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-
Spherical designs (1)

Spherical designs were introduced in 1977 by Delsarte-Goethals-Seidel [3].
Definition (1)
A spherical T-design C C S"~! is a finite subset of S"~! such that
1
) o 100 = g 10

(11(x) is the Lebesgue measure) holds for all polynomials
f(x) = f(x1,x2,...,x,) of degree at most 7 (i.e. the average of f over the
set is equal to the average of f over S"1).

v

The maximal possible 7 = 7(C) is called strength of C.
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Covering radius of spherical designs

Definition (2)

Let C € S"~! be a finite set (spherical design in our applications). For a
fixed point y € S"~! the distance between y and C is defined in the usual
way by

d(y, C) := min{d(y,x) : x € C}.

Then the covering radius of C is

r(C) :=max{d(y,C):y € S""1}.

We consider the equivalent quantity

r2
Q) =1 - ) ,min, max{(x, y)}.

Boyvalenkov and Stoyanova LP bounds - covering radius - Sph.Des. December 07-08, 2020 4/32



Gegenbauer polynomials

Definition (3)
By P,.(")(t), i=0,1,..., we denote the Gegenbauer polynomials normalized

by P,-(")(l) =1, which satisfy the following three-term recurrence relation
(i +n—2) P (8) = (2i + n = 2) t PI(t) — i P (2) for i > 1,

where P[g")(t) =1 and Pl(")(t) =
In the standard Jacobi polynomial notation, we have that

P(”)(t) B P,.((”_3)/2’(”_3)/2)(t)

5/32
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-
Spherical designs (2)

Theorem (4)

[3] A code C C S"! is a spherical T-design if and only if for any point
y € S"7 and any real polynomial f(t) of degree at most T, the equality

> f((xx) = hIC| (1)
xeC

holds, where fy is the first coefficient in the Gegenbauer expansion

F(t) = 1o P ().
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Linear programming (LP) bounds - Fazekas-Levenshtein
bounds for covering radius of spherical designs

Linear programming bounds for covering radius of spherical designs were
obtained by Fazekas and Levenshtein [2, Theorem 2] in the more general
setting of polynomial metric spaces.

They prove that if C is a (2k — 1 + e)-design, e € {0,1}, then

p(C) > tr = t°, (2)

where t2’e is the largest zero of the Jacobi polynomial P,((O"ﬁ)(t),

o = n53'ﬁ: n53_|_e_

For example, (2) gives p(C) > (14 +/n+ 3)/(n+ 2) for every spherical
4-design of M > n(n+ 3)/2 points.

Note that the Fazekas-Levenshtein bound does not depend on the
cardinality of the designs under consideration.

Boyvalenkov and Stoyanova LP bounds - covering radius - Sph.Des. December 07-08, 2020 7/32



Problems

Problem (1)

To improve the lower bounds on the covering radius p(C) of spherical
designs with fixed dimension n, even strength 2k, and cardinality |C|.

Problem (2)

To obtain the upper bounds on the covering radius p(C) of spherical
designs with fixed dimension n, even strength 2k, and cardinality |C]|.
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N
Delsarte-Goethals-Seidel bound

For fixed dimension n > 2 and strength 7 > 1 the minimum cardinality of a
spherical 7-design C € S"~! is bounded from below by
Delsarte-Goethals-Seidel as follows:

\C]ZD(n,T)::<n+k_2+e>+<n+k_2>, 3)

n—1 n—1

where 7 =2k — 1+ e, e € {0,1}. This bound (3) is rarely attained.
Improvements (Boyvalenkov, Yudin, Nikova-Nikov);

It is still unknown, if there exist spherical 4-designs of 10 points on S2.
(Bondarenko, Radchenko and Viazovska) For fixed dimension n and
strength 7 there exist spherical 7-designs on S™~! for any cardinality
N > C,7" !, where the constant C, depends on the dimension n only.
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Some notations for the structure of spherical designs

Let C € S™! be a spherical design. For an arbitrary point y € S"~1,
consider the (multi)set

I(y) ={{x,y) : x € C} = {ta(y), to(y); - - -, {ic| (V) }

where we assume that /(y) is ordered by
“1<t(y)<ty)<...<taly) <L (goly) =1 y € ().

In what follows we always assume that y is a point on S"~! where the
covering radius is realized, in particular t/c|(y) = p(C).

