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Abstract. In this paper a polynomial Cellular Neural Network (CNN) model of Newell-
Whitehead equation is introduced. Local activity domain and edge of chaos domain of the parameter
space is found for the model. Numerical simulations of the CNN dynamics confirm the so called
phenomena edge of chaos and help the better understanding of genesis and emergence of complexity
in Newell-Whitehead equation.
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1 Introduction

Reaction-diffusion type of equations are widely used to describe phenomena in dif-
ferent fields, as biology-Fisher model [1], FitzHugh-Nagumo nerve conduction model
[1,10], Vector-disease model, chemistry - Brusselator model, physics - Sine-Gordon
model [9], etc. In his pioneering work, Fisher [1] used a logistic-based reaction-
diffusion model to investigate the spread of an advantageous gene in a spatially ex-
tended population.The generalized diffusion equation with a nonlinear source term
which encompasses the Fisher, Newell-Whitehead and Fitzhugh-Nagumo equations
as particular forms and appears in a wide variety of physical and engineering appli-
cations. Modulation equations play an essential role in the description of systems
which exibit patterns of nearly periodic nature. The so called Newell-Whitehead
equation [7] is derived to describe the envelope of modulated roll-solutions with two
large extended or unbounded space direction.

Cellular Neural Networks (CNNs) are complex nonlinear dynamical systems, and
therefore one can expect interesting phenomena like bifurcations and chaos to occur
in such nets. It was shown that as the cell self-feedback coefficients are changed
to a critical value, a CNN with opposite-sign template may change from stable to
unstable [3]. Namely speaking, this phenomenon arises as the loss of stability and
the birth of a limit cycles [3]. Moreover, the appearance of a strange attractor in
a periodically driven two-cell CNN have been reported. In a three-cell autonomous
CNN this attractor has properties similar to the double scroll attractor [3].

Let us consider a two-dimensional grid with 3 × 3 neighborhood system as it is
shown on Fig.1.
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Fig.1. 3× 3 neighborhood CNN.

The squares are the circuit units - cells, and the links between the cells indicate
that there are interactions between linked cells. One of the key features of a CNN
is that the individual cells are nonlinear dynamical systems, but that the coupling
between them is linear. Roughly speaking, one could say that these arrays are non-
linear but have a linear spatial structure, which makes the use of techniques for their
investigation common in engineering or physics attractive.

We will give the general definition of a CNN which follows the original one [2]:

Definition 1 The CNN is a
a). 2-, 3-, or n- dimensional array of
b). mainly identical dynamical systems, called cells, which satisfies two properties:
c). most interactions are local within a finite radius r, and
d). all state variables are continuous valued signals.

Definition 2 An M ×M cellular neural network is defined mathematically by four
specifications:

1). CNN cell dynamics;
2). CNN synaptic law which represents the interactions (spatial coupling) within

the neighbor cells;
3). Boundary conditions;
4). Initial conditions.

Now in terms of definition 4 we can present the dynamical systems describing
CNNs. For a general CNN whose cells are made of time-invariant circuit elements,
each cell C(ij) is characterized by its CNN cell dynamics :

ẋij = −g(xij, uij, I
s
ij), (1)

where xij ∈ Rm, uij is usually a scalar. In most cases, the interactions (spatial
coupling) with the neighbor cell C(i + k, j + l) are specified by a CNN synaptic law:

Is
ij = Aij,klxi+k,j+l + Ãij,kl ∗ fkl(xij, xi+k,j+l) + (2)

+B̃ij,kl ∗ ui+k,j+l(t).
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The first term Aij,klxi+k,j+l of (2) is simply a linear feedback of the states of the
neighborhood nodes. The second term provides an arbitrary nonlinear coupling, and
the third term accounts for the contributions from the external inputs of each neighbor
cell that is located in the Nr neighborhood.

Complete stability, i.e. convergence of each trajectory towards some stationary
state, is a fundamental dynamical property in order to design CNN’s for accomplishing
important tasks including image processing problems, the implementation of content
addressable memories and the solution of combinatorial optimization problems [4].
The most basic result on complete stability is certainly the one requiring that the CNN
interconnection matrix Ã be symmetric [2]. Also some special classes of nonsymmetric
CNN’s such as cooperative (excitory) CNN’s, were shown to be completely stable
[4]. In the general case, however, competitive (inhibitory) CNN’s may exhibit stable
nonlinear oscillations [4].

