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Abstract

Exponentially inhomogeneous magnetoelectroelastic (MEE) continuum
with a finite crack, subjected to an incident time-harmonic anti-plane me-
chanical and in-plane electrical and magnetic load is considered. Fundamental
solutions for the coupled system of equations are implemented in the non-
hypersingular traction based Boundary Integral Equations Method (BIEM).

Numerical examples show the sensitivity of the dynamic generalized stress
intensity factor (SIF) to the type of the magnetoelectroelastic continua, to the
characteristics of the applied generalized dynamic load and to the magnitude
and direction of the material inhomogeneity in functionally graded magneto-
electroelastic material.
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1. Introduction. Magnetoelectroelastic (MEE) materials, possessing simul-
taneously piezoelectric, piezomagnetic and magnetoelectric properties, have drawn
the interest of the researchers in the recent years. The multilayered solid made of
different multifunctional materials is a base component in almost all products of
the modern smart structure technology. These structures accumulate stress be-
tween the layers due to the discontinuous material properties and thus they can
cause failures in the devices made of such materials (see Chue and Hsu [1]). To
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overcome the sharp interface and reduce stress concentration functionally graded
materials (FGM) with properties that vary continuously in the spatial domain are
developed (see Ma and Lee [2]). With the wide use of graded materials in the
new hi-tech industry a number of research results are devoted to the various crack
problems. For instance, Feng and Su [3] have presented an analysis of a FGMEE
strip, containing an internal crack, using integral transforms. Ma et al. [4] have
investigated embedded and edge antiplane cracks in a functionally graded MEE
strip reducing the problem to singular integral equations and employing inte-
gral transforms. Stoynov and Rangelov [5] have considered classes of cracked
inhomogeneous MEE materials and derived in a closed form time-harmonic fun-
damental solutions. Hypersingular BIEM is used by Rojas Diaz et al. [6], who
have studied cracks interactions in homogeneous MEE materials, subjected to a
time-harmonic in-plane load. A time-domain analysis of a homogeneous MEE
medium with a crack is presented in Li [7], who has used integral transforms to
reduce the problem to a Fredholm integral equation.

The aim of this paper is to investigate the dynamic anti-plane crack prob-
lem in an exponentially inhomogeneous MEE plane subjected to an incident SH
time-harmonic type wave by BIEM. The crack is oriented arbitrarily to the mate-
rial gradient. Numerical results are presented to show the effects of the material
graded index and the characteristics of the external loading on the stress concen-
tration field near the crack tip.

2. Statement of the problem. In a Cartesian coordinate system is con-
sidered a linear MEE medium poled in Ox3 direction and subjected to a time-
harmonic anti-plane mechanical load on Ox3 axis and in-plane electrical and
magnetic loads in the plane Ox1x2. The only non-vanishing fields are the anti-
plane mechanical displacement u3, the in-plane electrical displacement Di and the
in-plane magnetic induction Bi. The constitutive relations in the plane Ox1x2

are (see Soh and Liu [8])

(1) σiK = CiKJluJ,l, x ∈ R2 \ Γ,

where x = (x1, x2), Γ = Γ+∪Γ− is a crack – an open arc. Here the comma denotes
partial differentiation, the small indexes i, l = 1, 2, the capital indexes K,J =
3, 4, 5, and a summation in the repeating indexes is assumed. The generalized
displacement is uJ = (u3, φ, ϕ), where φ is the electric potential and ϕ is the
magnetic potential. The generalized stress tensor is σiJ = (σi3, Di, Bi), where σi3
is the stress and CiJKl is the generalized elasticity tensor defined as

Ci33l =

{
c44 i = l

0, i 6= l
, Ci34l = Ci43l =

{
e15, i = l

0, i 6= l
, Ci35l = Ci53l =

{
h15, i = l

0, i 6= l
,

Ci44l =

{
−ε11, i = l

0, i 6= l
, Ci45l = Ci54l =

{
−d11, i = l

0, i 6= l
, Ci55l =

{
−µ11, i = l

0, i 6= l
.
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Functions c44(x), e15(x), ε11(x) are: elastic stiffness, piezoelectric coupled coeffi-
cient and dielectric permittivity, while h15(x), d11(x), µ11(x) are piezomagnetic
and magnetoelectric coefficients and magnetic permeability correspondingly. It is
assumed that c44(x), ε11(x) and µ11(x) are positive that correspond to a stable
material (see [8]).