Lemma (5)

If y is a point on S"~! where the covering radius is realized, then

tic|(¥) = tic-1(y) = -+ = ticj=nta(y) = p(C).
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A signed measure = orthogonal polynomials (1)

The measure of orthogonality of Gegenbauer polynomials P,-(")(t) is

n—1

du(t) == ca(1 — 2)" 2 dt, te[-1,1], cpi= r(g)/\/%r( —).

We need also measures which are positive definite up to certain degree
considered by Cohn and Kumar (2006).

Definition (6)

A signed Borel measure v on R for which all polynomials are integrable is
called positive definite up to degree m if [ p?(t)dv(t) > 0 for all real
nonzero polynomials p(t) of degree at most m.
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A signed measure = orthogonal polynomials (2)
It was proved (B.-Dragnev-Hardin-Saff-S., 2019) that the signed measure

dpe(t) == cpe(t —O)dp(t), te[-1,1], cpe:=—-1/¢,

is positive definite up to degree k — 1 provided that ¢ < ty 1, where t; 1 is
the smallest zero of the Gegenbauer polynomial P,((")(t).
This implies the existence of a finite sequence of polynomials {P?’E(t)}ff:

0
which are orthogonal with respect to du,(t) and normalized by P?’E(l) =1.
The uniqueness of these polynomials allows us to write explicitly

0.0 Tit,e)  (1=0) (P,-‘i)l(t) — Pl" )( t) ,(1)1( 0/P"(0))
P (t) = =
The boundary case £ = —1 leads to polynomials which Levenshtein denoted

by P?’l(t) - the (normalized) Jacobi polynomials with parameters
(a, 8) = ((n—3)/2,(n—1)/2).
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Properties of the polynomials P?’g(t) - interlacing of roots

Let 7 = 2k. Denote by tj1 < tj» <... < tj; the zeros of P,-(")(t) and
t,.o’lz < t?’; <...< t?}e the zeros of P,.O’Z(t).

Theorem (7)

Let £ and k be such that ti 11 < £ < ty1 and P (0)/P)(¢) < 1. Then

PY(t) = i=0,1,...,k, (5)

where the leading coefficient of P?’é is m?’g > 0. All zeros {t?f J’::1 of
p?7£(t) are in the interval [(,1] and the interlacing rules

0,6 : . )
ti,j E(tid,t;+1J+1),IZl,...,k—l,jZl,...,I,

0,6 . 0,6

ti; € (b1t toga1), S =1, k=1, £ € (teik41,1),

(6)

hold.
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Properties of the polynomials P%(t) - a quadrature formula

We denote by L;(t), i =0, 1, .k, the Lagrange basic polynomials
generated by the nodes ¢ < tk 1 < tk2 << tg’i and set

1
0; ;:/ Li(t)du(t), i=0,1,... k.

-1
Theorem (8)
Let t,?f < tgjg - < tk « be the zeros of the polynomial P “(t). Then

the quadrature formula

1
f :/ F(£)dp(t) = bof( E)+Ze 100 (7)

-1

is exact for all polynomials of degree at most 2k and has positive weights
0;>0,i=0,1,... k.

V.

— = = — SR
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Improving the FL bound for even strengths
Case: —1</l<t;(y) (1)

Let C C S"! be a spherical 2k-design of cardinality |C| > D(n, 2k). Let
y € S"™1 be a point which realizes the covering radius of C.
Lower bounds —1 < ¢ < t;(y) imply improvements of the tf.

Theorem (9)

Let C € S"™! be a spherical 2k-design and y € S"~1 be a point which
realizes the covering radius of C. If { < t;(y), then

0,0
p(C) =ty

In the boundary case ¢ = —1 this theorem gives the Fasekas-Levenshtein
bound p(C) > tg = t,?’l. Therefore, we have improvement of the
Fasekas-Levenshtein bound whenever it is known (or it is presumed) that
¢ < t1(y) for a point y where the covering radius is realized.
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-
Case: —1<{¢<t;(y) Some lower bounds t,?:i (2)

