Some LP bounds for covering radius of spherical designs

MAYA STOYANOVA
Faculty of Mathematics and Informatics,
Sofia University "St. Kliment Ohridski"

Joint work with:
P. BOYVALENKOV
Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences

National Seminar with International Participation "Mathematical Software and Combinatorial Algorithms" Bulgaria (online via Zoom), December 07-08, 2020

1/32

Outline of the talk

- Spherical designs (SphD)
- Covering radius of spherical designs
- Gegenbauer polynomials; another characterization of SphD
- LP bounds (obtained by Fazekas and Levenshtein) for covering radius of spherical designs
- Some notations for the structure of spherical designs
- A signed measures and corresponding orthogonal polynomials
- Properties of the polynomials $P_i^{0,\ell}(t)$
- Improving the Fazekas-Levenshtein (FL) bound for even strengths
- Case: $\ell \leq t_1(y)$; Case: $t_1(y) \in [-1, \ell]$
- A procedure for finding new lower bounds
- Upper bounds
- Examples for 4-designs
- Future work
- References

Spherical designs (1)

Spherical designs were introduced in 1977 by Delsarte-Goethals-Seidel [3].

Definition (1)

A spherical au-design $C\subset \mathbb{S}^{n-1}$ is a finite subset of \mathbb{S}^{n-1} such that

$$\frac{1}{\mu(\mathbb{S}^{n-1})} \int_{\mathbb{S}^{n-1}} f(x) d\mu(x) = \frac{1}{|C|} \sum_{x \in C} f(x)$$

 $(\mu(x))$ is the Lebesgue measure) holds for all polynomials $f(x) = f(x_1, x_2, \dots, x_n)$ of degree at most τ (i.e. the average of f over the set is equal to the average of f over \mathbb{S}^{n-1}).

The maximal possible $\tau = \tau(C)$ is called strength of C.

Covering radius of spherical designs

Definition (2)

Let $C \subset \mathbb{S}^{n-1}$ be a finite set (spherical design in our applications). For a fixed point $y \in \mathbb{S}^{n-1}$ the distance between y and C is defined in the usual way by

$$d(y,C) := \min\{d(y,x) : x \in C\}.$$

Then the covering radius of C is

$$r(C) := \max\{d(y,C) : y \in \mathbb{S}^{n-1}\}.$$

We consider the equivalent quantity

$$\rho(C) := 1 - \frac{r^2(C)}{2} = \min_{y \in \mathbb{S}^{n-1}} \max_{x \in C} \{\langle x, y \rangle\}.$$

Gegenbauer polynomials

Definition (3)

By $P_i^{(n)}(t)$, $i=0,1,\ldots$, we denote the Gegenbauer polynomials normalized by $P_i^{(n)}(1) = 1$, which satisfy the following three-term recurrence relation

$$(i+n-2) P_{i+1}^{(n)}(t) = (2i+n-2) t P_i^{(n)}(t) - i P_{i-1}^{(n)}(t)$$
 for $i \ge 1$,

where $P_0^{(n)}(t) := 1$ and $P_1^{(n)}(t) := t$. In the standard Jacobi polynomial notation, we have that

$$P_i^{(n)}(t) = \frac{P_i^{((n-3)/2,(n-3)/2)}(t)}{P_i^{((n-3)/2,(n-3)/2)}(1)}.$$

Spherical designs (2)

Theorem (4)

[3] A code $C \subset \mathbb{S}^{n-1}$ is a spherical τ -design if and only if for any point $y \in \mathbb{S}^{n-1}$ and any real polynomial f(t) of degree at most τ , the equality

$$\sum_{x \in C} f(\langle x, y \rangle) = f_0 |C| \tag{1}$$

holds, where f_0 is the first coefficient in the Gegenbauer expansion $f(t) = \sum_{i=0}^k f_i P_i^{(n)}(t)$.

Linear programming (LP) bounds - Fazekas-Levenshtein bounds for covering radius of spherical designs

Linear programming bounds for covering radius of spherical designs were obtained by Fazekas and Levenshtein [2, Theorem 2] in the more general setting of polynomial metric spaces.

