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Spherical designs (1)

Spherical designs were introduced in 1977 by Delsarte-Goethals-Seidel [3].

De�nition (1)

A spherical τ -design C ⊂ Sn−1 is a �nite subset of Sn−1 such that

1

µ(Sn−1)

∫
Sn−1

f (x)dµ(x) =
1

|C |
∑
x∈C

f (x)

(µ(x) is the Lebesgue measure) holds for all polynomials
f (x) = f (x1, x2, . . . , xn) of degree at most τ (i.e. the average of f over the
set is equal to the average of f over Sn−1).

The maximal possible τ = τ(C ) is called strength of C .
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Covering radius of spherical designs

De�nition (2)

Let C ⊂ Sn−1 be a �nite set (spherical design in our applications). For a
�xed point y ∈ Sn−1 the distance between y and C is de�ned in the usual
way by

d(y ,C ) := min{d(y , x) : x ∈ C}.

Then the covering radius of C is

r(C ) := max{d(y ,C ) : y ∈ Sn−1}.

We consider the equivalent quantity

ρ(C ) := 1− r2(C )

2
= min

y∈Sn−1
max
x∈C
{〈x , y〉}.
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Gegenbauer polynomials

De�nition (3)

By P
(n)
i (t), i = 0, 1, . . ., we denote the Gegenbauer polynomials normalized

by P
(n)
i (1) = 1, which satisfy the following three-term recurrence relation

(i + n − 2)P
(n)
i+1

(t) = (2i + n − 2) t P
(n)
i (t)− i P

(n)
i−1(t) for i ≥ 1,

where P
(n)
0

(t) := 1 and P
(n)
1

(t) := t.
In the standard Jacobi polynomial notation, we have that

P
(n)
i (t) =

P
((n−3)/2,(n−3)/2)
i (t)

P
((n−3)/2,(n−3)/2)
i (1)

.
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Spherical designs (2)

Theorem (4)

[3] A code C ⊂ Sn−1 is a spherical τ -design if and only if for any point
y ∈ Sn−1 and any real polynomial f (t) of degree at most τ , the equality∑

x∈C
f (〈x , y〉) = f0|C | (1)

holds, where f0 is the �rst coe�cient in the Gegenbauer expansion

f (t) =
∑k

i=0
fiP

(n)
i (t).
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Linear programming (LP) bounds - Fazekas-Levenshtein
bounds for covering radius of spherical designs

Linear programming bounds for covering radius of spherical designs were
obtained by Fazekas and Levenshtein [2, Theorem 2] in the more general
setting of polynomial metric spaces.
They prove that if C is a (2k − 1 + e)-design, e ∈ {0, 1}, then

ρ(C ) ≥ tFL = t0,ek , (2)

where t0,ek is the largest zero of the Jacobi polynomial P
(α,β)
k (t),

α = n−3
2
, β = n−3

2
+ e.

For example, (2) gives ρ(C ) ≥ (1 +
√
n + 3)/(n + 2) for every spherical

4-design of M ≥ n(n + 3)/2 points.
Note that the Fazekas-Levenshtein bound does not depend on the
cardinality of the designs under consideration.
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Problems

Problem (1)

To improve the lower bounds on the covering radius ρ(C ) of spherical
designs with �xed dimension n, even strength 2k , and cardinality |C |.

Problem (2)

To obtain the upper bounds on the covering radius ρ(C ) of spherical
designs with �xed dimension n, even strength 2k , and cardinality |C |.
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Delsarte-Goethals-Seidel bound

For �xed dimension n ≥ 2 and strength τ ≥ 1 the minimum cardinality of a
spherical τ -design C ⊂ Sn−1 is bounded from below by
Delsarte-Goethals-Seidel as follows:

|C | ≥ D(n, τ) :=

(
n + k − 2 + e

n − 1

)
+

(
n + k − 2

n − 1

)
, (3)

where τ = 2k − 1 + e, e ∈ {0, 1}. This bound (3) is rarely attained.
Improvements (Boyvalenkov, Yudin, Nikova-Nikov);
It is still unknown, if there exist spherical 4-designs of 10 points on S2.
(Bondarenko, Radchenko and Viazovska) For �xed dimension n and
strength τ there exist spherical τ -designs on Sn−1 for any cardinality
N ≥ Cnτ

n−1, where the constant Cn depends on the dimension n only.
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Some notations for the structure of spherical designs

Let C ∈ Sn−1 be a spherical design. For an arbitrary point y ∈ Sn−1,
consider the (multi)set

I (y) = {〈x , y〉 : x ∈ C} = {t1(y), t2(y), . . . , t|C |(y)},

where we assume that I (y) is ordered by
−1 ≤ t1(y) ≤ t2(y) ≤ . . . ≤ t|C |(y) ≤ 1, (t|C |(y) = 1 ⇔ y ∈ C ).
In what follows we always assume that y is a point on Sn−1 where the
covering radius is realized, in particular t|C |(y) = ρ(C ).