Dimension | Cardinality | Strength l FL-lower bound | New lower bound
n C| T =2k if £ < ti(y)
p(C) >t p(C) >t
\ 3 \ 10 | 4 |-097| 0689897 |  0.694892 \
\ 3 \ 0 | 4 -0.95 |  0.689897 |  0.698664 |
\ 3 \ 0 | 4 -0.9 | 0689897 | 0710257 |
\ 4 \ 5 | 4 |-097| 0607625 |  0.611772 \
\ 4 \ 15 | 4 |-095| 0607625 |  0.614815 \
\ 4 | 15 | 4 | -09 | 0607625 | 0623682 |
\ 3 \ 7 | 6 -0.97 | 0.822824 |  0.825859 |
\ 3 \ 7 | 6 -0.95 | 0.822824 |  0.828450 |
| 3 | 17 | 6 | 09 | 0822824 | 0.839165 |

Boyvalenkov and Stoyanova LP bounds - covering radius - Sph.Des. December 07-08, 2020 16 / 32



Improving the FL bound for even strengths
Case: t1(y) € [-1,4] (1)

This case is more subtle.

We will have to optimize in two classes of real polynomials. We consider
A(n, k, ) == {f(t) = A%(t) : deg(f) = 2k, A(t) has k real zeros in [/, tr]}.
Similarly, we use polynomials from the set

B(n, k,5) = {g(t) = (t + )B(t)(¢ — 5) : deg(g) = 2k,

B(t) has k — 1 real zeros in [—1,s]},

where the parameter s (close to tg; ) will be chosen in advance.
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-
Case: t1(y) € [-1,4] (2)

The next lemma sets an auxiliary parameter m(C) after optimization in the
set A(n,T,{).

Lemma (10)

Let f(t) € A(n, k, ) and the positive integer m be such that

fol C| < £(€) + (m+ 1)f(trL). (8)

Then t|q,m(y) < trr.

We define
m(C) := min{m : 3f € A(n, k, ¢) such that fo|C| < f(£) + (m+ 1)f(tr )}

This lemma implies that
m(C) > n.
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|
Case: t1(y) € [-1,4] (3)

Example (11)

We have m(C) = n =3 for (n,7,|C|) = (3,4,10), the first case, where the
existence/nonexistence of spherical 4-designs is undecided. Similarly, for
(n,7,|C|) = (4,4,15) we have m(C) =n+1=5.

Lemma (12)

Let f(t) € A(n, k,£) be such that fo|C| < f(£) + (m(C) + 1)f(trL). Then
tic|—m(c)(y) < s, where s is the largest root of the equation

fol C| = £(£) = (m(C) + 1)f(¢).
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.
Case: t1(y) € [-1,4] (4)

The previous two Lemmas 10 and 12 imply that t)c|_m(c)(y) < s < trL.
We utilize this in a second optimization dealing with the location of tg
between two inner products from /(y).

We have
ticl—m(c)(¥) < s < tr < tic—nt1(y) = p(C).
Therefore, there exist j € {0,1,...,m(C) — n} such that
tic|—m(C)+i(¥) < trL < ticj—m(C)+j+1(¥)- (9)

This clarification of the location of tg with respect to the points of /(y)
allows more precise estimations.
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|
Case: t1(y) € [-1,4] (5)

Lemma (13)

If g(t) € B(n, k,s), then p(C) > mgz, where méjg is the largest root of the
equation
Jg(trL) + (m(C) — j)g(t) = golCl. (10)

v

Lemma (14)

Let f(t) € A(n, k,?) be such that f|C| < f(€) + (m(C) + 1)f(trL). Then
tici-m(c)(y) < sU), where sU) is the largest root of the equation

fol C| = U + 1)f(t) + £(€) + (m(C) — ))f (tr)- (11)
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A procedure for finding new lower bounds (1)

In the case t1(y) € [-1, /], for each fixed j € {0,1,..., m(C) — n}, we can
start an iterative procedure with previous Lemmas 13 and 14 for obtaining

()

consecutive improvements of sU) and mejs.

This procedure may converge to some bounds or may be divergent which
will mean nonexistence of designs with the corresponding parameters
(dimension, strength, and cardinality).

The better bound p(C) > tg’g when t;(y) > ¢ allows starting a similar
procedure with analogs of the above Lemmas 13 and 14 as the only
difference will be the absence of /.
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A procedure for finding new lower bounds (2)
Example (15)

Considering again (n, 7, |C|) = (3,4,10)

(recall that m(C) = n = 3 in this case, i.e. j =0 only),

we obtain for £ = —0.97 that p(C) > 0.724753 if t;(y) € [-1,—0.97]
and p(C) > 0.728787 if t,(y) > —0.97.