It is known [3] that some autonomous CNNs represent an excellent approximation
to nonlinear partial differential equations (PDEs). In this paper we will present the
receptor-based model by a reaction-diffusion CNNs. The intrinsic space distributed
topology makes the CNN able to produce real-time solutions of nonlinear PDEs.
Consider the following well-known PDE, generally referred to us in the literature as
a reaction-diffusion equation [1]:

∂u

∂t
= f(u) + D∇2u,

where u ∈ RN , f ∈ RN , D is a matrix with the diffusion coefficients, and ∇2u is
the Laplacian operator in R2. There are several ways to approximate the Laplacian
operator in discrete space by a CNN synaptic law with an appropriate A-template
[8,9].

In this paper we shall study the Newell-Whitehead equation [7] of the form:

∂u

∂t
=

∂2u

∂x2
+ au− bu3, (3)

where a and b are positive parameters. Partial differential equations of diffusion type
have long served as models for regulatory feedbacks and pattern formation. Such
systems cause some difficulty, since both existence and behavior of the solutions
are more difficult to establish. Many aspects of qualitative behavior have to be
investigated numericallly. For this purpose we apply the Cellular Neural Networks
(CNN) approach for studying such models.

In Section 2 we shall construct our Polynomial Cellular Neural Network (PCNN)
model for Newell-Whitehead equation (3). In Section 3 we shall define the local
activity parameter domain as well as edge of chaos phenomena. This will help us to
understand better the genesis and emergence of complexity. Numerical simulations
of the CNN dynamics will show the so called phenomena edge of chaos [5,6].
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2 Polynomial Cellular Neural Network Model

In a recently proposed VLSI development [11] a first CNN based hardware imple-
mentation with polynomial weight functions has been presented. Let us consider
a m-layer polynomial CNN with cells C l(i) (arranged in a one-dimensional grid on
each layer) assuming only coupling between adjacent layers with the following state
equation

ẋl
i(t) = f l(x1

i , . . . , x
l
i, . . . , x

m
i ) +

1∑

i1=−1

. . .
1∑

in=−1

xl
i+inain , (4)

where l = 1, . . . , m, ij is the jth component of the index vector i (with ij ∈ {−1, 0, 1}∀j ∈
N), i is the spatial coordinate vector and ain are the elements of the following A -
template:

ain =





−2n i1 = i2 = . . . = in = 0
1

∑n
j=1 |ij| = 1

0
∑n

j |ij| > 1.

For the purpose of modelling, a concrete representation of f l(.) is needed that cov-
ers a wide class of possible functions. Consider the following simplified representation
of f l(.)

f l(x1
i , . . . , x

m
i ) = Pl,l(x

l
i) + Pl,l−1(x

l−1
i ) + Pl,l+1(x

l+1
i ), (5)

with functions Pl,l′(.) defined by the polynom

Pl,l′(x
l′
i ) =

K∑

k=0

b
(k)
ll′ (xl′

i )k

For the reaction-diffusion Newell-Whitehead equation (3), the corresponding poly-
nomial CNN model can be write as the following system:

duj

dt
= A1 ∗ uj + f(uj), 1 ≤ j ≤ N, (6)

where A1 : (1,−2, 1) is one-dimensional discretized Laplacian template, ∗ is convo-
lution operator,the variable u from (3) is mapped to e reaction-diffusion CNN with
polynomial order three and the cell states uj represent the solution u leading to state
equations given by (6). Here,

f(uj) = b1(uj) + b2(uj)
2 + b3(uj)

3 + v1

is Taylor series expansion of the functions f(u) = au− bu3.
In order to use a general CNN structure for a broad class of nonlinearities, a Taylor

serie expansion (TSP) of the feedback function may be helpful, leading directly to
above mentioned CNN with polynomial weight functions. Therefore the template
coefficients in equation (6) are identified by the series expansion coefficients of the
feedback function.

A numerical integration of (6) with the initial conditions uj(0) = 0 leads to the
solution which is shown on Fig.2:
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Fig.2. Simulation of PCNN model (6).

Remark 1 In order to model a system represented by solutions of (3) using PCNN
(6) the coefficients bi have to be determined in an optimization process. Thereby the
solutions in Fig.3 was used as reference. During the optimization process the mean
square error

emse =
∑

i

∑

j

2∑

l=1

(ul
j − ũl

j)
2

n

can be minimized using Powells method and Simulated Annealing [11]. In each step
emse is calculated by taking the reference ul

j(t) and the output ũl
j of PCNN obtained

by simulation system MATCNN applying 4th- order Runge-Kutta integration. In
order to minimize the computational complexity and to maximize the significance of
the mean square error only outputs of 10 cells are taken into account.