Lemma (5)

If y is a point on Sn−1 where the covering radius is realized, then

t|C |(y) = t|C |−1(y) = · · · = t|C |−n+1(y) = ρ(C ).
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A signed measure ⇒ orthogonal polynomials (1)

The measure of orthogonality of Gegenbauer polynomials P
(n)
i (t) is

dµ(t) := cn(1− t2)
n−3
2 dt, t ∈ [−1, 1], cn := Γ(

n

2
)/
√
πΓ(

n − 1

2
).

We need also measures which are positive de�nite up to certain degree
considered by Cohn and Kumar (2006).

De�nition (6)

A signed Borel measure ν on R for which all polynomials are integrable is
called positive de�nite up to degree m if

∫
p2(t)dν(t) > 0 for all real

nonzero polynomials p(t) of degree at most m.
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A signed measure ⇒ orthogonal polynomials (2)

It was proved (B.-Dragnev-Hardin-Sa�-S., 2019) that the signed measure

dµ`(t) := cn,`(t − `)dµ(t), t ∈ [−1, 1], cn,` := −1/`,

is positive de�nite up to degree k − 1 provided that ` < tk,1, where tk,1 is

the smallest zero of the Gegenbauer polynomial P
(n)
k (t).

This implies the existence of a �nite sequence of polynomials {P0,`
i (t)}ki=0

which are orthogonal with respect to dµ`(t) and normalized by P0,`
i (1) = 1.

The uniqueness of these polynomials allows us to write explicitly

P0,`
i (t) =

Ti (t, `)

Ti (1, `)
=

(1− `)
(
P
(n)
i+1

(t)− P
(n)
i (t)P

(n)
i+1

(`)/P
(n)
i (`)

)
(t − `)

(
1− P

(n)
i+1

(`)/P
(n)
i (`)

) (4)

The boundary case ` = −1 leads to polynomials which Levenshtein denoted
by P0,1

i (t) - the (normalized) Jacobi polynomials with parameters
(α, β) = ((n − 3)/2, (n − 1)/2).
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Properties of the polynomials P0,`
i (t) - interlacing of roots

Let τ = 2k . Denote by ti ,1 < ti ,2 < . . . < ti ,i the zeros of P
(n)
i (t) and

t0,`i ,1 < t0,`i ,2 < . . . < t0,`i ,i the zeros of P0,`
i (t).

Theorem (7)

Let ` and k be such that tk+1,1 < ` < tk,1 and P
(n)
k+1

(`)/P
(n)
k (`) < 1. Then

P0,`
i (t) =

Ti (t, `)

Ti (1, `)
, i = 0, 1, . . . , k, (5)

where the leading coe�cient of P0,`
i is m0,`

i > 0. All zeros {t0,`i ,j }ij=1
of

P0,`
i (t) are in the interval [`, 1] and the interlacing rules

t0,`i ,j ∈ (ti ,j , ti+1,j+1), i = 1, . . . , k − 1, j = 1, . . . , i ;

t0,`k,j ∈ (tk+1,j+1, tk,j+1), j = 1, . . . , k − 1, t0,`k,k ∈ (tk+1,k+1, 1),
(6)

hold.
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Properties of the polynomials P0,`
i (t) - a quadrature formula

We denote by Li (t), i = 0, 1, . . . , k , the Lagrange basic polynomials

generated by the nodes ` < t0,`k,1 < t0,`k,2 < · · · < t0,`k,k and set

θi :=

∫
1

−1
Li (t)dµ(t), i = 0, 1, . . . , k .

Theorem (8)

Let t0,`k,1 < t0,`k,2 < · · · < t0,`k,k be the zeros of the polynomial P0,`
k (t). Then

the quadrature formula

f0 =

∫
1

−1
f (t)dµ(t) = θ0f (`) +

k∑
i=1

θi f (t0,`k,i ) (7)

is exact for all polynomials of degree at most 2k and has positive weights
θi > 0, i = 0, 1, . . . , k .
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Improving the FL bound for even strengths
Case: −1 < ` ≤ t1(y) (1)

Let C ⊂ Sn−1 be a spherical 2k-design of cardinality |C | > D(n, 2k). Let
y ∈ Sn−1 be a point which realizes the covering radius of C .
Lower bounds −1 < ` ≤ t1(y) imply improvements of the tFL.

Theorem (9)

Let C ⊂ Sn−1 be a spherical 2k-design and y ∈ Sn−1 be a point which
realizes the covering radius of C . If ` ≤ t1(y), then

ρ(C ) ≥ t0,`k,k .