They prove that if C is a (2k-1+e)-design, $e\in\{0,1\}$, then

$$\rho(C) \ge t_{FL} = t_k^{0,e},\tag{2}$$

where $t_k^{0,e}$ is the largest zero of the Jacobi polynomial $P_k^{(\alpha,\beta)}(t)$, $\alpha = \frac{n-3}{2}$, $\beta = \frac{n-3}{2} + e$.

For example, (2) gives $\rho(C) \ge (1 + \sqrt{n+3})/(n+2)$ for every spherical 4-design of $M \ge n(n+3)/2$ points.

Note that the Fazekas-Levenshtein bound does not depend on the cardinality of the designs under consideration.

Problems

Problem (1)

To improve the lower bounds on the covering radius $\rho(C)$ of spherical designs with fixed dimension n, even strength 2k, and cardinality |C|.

Problem (2)

To obtain the upper bounds on the covering radius $\rho(C)$ of spherical designs with fixed dimension n, even strength 2k, and cardinality |C|.

Delsarte-Goethals-Seidel bound

For fixed dimension $n\geq 2$ and strength $\tau\geq 1$ the minimum cardinality of a spherical τ -design $C\subset\mathbb{S}^{n-1}$ is bounded from below by Delsarte-Goethals-Seidel as follows:

$$|C| \ge D(n,\tau) := \binom{n+k-2+e}{n-1} + \binom{n+k-2}{n-1},\tag{3}$$

where $\tau=2k-1+e,\ e\in\{0,1\}$. This bound (3) is rarely attained. Improvements (Boyvalenkov, Yudin, Nikova-Nikov); It is still unknown, if there exist spherical 4-designs of 10 points on \mathbb{S}^2 . (Bondarenko, Radchenko and Viazovska) For fixed dimension n and strength τ there exist spherical τ -designs on \mathbb{S}^{n-1} for any cardinality $N\geq C_n\tau^{n-1}$, where the constant C_n depends on the dimension n only.

Some notations for the structure of spherical designs

Let $C \in \mathbb{S}^{n-1}$ be a spherical design. For an arbitrary point $y \in \mathbb{S}^{n-1}$, consider the (multi)set

$$I(y) = \{\langle x, y \rangle : x \in C\} = \{t_1(y), t_2(y), \dots, t_{|C|}(y)\},\$$

where we assume that I(y) is ordered by $-1 \le t_1(y) \le t_2(y) \le \ldots \le t_{|C|}(y) \le 1$, $(t_{|C|}(y) = 1 \Leftrightarrow y \in C)$. In what follows we always assume that y is a point on \mathbb{S}^{n-1} where the covering radius is realized, in particular $t_{|C|}(y) = \rho(C)$.

Lemma (5)

If y is a point on \mathbb{S}^{n-1} where the covering radius is realized, then

$$t_{|C|}(y) = t_{|C|-1}(y) = \cdots = t_{|C|-n+1}(y) = \rho(C).$$

A signed measure \Rightarrow orthogonal polynomials (1)

The measure of orthogonality of Gegenbauer polynomials $P_i^{(n)}(t)$ is

$$d\mu(t) := c_n(1-t^2)^{\frac{n-3}{2}} dt, \quad t \in [-1,1], \quad c_n := \Gamma(\frac{n}{2})/\sqrt{\pi}\Gamma(\frac{n-1}{2}).$$

We need also measures which are positive definite up to certain degree considered by Cohn and Kumar (2006).

Definition (6)

A signed Borel measure ν on $\mathbb R$ for which all polynomials are integrable is called *positive definite up to degree* m if $\int p^2(t)d\nu(t)>0$ for all real nonzero polynomials p(t) of degree at most m.