Suppose that the material parameters CiJKl and the density ρ depend in the
same manner exponentially on x

(2) CiKJl(x) = C0
iKJle

2〈a,x〉, ρ(x) = ρ0e2〈a,x〉,

where 〈,〉 means the scalar product in R2, a = (a1, a2) and we use the notations
a1 = r cosα, a2 = r sinα, r = |a| is the magnitude and α is the direction of the
material inhomogeneity.

Assuming the quasistatic approximation of MEE material in the absence of
body forces, electric charges and magnetic current densities the balance equation
is

(3) σiK,i + ρKJω
2uJ = 0,

where ρQJ =

{
ρ, Q = J = 3

0, Q, J = 4 or 5
and ω is the frequency of the applied time-

harmonic load.
The boundary condition on the crack is

(4) tJ |Γ = 0,

where tJ = σiJni is the generalized traction and n = (n1, n2) is the normal vector
to Γ. That means the crack is impermeable, i.e. the crack line is free of mechanical
traction, electric charge and magnetic current.

Using the superposition principle the displacement and the traction are rep-
resented as uJ = uin

J + usc
J , tJ = tinJ + tscJ , where uin

J , tinJ is the free-field solution
of equation (3) and its traction, usc

J , tscJ is the scattering field due to the crack Γ.

Denote ω0 =

√
detM

(ε0
11µ

0
11 − d02

11ρ
0)
|a|, where M =

c0
44 e0

15 q0
15

e0
15 −ε0

11 −d0
11

q0
15 −d0

11 −µ0
11

.

In the following we will study the case

(5) ω > ω0

when the dynamic behaviour of the MEE material is characterized by a wave
propagation phenomena.

Let us introduce the smooth change of functions

(6) uJ(x, ω) = e−〈a,x〉UJ(x, ω)
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and suppose that UJ(x, ω) satisfies Sommerfeld-type condition on infinity, more
specifically

(7) U3 = o(|x|−1), U4 = o(e−|a||x|), U5 = o(e−|a||x|) for |x| → ∞.

Condition (7) ensures uniqueness of the scattering field usc
J for a given incident

field uin
J . Following Akamatsu and Nakamura [9] for the piezoelectric case it

can be proved that the boundary value problem (BVP) (3), (4) admits continuous
differentiable solutions.

In order to solve problem (3), (4) numerically we will use BIEM, i.e. we
transform the problem to equivalent integrodifferential equation on the crack Γ.

3. Non-hypersingular BIEM and SIF evaluation. The non-hypersingu-
lar traction BIE is derived following Wang and Zhang [10] for the homogeneous
and [11] for the inhomogeneous piezoelectric case and Stoynov and Rangelov
[5,12] for the inhomogeneous and homogeneous MEE materials.

For uJ , u∗JK , where u∗JK is the fundamental solution of (3), we apply the
Green formula in the domain ΩR \ Ωε, ΩR is a circular domain with large radius
R, and Ωε is a small neighbourhood of Γ. Applying the representation formulae
for the generalized displacement gradient uK,l (see [10]) an integro-differential
equation on ∂ΩR ∪ ∂Ωε is obtained (see [5]). Using condition (7) integrals over
∂ΩR go to 0 for R → ∞. Taking the limit ε → 0, i.e. x → Γ, and using
the boundary condition (4), i.e. tscJ = −tinJ on Γ the following system of BIE is
equivalent to the BVP (3), (4)

(8) − tinJ (x, ω) = CiJKl(x)ni(x)

∫
Γ
[(σ∗ηPK(x, y, ω)4uP,η(y, ω)

− ρQP (y)ω2u∗QK(x, y, ω)4uP (y, ω))δλl − σ∗λPK(x, y, ω)4uP,l(y, ω)]nλ(y) dΓ,

x ∈ Γ, where σ∗iJQ = CiJMlu
∗
MQ,l is the stress of the fundamental solution, ∆uJ =

uJ |Γ+−uJ |Γ− is the generalized crack opening displacement (COD), x = (x1, x2),
y = (y1, y2) denote the field point and the source point, respectively. Equation (8)
is a traction non-hypersingular BIE on the crack line Γ for the unknown ∆uJ .
From its solution the generalized displacement uJ can be obtained at every point
in R2 \ Γ by using the corresponding representation formulae (see [12]).