In the boundary case ` = −1 this theorem gives the Fasekas-Levenshtein
bound ρ(C ) ≥ tFL = t0,1k . Therefore, we have improvement of the
Fasekas-Levenshtein bound whenever it is known (or it is presumed) that
` ≤ t1(y) for a point y where the covering radius is realized.

Boyvalenkov and Stoyanova LP bounds - covering radius - Sph.Des. December 07-08, 2020 15 / 32



Case: −1 < ` ≤ t1(y) Some lower bounds t0,`k,k (2)

Dimension Cardinality Strength ` FL-lower bound New lower bound

n |C | τ = 2k if ` ≤ t1(y)

ρ(C) ≥ t0,1k ρ(C) ≥ t0,`k,k

3 10 4 -0.97 0.689897 0.694892

3 10 4 -0.95 0.689897 0.698664

3 10 4 -0.9 0.689897 0.710257

4 15 4 -0.97 0.607625 0.611772

4 15 4 -0.95 0.607625 0.614815

4 15 4 -0.9 0.607625 0.623682

3 17 6 -0.97 0.822824 0.825859

3 17 6 -0.95 0.822824 0.828450

3 17 6 -0.9 0.822824 0.839165
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Improving the FL bound for even strengths
Case: t1(y) ∈ [−1, `] (1)

This case is more subtle.
We will have to optimize in two classes of real polynomials. We consider

A(n, k , `) := {f (t) = A2(t) : deg(f ) = 2k,A(t) has k real zeros in [`, tFL]}.

Similarly, we use polynomials from the set

B(n, k , s) := {g(t) = (t + 1)B2(t)(t − s) : deg(g) = 2k ,

B(t) has k − 1 real zeros in [−1, s]},

where the parameter s (close to tFL) will be chosen in advance.
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Case: t1(y) ∈ [−1, `] (2)

The next lemma sets an auxiliary parameter m(C ) after optimization in the
set A(n, τ, `).

Lemma (10)

Let f (t) ∈ A(n, k , `) and the positive integer m be such that

f0|C | < f (`) + (m + 1)f (tFL). (8)

Then t|C |−m(y) < tFL.

We de�ne

m(C ) := min{m : ∃f ∈ A(n, k , `) such that f0|C | < f (`) + (m + 1)f (tFL)}.

This lemma implies that
m(C ) ≥ n.
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Case: t1(y) ∈ [−1, `] (3)

Example (11)

We have m(C ) = n = 3 for (n, τ, |C |) = (3, 4, 10), the �rst case, where the
existence/nonexistence of spherical 4-designs is undecided. Similarly, for
(n, τ, |C |) = (4, 4, 15) we have m(C ) = n + 1 = 5.

Lemma (12)

Let f (t) ∈ A(n, k , `) be such that f0|C | < f (`) + (m(C ) + 1)f (tFL). Then
t|C |−m(C)(y) ≤ s, where s is the largest root of the equation

f0|C | − f (`) = (m(C ) + 1)f (t).
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Case: t1(y) ∈ [−1, `] (4)

The previous two Lemmas 10 and 12 imply that t|C |−m(C)(y) ≤ s < tFL.
We utilize this in a second optimization dealing with the location of tFL
between two inner products from I (y).

We have
t|C |−m(C)(y) ≤ s < tFL ≤ t|C |−n+1(y) = ρ(C ).

Therefore, there exist j ∈ {0, 1, . . . ,m(C )− n} such that

t|C |−m(C)+j(y) < tFL ≤ t|C |−m(C)+j+1(y). (9)

This clari�cation of the location of tFL with respect to the points of I (y)
allows more precise estimations.
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Case: t1(y) ∈ [−1, `] (5)

Lemma (13)

If g(t) ∈ B(n, k , s), then ρ(C ) ≥ m
(j)
`,s , where m

(j)
`,s is the largest root of the

equation
jg(tFL) + (m(C )− j)g(t) = g0|C |. (10)

Lemma (14)

Let f (t) ∈ A(n, k , `) be such that f0|C | < f (`) + (m(C ) + 1)f (tFL). Then
t|C |−m(C)(y) ≤ s(j), where s(j) is the largest root of the equation

f0|C | = (j + 1)f (t) + f (`) + (m(C )− j)f (tFL). (11)
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A procedure for �nding new lower bounds (1)

In the case t1(y) ∈ [−1, `], for each �xed j ∈ {0, 1, . . . ,m(C )− n}, we can
start an iterative procedure with previous Lemmas 13 and 14 for obtaining

consecutive improvements of s(j) and m
(j)
`,s .

This procedure may converge to some bounds or may be divergent which
will mean nonexistence of designs with the corresponding parameters
(dimension, strength, and cardinality).