Therefore, we have p(C) > 0.724753 in the worst case.

Similarly, for (n,7,|C]|) = (4,4,15)

(note that now m(C) =5, i.e. j =0,1),

we obtain for £ = —0.97 that p(C) > 0.625572 if t;(y) € [-1,—0.97]
and p(C) > 0.627354 if t;(y) > —0.97 for j = 0;

p(C) > 0.616854 if t;(y) € [~1, —0.97]

and p(C) > 0.619259 if t;(y) > —0.97 for j = 1.

Summarizing, we conclude that p(C) > 0.616854 in the worst case.
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General upper bounds (1)
We write (1) for y, C and f(t), deg(f) < 7(C), as

|Cl—n

(Y + X Alt() = lCl (12)

The identity (12) provides upper bounds for p(C) as follows.
Theorem (16)

(Linear programming upper bounds of the covering radius of spherical
designs) Let f(t), deg(f) < 7, be a real polynomial which is nonnegative
in [~1, te] and increasing in [try, 1]. Then for every T-design C C S"1
we have

p(C) < my,

where m,, is the largest root of the equation nf(t) = fy|C]|.

v
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General upper bounds  (2)

The following theorem shows which kind of extremal polynomials should be
investigated.

Theorem (17)

The best polynomials for use in Theorem 16 are f(t) = (t + 1)°A?(t),
where 7 = 2k — e, e € {0,1}, deg(A) = k — e and A(t) has k — e zeros in
[*1, tFL]-
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|
Upper bounds for spherical 4-designs

We now find the optimal polynomials in the above Theorem for 7 = 4.

Theorem (18)
If C € S"1 is a spherical 4-design, then
p(C) < u(ao, bo),

where the function u(a, b) and the (optimal) parameters ay and by are
defined in the proof.

Example (19)

Looking again in the first open case (n,7,|C|) = (3,4, 10), we obtain (for

by = Y1 ng g — GVt 10V68)

p(C) < u(ag, by) ~ 0.754443.

the upper bound
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Examples for 4-designs

Dimension | Cardinality | m(C) | FL-lower bound | New lower bound | New upper

‘ n C| ‘ ‘ p(C) > 5 £=-097 ‘ bound

\ 3 \ 10 | 3 | 0689897 | 0724753 | 0.7545 |
\ 3 |11 | 4 | 0689897 |  0.694717 | 0.7794 |
\ 4 | 15 | 5 | 0607625 |  0.616854 | 0.6918 |
\ 4 \ 16 | 5 | 0607625 | 0610537 | 0.7072 |
\ 5 \ 21 | 7 | 0546918 | 0.550012 | 0.6503 |
\ 5 | 22 | 8 | 0546918 | 0548132 | 0.6604 |
\ 6 | 28 | 10 | 0500000 | 0501717 | 0.6198 |
\ 6 | 29 | 10 | 0500000 | 0501288 | 0.6269 |
\ 7 \ 36 | 13 | 0462475 | 0.463455 | 05960 |
\ 7 | 37 | 13 | 0462475 |  0.462961 | 06012 |

Boyvalenkov and Stoyanova LP bounds - covering radius - Sph.Des. December 07-08, 2020 27 /32



|
Upper bounds for antipodal 3- and 5-designs (1)

A spherical design C is called antipodal if C = —C.
The set I(y) is symmetric for antipodal designs;

We have
ti = 1.'|C|,,-+1, i=1,2,...,n.

In Lemma 5 and the equation in Theorem (16) becomes
2nf(t) = | C|.

The upper bounds for antipodal designs are easier for 7 = 3 and 7 = 5.
We are able to obtain an explicit bound in these cases for all dimensions
and cardinalities.
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Upper bounds for antipodal 3- and 5-designs  (2)

Theorem (20)

If C is an antipodal 3-design, then

€]

c < >

S|

1
tFLZWSt

Theorem (21)

If C is an antipodal 5-design, then
1/2
w o (3 ), oL, [ (=1(Cl - 2n)
L= \n+2 = “=\n n n(n+2)
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Future work

@ To obtain an explicit bounds for covering radius of spherical designs
with 7 = 6, 8, etc.

@ To obtain bounds for covering radius of spherical designs with odd
strengths.
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Thank you for your attention!
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