A signed measure \Rightarrow orthogonal polynomials (2)

It was proved (B.-Dragnev-Hardin-Saff-S., 2019) that the signed measure

$$d\mu_{\ell}(t) := c_{n,\ell}(t-\ell)d\mu(t), \quad t \in [-1,1], \quad c_{n,\ell} := -1/\ell,$$

is positive definite up to degree k-1 provided that $\ell < t_{k,1}$, where $t_{k,1}$ is the smallest zero of the Gegenbauer polynomial $P_{\nu}^{(n)}(t)$.

This implies the existence of a finite sequence of polynomials $\{P_i^{u,\ell}(t)\}_{i=0}^k$ which are orthogonal with respect to $d\mu_\ell(t)$ and normalized by $P_i^{0,\ell}(1)=1$. The uniqueness of these polynomials allows us to write explicitly

$$P_{i}^{0,\ell}(t) = \frac{T_{i}(t,\ell)}{T_{i}(1,\ell)} = \frac{(1-\ell)\left(P_{i+1}^{(n)}(t) - P_{i}^{(n)}(t)P_{i+1}^{(n)}(\ell)/P_{i}^{(n)}(\ell)\right)}{(t-\ell)\left(1 - P_{i+1}^{(n)}(\ell)/P_{i}^{(n)}(\ell)\right)} \tag{4}$$

The boundary case $\ell=-1$ leads to polynomials which Levenshtein denoted by $P_i^{0,1}(t)$ - the (normalized) Jacobi polynomials with parameters $(\alpha, \beta) = ((n-3)/2, (n-1)/2).$

Properties of the polynomials $P_i^{0,\ell}(t)$ - interlacing of roots

Let $\tau = 2k$. Denote by $t_{i,1} < t_{i,2} < \ldots < t_{i,i}$ the zeros of $P_i^{(n)}(t)$ and $t_{i,1}^{0,\ell} < t_{i,2}^{0,\ell} < \ldots < t_{i,i}^{0,\ell}$ the zeros of $P_i^{0,\ell}(t)$.

Theorem (7)

Let ℓ and k be such that $t_{k+1,1} < \ell < t_{k,1}$ and $P_{k+1}^{(n)}(\ell)/P_k^{(n)}(\ell) < 1$. Then

$$P_i^{0,\ell}(t) = \frac{T_i(t,\ell)}{T_i(1,\ell)}, \quad i = 0, 1, \dots, k,$$
 (5)

where the leading coefficient of $P_i^{0,\ell}$ is $m_i^{0,\ell} > 0$. All zeros $\{t_{i,j}^{0,\ell}\}_{j=1}^i$ of $P_i^{0,\ell}(t)$ are in the interval $[\ell,1]$ and the interlacing rules

$$t_{i,j}^{0,\ell} \in (t_{i,j}, t_{i+1,j+1}), \ i = 1, \dots, k-1, j = 1, \dots, i; t_{k,j}^{0,\ell} \in (t_{k+1,j+1}, t_{k,j+1}), \ j = 1, \dots, k-1, \ t_{k,k}^{0,\ell} \in (t_{k+1,k+1}, 1),$$
(6)

<u>hold.</u>

Properties of the polynomials $P_i^{0,\ell}(t)$ - a quadrature formula

We denote by $L_i(t)$, $i=0,1,\ldots,k$, the Lagrange basic polynomials generated by the nodes $\ell < t_{k,1}^{0,\ell} < t_{k,2}^{0,\ell} < \cdots < t_{k,k}^{0,\ell}$ and set

$$heta_i:=\int_{-1}^1 L_i(t)d\mu(t), \quad i=0,1,\ldots,k.$$

Theorem (8)

Let $t_{k,1}^{0,\ell} < t_{k,2}^{0,\ell} < \dots < t_{k,k}^{0,\ell}$ be the zeros of the polynomial $P_k^{0,\ell}(t)$. Then the quadrature formula

$$f_0 = \int_{-1}^1 f(t)d\mu(t) = \theta_0 f(\ell) + \sum_{i=1}^k \theta_i f(t_{k,i}^{0,\ell})$$
 (7)

is exact for all polynomials of degree at most 2k and has positive weights $\theta_i > 0$, $i = 0, 1, \dots, k$.