The better bound ρ(C ) ≥ t0,`k when t1(y) ≥ ` allows starting a similar
procedure with analogs of the above Lemmas 13 and 14 as the only
di�erence will be the absence of `.
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A procedure for �nding new lower bounds (2)

Example (15)

Considering again (n, τ, |C |) = (3, 4, 10)
(recall that m(C ) = n = 3 in this case, i.e. j = 0 only),
we obtain for ` = −0.97 that ρ(C ) ≥ 0.724753 if t1(y) ∈ [−1,−0.97]
and ρ(C ) ≥ 0.728787 if t1(y) ≥ −0.97.
Therefore, we have ρ(C ) ≥ 0.724753 in the worst case.

Similarly, for (n, τ, |C |) = (4, 4, 15)
(note that now m(C ) = 5, i.e. j = 0, 1),
we obtain for ` = −0.97 that ρ(C ) ≥ 0.625572 if t1(y) ∈ [−1,−0.97]
and ρ(C ) ≥ 0.627354 if t1(y) ≥ −0.97 for j = 0;
ρ(C ) ≥ 0.616854 if t1(y) ∈ [−1,−0.97]
and ρ(C ) ≥ 0.619259 if t1(y) ≥ −0.97 for j = 1.
Summarizing, we conclude that ρ(C ) ≥ 0.616854 in the worst case.
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General upper bounds (1)

We write (1) for y , C and f (t), deg(f ) ≤ τ(C ), as

nf (ρ(C )) +

|C |−n∑
i=1

f (ti (y)) = f0|C |. (12)

The identity (12) provides upper bounds for ρ(C ) as follows.

Theorem (16)

(Linear programming upper bounds of the covering radius of spherical

designs) Let f (t), deg(f ) ≤ τ , be a real polynomial which is nonnegative
in [−1, tFL] and increasing in [tFL, 1]. Then for every τ -design C ⊂ Sn−1
we have

ρ(C ) ≤ mu,

where mu is the largest root of the equation nf (t) = f0|C |.
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General upper bounds (2)

The following theorem shows which kind of extremal polynomials should be
investigated.

Theorem (17)

The best polynomials for use in Theorem 16 are f (t) = (t + 1)eA2(t),
where τ = 2k − e, e ∈ {0, 1}, deg(A) = k − e and A(t) has k − e zeros in
[−1, tFL].
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Upper bounds for spherical 4-designs

We now �nd the optimal polynomials in the above Theorem for τ = 4.

Theorem (18)

If C ⊂ Sn−1 is a spherical 4-design, then

ρ(C ) ≤ u(a0, b0),

where the function u(a, b) and the (optimal) parameters a0 and b0 are
de�ned in the proof.

Example (19)

Looking again in the �rst open case (n, τ, |C |) = (3, 4, 10), we obtain (for

b0 =
√
69−7
30

and a0 = (3+
√
69)
√

45+10
√
69

150
) the upper bound

ρ(C ) ≤ u(a0, b0) ≈ 0.754443.
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Examples for 4-designs

Dimension Cardinality m(C) FL-lower bound New lower bound New upper

n |C | ρ(C) ≥ t0,12 ` = −0.97 bound

3 10 3 0.689897 0.724753 0.7545

3 11 4 0.689897 0.694717 0.7794

4 15 5 0.607625 0.616854 0.6918

4 16 5 0.607625 0.610537 0.7072

5 21 7 0.546918 0.550012 0.6503

5 22 8 0.546918 0.548132 0.6604

6 28 10 0.500000 0.501717 0.6198

6 29 10 0.500000 0.501288 0.6269

7 36 13 0.462475 0.463455 0.5960

7 37 13 0.462475 0.462961 0.6012
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Upper bounds for antipodal 3- and 5-designs (1)

A spherical design C is called antipodal if C = −C .
The set I (y) is symmetric for antipodal designs;
We have

ti = t|C |−i+1, i = 1, 2, . . . , n.

In Lemma 5 and the equation in Theorem (16) becomes

2nf (t) = f0|C |.

The upper bounds for antipodal designs are easier for τ = 3 and τ = 5.
We are able to obtain an explicit bound in these cases for all dimensions
and cardinalities.
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Upper bounds for antipodal 3- and 5-designs (2)

Theorem (20)

If C is an antipodal 3-design, then

tFL =
1√
n
≤ tc ≤

1

n

√
|C |
2
.

Theorem (21)

If C is an antipodal 5-design, then

tFL =

(
3

n + 2

)1/2

≤ tc ≤

(
1

n
+

1

n

√
(n − 1)(|C | − 2n)

n(n + 2)

)1/2

.
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Future work

To obtain an explicit bounds for covering radius of spherical designs
with τ = 6, 8, etc.

To obtain bounds for covering radius of spherical designs with odd
strengths.
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Thank you for your attention!
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