A fundamental solution u∗JK of (3) is defined as a solution of equation

(9) σ∗iJM,i + ρKJω
2u∗KM = −δJMδ(x, ξ),

where δ(x, ξ) is the Dirak’s function and δJM is the Kroneker symbol. For the
considered inhomogeneity the fundamental solution is obtained in [5] and we will
shortly list the solution method. First, the smooth transform u∗KM = e−〈a,x〉U∗KM
applied to (9) gives

(10) C0
iJKiU

∗
KM,ii + [ρ0

JKω
2 − C0

iJKia
2
i ]U
∗
KM = e−〈a,ξ〉δJMδ(x, ξ).
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Second, applying the Radon transform

R(f) = f̂(s,m) =

∫ +∞

−∞
f(x)δ(s− 〈x,m〉) dx

(see Zayed [13]) to both sides of (10), having in mind that only m, |m| = 1 are
used for the inverse Radon transform and solving the corresponding system of
ordinary differential equations for Û∗ = R(U∗) we get

Û∗33 = −e−〈a,ξ〉 1

2ika0
eik|s−τ |, Û∗34 = Û∗43 = − A

2ika0
eik|s−τ |,

Û∗44 = −e−〈a,ξ〉
(

A2

2ika0
eik|s−τ | +

1

2ε0
11|a|

e|a||s−τ |
)
,

Û∗35 = Û∗53 = −e−〈a,ξ〉 B

2ika0
eik|s−τ |,

Û∗45 = Û∗54 = −e−〈a,ξ〉
(
AB

2ika0
eik|s−τ | − d0

11

2ε0
11µ

0
11|a|

e|a||s−τ |
)
,

Û∗55 = −e−〈a,ξ〉
(

B2

2ika0
eik|s−τ | +

1

2|a|
(
d02

11

ε0
11µ

02
11

+
1

µ0
11

)e|a||s−τ |
)
,

(11)

where the following notations are used: τ = 〈ξ,m〉,

a0 = c0
44 +

e02
15

ε0
11

, k =

√
ρ0ω2

a0
− |a|2, c0

44 = c0
44 +

q02
15

µ0
11

, e0
15 = e0

15 −
d0

11q
0
15

µ0
11

,

ε0
11 = ε0

11 −
d02

11

µ0
11

, A =
µ0

11e
0
15 − q0

15d
0
11

µ0
11ε

0
11 − d02

11

, B =
q0

15ε
0
11 − d0

11e
0
15

µ0
11ε

0
11 − d02

11

.

The third step is to apply the inverse Radon transform and to obtain func-
tions U∗JK and correspondingly u∗JK .

The free-field solution uin
J and its traction tinJ on the crack Γ is obtained

using the wave decomposition method. With η = (η1, η2), |η| = 1 – the wave
propagation direction, pJ – the polarization vector, and k – the wave number, we
get

uin
J = pJe

〈x,−a+ikη〉, p1 = 1, p2 = A, p3 = B,(12)

tin3 =
detM

ε0
11µ

0
11 − d02

11

〈a+ ikη, n〉e〈x,a+ikη〉, t4 = 0, t5 = 0.(13)

The dynamic fracture state of MEE is characterized by the leading term of the
asymptotic of the displacement and traction near the crack tip – generalized stress
intensity factor. For the considered dynamic problem of MEE media SIFs are:
mechanical KIII , electrical displacement KD and magnetic displacement KB.
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Fig. 1. Dynamic normalized SIF K∗
III versus normalized frequency Ω of normal

incident SH type wave propagating in exponentially inhomogeneous MEE plane
with material inhomogeneity magnitude β = 0.4 and material gradient α = π/2

They are obtained directly from the traction values ahead the crack-tip (see Suo
et al. [14]) for the piezoelectric case. In the case of the straight crack along the
axis Ox1, Γ = (−c, c), SIFs are computed by the formulae

KIII = lim
x1→±c

t3
√

2π(x1 ∓ c),

KD = lim
x1→±c

t4
√

2π(x1 ∓ c),

KB = lim
x1→±c

t5
√

2π(x1 ∓ c),

(14)

where tJ is calculated at the point (x1, 0) close to the crack-tip.