Improving the FL bound for even strengths Case: $-1 < \ell \le t_1(y)$ (1)

Let $C \subset \mathbb{S}^{n-1}$ be a spherical 2k-design of cardinality |C| > D(n, 2k). Let $y \in \mathbb{S}^{n-1}$ be a point which realizes the covering radius of C. Lower bounds $-1 < \ell \le t_1(y)$ imply improvements of the t_{Fl} .

Theorem (9)

Let $C \subset \mathbb{S}^{n-1}$ be a spherical 2k-design and $y \in \mathbb{S}^{n-1}$ be a point which realizes the covering radius of C. If $\ell \leq t_1(y)$, then

$$\rho(C) \geq t_{k,k}^{0,\ell}.$$

In the boundary case $\ell=-1$ this theorem gives the Fasekas-Levenshtein bound $\rho(\mathcal{C}) \geq t_{FL} = t_k^{0,1}$. Therefore, we have improvement of the Fasekas-Levenshtein bound whenever it is known (or it is presumed) that $\ell \leq t_1(y)$ for a point y where the covering radius is realized.

Case: $-1 < \ell \le t_1(y)$ Some lower bounds $t_{k,k}^{0,\ell}$ (2)

Dimension	Cardinality	Strength	ℓ	FL-lower bound	New lower bound
n	C	$\tau = 2k$		0.4	if $\ell \leq t_1(y)$
				$\rho(C) \geq t_k^{0,1}$	$\rho(C) \geq t_{k,k}^{0,\ell}$
3	10	4	-0.97	0.689897	0.694892
3	10	4	-0.95	0.689897	0.698664
3	10	4	-0.9	0.689897	0.710257
4	15	4	-0.97	0.607625	0.611772
4	15	4	-0.95	0.607625	0.614815
4	15	4	-0.9	0.607625	0.623682
3	17	6	-0.97	0.822824	0.825859
3	17	6	-0.95	0.822824	0.828450
3	17	6	-0.9	0.822824	0.839165

□▶→□▶→□▶→□▶ □ ∽900

Improving the FL bound for even strengths

Case:
$$t_1(y) \in [-1, \ell]$$
 (1)

This case is more subtle.

We will have to optimize in two classes of real polynomials. We consider

$$A(n,k,\ell):=\{f(t)=A^2(t):\deg(f)=2k,A(t) \text{ has } k \text{ real zeros in } [\ell,t_{FL}]\}.$$

Similarly, we use polynomials from the set

$$B(n,k,s) := \{g(t) = (t+1)B^2(t)(t-s) : \deg(g) = 2k,$$

 $B(t)$ has $k-1$ real zeros in $[-1,s]\}.$

where the parameter s (close to t_{FL}) will be chosen in advance.

Case:
$$t_1(y) \in [-1, \ell]$$
 (2)

The next lemma sets an auxiliary parameter m(C) after optimization in the set $A(n, \tau, \ell)$.

Lemma (10)

Let $f(t) \in A(n, k, \ell)$ and the positive integer m be such that

$$|f_0|C| < f(\ell) + (m+1)f(t_{FL}).$$
 (8)

Then $t_{|C|-m}(y) < t_{FL}$.

We define

$$m(C) := \min\{m : \exists f \in A(n,k,\ell) \text{ such that } f_0|C| < f(\ell) + (m+1)f(t_{FL})\}.$$

This lemma implies that

$$m(C) \geq n$$
.

Case:
$$t_1(y) \in [-1, \ell]$$
 (3)

Example (11)

We have m(C)=n=3 for $(n,\tau,|C|)=(3,4,10)$, the first case, where the existence/nonexistence of spherical 4-designs is undecided. Similarly, for $(n,\tau,|C|)=(4,4,15)$ we have m(C)=n+1=5.

