scaled intensity map u0(x) : Ω→ [0, 255] for the image
domain Ω ∈ ℜ2 . The nonlinear diffusion equation was first proposed by Perona and
Malik in filtering the noise. They built a sequence of continuous images u(x, t) on
the abstract scale t and through the nonlinear diffusion equation to remove the noise
during the scaling (̈ı¿1

2 timëı¿1
2 ) revolution. Many of such nonlinear diffusion filtering
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models have been implemented. We briefly review this model as follows. The Perona-
Malik type nonlinear isotropic diffusion equation (ND) is:





ut(x, t)− div(g(|∇Gσ ∗ u|)∇u(x, t)) = 0 in Ω× I
∂u
∂n (x, t) = 0 on ∂Ω× I
u(x, 0) = u0(x) on Ω

(1)

where the initial value u0(x) is the given noisy image in the gray level, I = [0, T ] is
the scaling (time) interval for some T > 0,Ω is a simply bounded rectangular domain
with boundary ∂Ω and n is the outward unit normal vector to ∂Ω; g is a given non-
increasing function. There are several choices for g(s). Select a monotonic decreasing
function

g(s) =
1

1 + s2

and in [3] it is introduced the Gaussian kernel,Gσ ∗u ,for the existence and uniqueness
of (1). Thus, the diffusion coefficient g(|∇Gσ ∗u|) is inhibited as the gradient of image
intensity is big i.e. the diffusion coefficient is small around the image edge. Hence ND
preserves the edges of image and protects the brightness of the image simultaneously.
Perona and Malik considered the Galerkin finite element method for the discretization
of (1). We shall apply polynomial CNN in order to study its dynamics.
The following diffusion functions were proposed by Perona and Malik:

g(‖∇u‖2) = e−( ‖∇u‖
k

)2 , g(‖∇u‖2) = [1 + (
(‖∇u‖
k

)2]−1 (2)

Let us suppose that the continuous space domain is composed by M × M points
arranged on a regular grid, uij represents the pixel value.
In order to implement a general polynomial CNN architecture, let us consider the
following basis function:

f(z) = 1− |1
2
(| z
m

+ 1| − | z
m
− 1|)|

and let approximate the g(.) functions (2) with the following expression:

γ(z) =

Q∑

p=1

Cpf
p(z)

We obtain a general nonlinear PDE based polynomial CNN model:

duij(t)

dt
=

∑

(kl)∈Nij

Γkl(ukl − uij) (3)
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Γkl =

Q∑

p=1

Cp

2h2
[fp(‖∇̃uk,l‖2) + fp(‖∇̃ui,j‖2)]

The polynomial CNN model (PCNN) (3) approximate the functions g(.) with the

expression γ(.) that turns out to be different from zero only for |z| = ‖∇̃ui,j‖2 < m
This practical approximation presents the advantage of stopping the evolution of
the image when the approximated gradient magnitude ‖∇̃ui,j‖2 is greater than the
threshold m. Hence, the output image exhibits a segmented structure. The above
behavior is possible because the PCNN system (3) presents ore than one equilibrium
point and for each initial image, the output corresponds to one of these equilibria.

Conclusion 1 The PCNN model (3) exhibit the coexistence of the constant average
value equilibrium point (that is only admissible for the Perona-Malik discretized mod-
els) and of an infinite set of equilibrium points. As a consequence, the correct output
is obtained without stopping the evolution of the system. This represents a significant
advantage from the algorithmic point of view.

We obtain the following simulation results for different values of the cell parameters:

Fig.1. Simulations of the CNN algorithm for the problem (1).

Example 1. Consider the following singularly perturbed boundary value problem

−ε∆u+ bux + cu = 0, in Ω ≡ (0, 1)2 (4)

u = 0, on ∂Ω.

In order to construct a robust numerical method for the considered problem, it is of
key interest to have information on a behavior of the solution. The state equation of
the CNN model of (4) is:
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−εA1 ∗ ui + b ∗A1 ∗ ui + c ∗ ui = 0 (5)

Applying CNN algorithm we obtain the following simulation results:

Fig.2. Simulation of the CNN algorithm of (4).

Example 2. We consider the following example on the layer-adapted mesh:

−ε∆u+ (1 + x3)ux + (1 + xy)u = 0, inΩ (6)

u = 0, on∂Ω

CNN model of the above system is:

−εA1 ∗ ui + (1 + x3)A1 ∗ ui + (1 + xy)ui = 0 (7)

1 ≤ i ≤ N
We obtain simulation results of (6) on Fig.3.
Remark 1.We consider a CNN programmable realization allowing the calculation of
all necessary processing steps in real time. The network parameter values of CNN
models are determined in a supervised optimization process.During the optimiza-
tion process the mean square error is minimized using Powell method and Simulated
Annealing [5]. The results are obtained by the CNN simulation system MATCNN
applying 4th order Runge-Kutta integration.
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Fig.3. Simulation of the CNN algorithm of (6).
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