4. Numerical realization. The numerical procedure for the solution of the
boundary value problem follows the numerical algorithm developed and validated
in [11] for the inhomogeneous piezoelectric case and in [12] for the homogeneous
MEE case. The crack Γ is discretized by quadratic boundary elements (BE) away
from the crack-tips and special crack-tip quarter-point BE near the crack-tips to
model the asymptotic behaviour of the displacement and the traction.

In the numerical examples the crack Γ with a half-length c = 5 mm, occupying
an interval (−c, c) along Ox1 axis is considered. The crack is divided into 7 BE
with lengths correspondingly: l1 = l7 = 0.15c, l2 = · · · = l6 = 0.34c. First BE is
a left-quarter point BE, 7th BE is a right-quarter point BE, and the rest BE are
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Fig. 2. Dynamic normalized SIF K∗
III versus normalized frequency Ω of nor-

mal incident SH wave propagating in homogeneous MEE plane (for material
inhomogeneity magnitude β = 0)

ordinary BE. The reference properties C0
iJKl of the used materials: piezoelectric

material BaTiO3, piezomagnetic material CoFe2O4, and magnetoelectroelastic
composite BaTiO3/CoFe2O4 can be found in [12] and in Song and Sih [15].

The proposed method is validated with the results of Daros [16], who used
BIEM to study propagation of SH wave in anisotropic materials with reference
elastic properties and density equal to the properties of the piezoceramic PZT 6B.
The absolute values of the normalized SIF K∗III = KIII

tin3
√
πc

versus the normalized

frequency Ω = ck0, where k0 =

√
ρ0ω2

c0
44

− |a|2 are presented in Fig. 1, where the

magnitude and the direction of the exponentially inhomogeneous piezoceramic
are correspondingly β = 0.4 and α = π/2. The comparison shows a very close
coincidence of the results obtained by the authors and those in [16]. Figure 2
reveals that when the magnitude of the material inhomogeneity is zero, then the
solution for the inhomogeneous case recovers the solution of the boundary-value
problem for the pure homogeneous material.
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Fig. 3. Dynamic normalized SIFK∗
III at the left crack tip versus normalized frequency

Ω of normal incident SH type wave propagating in exponentially inhomogeneous MEE
plane made of different materials with material inhomogeneity magnitude β = 0.4 and

inhomogeneity direction α = π/2

The aim of the simulation examples is to show the sensitivity of the dynamic
SIF K∗III on the type of the material, the characteristics of the material inhomo-
geneity and on the properties of the propagating time-harmonic SH type wave.
In Figure 3 the normalized SIFs K∗III is plotted versus the normalized frequency

Ω = cω
√
ρ0/c0

44 for fixed inhomogeneity characteristics β = 0.4 and α = π/2, i.e.
the material constants vary continuously in direction perpendicular to the crack.
The results show dependence of the SIF on the type of the reference material in
the prescribed frequency interval.

The normalized SIF K∗III versus different values of m = 0.0, 0.1, . . . , 1.0,
where α = mπ/2 are plotted in Fig. 4. The normalized frequency Ω = cω

√
ρ0/a0

is 1.0 and β = 0.2, 0.4, 0.6. It can be seen that for fixed β SIF K∗III is increasing
when α is increasing. If α is fixed, K∗III is the smallest for the largest value of
β and vice versa. The results show dependence of the SIF on the inhomogeneity
characteristics of the MEE material.
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Fig. 4. Dynamic normalized SIF K∗
III at the left crack tip versus direction of

the material gradient α = mπ/2, m = 0.0, 0.1, . . . , 1.0 for normalized frequency
Ω = 1.0 of the incident SH wave and for different inhomogeneity magnitude

β = 0.2, 0.4, 0.6

5. Conclusion. A dynamic fracture analysis of exponentially inhomoge-
neous MEE materials subjected to time-harmonic anti-plane mechanical and in-
plane electromagnetic loads is presented in this study. It is developed, validated
and used in simulations an effective non-hypersingular traction based BIEM for
the solution of the posed problem. The method can be successfully used for more
complex problems of crack interactions, cracks with arbitrary shapes and compos-
ites with different combinations of piezoelectric and piezomagnetic constituents.
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