Lemma (12)

Let $f(t) \in A(n, k, \ell)$ be such that $f_0|C| < f(\ell) + (m(C) + 1)f(t_{FL})$. Then $t_{|C|-m(C)}(y) \le s$, where s is the largest root of the equation

$$f_0|C| - f(\ell) = (m(C) + 1)f(t).$$

Case: $t_1(y) \in [-1, \ell]$ (4)

The previous two Lemmas 10 and 12 imply that $t_{|C|-m(C)}(y) \leq s < t_{FL}$. We utilize this in a second optimization dealing with the location of t_{FL} between two inner products from I(y).

We have

$$t_{|C|-m(C)}(y) \le s < t_{FL} \le t_{|C|-n+1}(y) = \rho(C).$$

Therefore, there exist $j \in \{0, 1, \dots, m(C) - n\}$ such that

$$t_{|C|-m(C)+j}(y) < t_{FL} \le t_{|C|-m(C)+j+1}(y).$$
 (9)

This clarification of the location of t_{FL} with respect to the points of I(y) allows more precise estimations.

Case:
$$t_1(y) \in [-1, \ell]$$
 (5)

Lemma (13)

If $g(t) \in B(n, k, s)$, then $\rho(C) \ge m_{\ell, s}^{(j)}$, where $m_{\ell, s}^{(j)}$ is the largest root of the equation

$$jg(t_{FL}) + (m(C) - j)g(t) = g_0|C|.$$
 (10)

Lemma (14)

Let $f(t) \in A(n, k, \ell)$ be such that $f_0|C| < f(\ell) + (m(C) + 1)f(t_{FL})$. Then $t_{|C|-m(C)}(y) \le s^{(j)}$, where $s^{(j)}$ is the largest root of the equation

$$f_0|C| = (j+1)f(t) + f(\ell) + (m(C) - j)f(t_{FL}).$$
 (11)

A procedure for finding new lower bounds (1)

In the case $t_1(y) \in [-1, \ell]$, for each fixed $j \in \{0, 1, ..., m(C) - n\}$, we can start an iterative procedure with previous Lemmas 13 and 14 for obtaining consecutive improvements of $s^{(j)}$ and $m_{\ell,s}^{(j)}$.

This procedure may converge to some bounds or may be divergent which will mean nonexistence of designs with the corresponding parameters (dimension, strength, and cardinality).

The better bound $\rho(C) \geq t_k^{0,\ell}$ when $t_1(y) \geq \ell$ allows starting a similar procedure with analogs of the above Lemmas 13 and 14 as the only difference will be the absence of ℓ .

A procedure for finding new lower bounds (2)

Example (15)

```
Considering again (n, \tau, |C|) = (3, 4, 10) (recall that m(C) = n = 3 in this case, i.e. j = 0 only), we obtain for \ell = -0.97 that \rho(C) \geq 0.724753 if t_1(y) \in [-1, -0.97] and \rho(C) \geq 0.728787 if t_1(y) \geq -0.97. Therefore, we have \rho(C) > 0.724753 in the worst case.
```

Therefore, we have $\rho(C) \geq 0.724753$ in the worst case

```
Similarly, for (n, \tau, |C|) = (4, 4, 15) (note that now m(C) = 5, i.e. j = 0, 1), we obtain for \ell = -0.97 that \rho(C) \geq 0.625572 if t_1(y) \in [-1, -0.97] and \rho(C) \geq 0.627354 if t_1(y) \geq -0.97 for j = 0; \rho(C) \geq 0.616854 if t_1(y) \in [-1, -0.97] and \rho(C) \geq 0.619259 if t_1(y) \geq -0.97 for j = 1. Summarizing, we conclude that \rho(C) \geq 0.616854 in the worst case.
```

General upper bounds (1)

We write (1) for y, C and f(t), $\deg(f) \leq \tau(C)$, as

$$nf(\rho(C)) + \sum_{i=1}^{|C|-n} f(t_i(y)) = f_0|C|.$$
 (12)

The identity (12) provides upper bounds for $\rho(C)$ as follows.