3 Edge of chaos in the Newell-Whitehead CNN model

The theory of local activity provides a definitive answer to the fundamental question:
what are the values of the cell parameter for which the interconnected system may
exibit complexity? The answer is given in [4,5] - the necessary condition for a non-
conservative system to exibit complexity is to have its cell locally active. The theory
which will be presented below and which follows [5] offers a constructive analytical
method for uncovering local activity. In particular, for diffusion CNN model, one
can determine the domain of the cell parameters in order for the cells to be locally
active, and thus potentially capable of exhibiting complexity. This precisely defined
parameter domain is called the edge of chaos [5,6].

We apply the following constructive algorithm:
1. Map Newell-Whitehead equation (3) into the following associated discrete-

space version which we shall call Newell-Whitehead PCNN model:

duj

dt
= A1 ∗ uj + f(uj), 1 ≤ j ≤ N (7)
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2. Find the equilibrium points of (7). According to the theory of dynamical
systems the equilibrium points u∗ of (7) are these for which :

A1 ∗ u∗ + f(u∗) = F (u∗) = 0 (8)

Equation (8) may have one, two or three real roots u∗1, u∗2, u∗3, respectively. In
general, these roots are functions of the cell parameters a, b. In other words, we have
u∗k = u∗k(a, b), k = 1, 2, 3.

3. Calculate now the Jacobian matrix of (8)about each system equilibrium point
E∗

1 = (u∗1), E∗
2 = (u∗2), E∗

3 = (u∗3). In our particular case the associate linear system
in a sufficient small neighborhood of the equilibrium points E∗

i can be given by

dz

dt
= DF (E∗

i )z, i = 1, 2, 3,

DF (E∗
i ) = J is the Jacobian matrix of each of the equilibrium point and can be

computed by:

Jps =
∂Fp

∂us

|u=E∗i , 1 ≤ p, s ≤ N. (9)

In our particular case the Jacobian matrix is:

J = A1 + (a− 3b(u∗)2)Id, (10)

Id is the identity matrix.
4. Calculate the trace Tr(E∗

k) =
∑N

q=1 λq = trace[A1 + (a− 3b(u∗)2)Id].
5. We shall identify the cell state variables uj as follows: uj is associated with

the node-to-datum voltage at node (j) of a two-dimensional grid G of linear resistors.
The importance of the circuit model is not only in the fact that we have a convenient
physical implementation, but also in the fact that well-known results from classic
circuit theory can be used to justify the cells’ local activity [4]. In this sense, if there
is at least one equilibrium point for which the circuit model of the cell acts like a
source of ”small signal” power, in a precise sense defined in [4], i.e. if the cell is
capable of injecting a net small-signal average power into the passive resistive grids
then the cell is said to be locally active.

Definition 3 Stable and Locally Active Region SLAR(Ek) at the equilibrium point
Ek for Newell-Whitehead PCNN model (7) is such that Tr < 0.

In our particular case we have:

Tr(E∗
1 = 0) = −2 + a (11)

Tr(E∗
1,2 = ±

√
a + 1

b
) = −5− 2a (12)

In order the condition of Definition 3 to fulfill it is necessary the cell parameters
to satisfy the following inequalities: a > −5/2, b > 0. Then
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SLAR(Ek) : a > −5/2, b > 0 (13)

6. Edge of chaos.
In the literature [4,5,6] the so called edge of chaos (EC) means a region in the

parameter space of a dynamical system where complex phenomena and information
processing can emerge. We shall try to define more precisely this phenomena till
know known only via empirical examples. Moreover, we shall present an algorithm
for determining the edge of chaos for reaction-diffusion CNN models as the Newell-
Whitehead PCNN model (7).

We determine the Stable Local Activity Region for each point in the cell parameter
space by (13). We shall identify the edge of chaos domain EC in the cell parameter
space by using the following definition [4,5]:

Definition 4 A reaction-diffusion CNN is said to be operating on the edge of chaos
EC iff there is at least one equilibrium point Ek, k = 1, 2, 3 which belongs to SLAR(Ek).

The following theorem then hold:

Theorem 1 PCNN model of Newell-Whitehead equation (3) is operating in the edge
of chaos regime iff a > −5/2, b > 0. For this parameter values there is at least one
equilibrium point which belongs to SLAR(Ek).

The edge of chaos domain EC for the Newell-Whitehead PCNN model (7) is given
on Fig.3:
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Fig.4. EC domain for Newell-Whitehead PCNN model.

Remark 2 By introducing the edge of chaos domain we determine the exact cell
parameter values for which the equilibrium points of the Newell-Whitehead PCNN
model (7) are both locally active and stable. In other words there exists a domain in
which our PCNN model exibits complexity.
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