Theorem (16)

(Linear programming upper bounds of the covering radius of spherical designs) Let f(t), $\deg(f) \leq \tau$, be a real polynomial which is nonnegative in $[-1, t_{FL}]$ and increasing in $[t_{FL}, 1]$. Then for every τ -design $C \subset \mathbb{S}^{n-1}$ we have

$$\rho(C) \leq m_u,$$

where m_u is the largest root of the equation $nf(t) = f_0|C|$.

General upper bounds (2)

The following theorem shows which kind of extremal polynomials should be investigated.

Theorem (17)

The best polynomials for use in Theorem 16 are $f(t) = (t+1)^e A^2(t)$, where $\tau = 2k - e$, $e \in \{0,1\}$, $\deg(A) = k - e$ and A(t) has k - e zeros in $[-1,t_{FL}]$.

Upper bounds for spherical 4-designs

We now find the optimal polynomials in the above Theorem for au=4.

Theorem (18)

If $C \subset \mathbb{S}^{n-1}$ is a spherical 4-design, then

$$\rho(C) \leq u(a_0,b_0),$$

where the function u(a, b) and the (optimal) parameters a_0 and b_0 are defined in the proof.

Example (19)

Looking again in the first open case $(n, \tau, |C|) = (3, 4, 10)$, we obtain (for $b_0 = \frac{\sqrt{69} - 7}{30}$ and $a_0 = \frac{(3 + \sqrt{69})\sqrt{45 + 10\sqrt{69}}}{150}$) the upper bound $\rho(C) \le u(a_0, b_0) \approx 0.754443$.

Examples for 4-designs

Dimension n	Cardinality C	m(C)	FL-lower bound $ ho(\mathcal{C}) \geq t_2^{0,1}$	New lower bound $\ell = -0.97$	New upper bound
3	10	3	0.689897	0.724753	0.7545
3	11	4	0.689897	0.694717	0.7794
4	15	5	0.607625	0.616854	0.6918
4	16	5	0.607625	0.610537	0.7072
5	21	7	0.546918	0.550012	0.6503
5	22	8	0.546918	0.548132	0.6604
6	28	10	0.500000	0.501717	0.6198
6	29	10	0.500000	0.501288	0.6269
7	36	13	0.462475	0.463455	0.5960
7	37	13	0.462475	0.462961	0.6012

Upper bounds for antipodal 3- and 5-designs (1)

A spherical design C is called antipodal if C = -C. The set I(y) is symmetric for antipodal designs; We have

$$t_i = t_{|C|-i+1}, i = 1, 2, \ldots, n.$$

In Lemma 5 and the equation in Theorem (16) becomes

$$2nf(t)=f_0|C|.$$

The upper bounds for antipodal designs are easier for $\tau=3$ and $\tau=5$. We are able to obtain an explicit bound in these cases for all dimensions and cardinalities.

Upper bounds for antipodal 3- and 5-designs (2)

Theorem (20)

If C is an antipodal 3-design, then

$$t_{FL} = \frac{1}{\sqrt{n}} \le t_c \le \frac{1}{n} \sqrt{\frac{|C|}{2}}.$$

Theorem (21)

If C is an antipodal 5-design, then

$$t_{FL} = \left(\frac{3}{n+2}\right)^{1/2} \le t_c \le \left(\frac{1}{n} + \frac{1}{n}\sqrt{\frac{(n-1)(|C|-2n)}{n(n+2)}}\right)^{1/2}.$$

Future work

- To obtain an explicit bounds for covering radius of spherical designs with $\tau=6,8,$ etc.
- To obtain bounds for covering radius of spherical designs with odd strengths.

References

- G. Fazekas, V. I. Levenshtein, On upper bounds for code distance and covering radius of designs in polynomial metric spaces, *J. Comb. Theory A*, 70, 267-288 (1995).
- P. Delsarte, J.-M. Goethals, J. J. Seidel, Spherical codes and designs, *Geom. Dedicata* 6, 363-388 (1977).

Thank you for your attention!

Acknowledgments:

This presentation is supported, in part, by a Bulgarian NSF contract DN02/2-2016.