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Abstract. Binary codes created by doubling construction, including quasi-perfect
ones with distance d = 4, are investigated. All [17 ·2r−6, 17 ·2r−6−r, 4] quasi-perfect
codes are classified. Weight spectrum of the codes dual to quasi-perfect ones with
d = 4 is obtained. The automorphism group Aut(C) of codes obtained by doubling
construction is studied. A subgroup of Aut(C) is described and it is proved that
the subgroup coincides with Aut(C) if the starting matrix of doubling construction
has an odd number of columns. (It happens for all quasi-perfect codes with d = 4
except for Hamming one.) The properness and t-properness for error detection of
codes obtained by doubling construction are considered.

1 Introduction

Let an [n, n− r, d] code be a linear binary code of length n, redundancy r, and
minimum distance d. A code with d = 4 is quasi-perfect if its covering radius is
equal to 2. Addition of any column to a parity check matrix of a quasi-perfect
code decreases the code distance. A parity check matrix of a quasi-perfect
[n, n − r, 4] code can be treated as a complete n-cap in the projective space
PG(r − 1, 2) of dimension r − 1. A cap in PG(N, 2) is a set of points no three
of which are collinear. A cap is complete if no point can be added to it.

An arbitrary [n, n− r, 4] code is either a quasi-perfect code or shortening of
some quasi-perfect code with d = 4 and redundancy r.

So, studying quasi-perfect codes is important. The [2r−1, 2r−1 − r, 4] ex-
tended Hamming code is deeply investigated. The [5 · 2r−4, 5 · 2r−4 − r, 4]
Panchenko code [1, 2, 4, 5, 10] draws attention as in it the number of weight
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4 codewords is small and, in a number of cases, the smallest possible among
all codes with d = 4. This essentially increases the error detection capabil-
ity of Panchenko code. Nevertheless, Panchenko code is studied insufficiently.
The same can be said about other quasi perfect [n, n − r, 4] codes (not about
Hamming one).

All quasi-perfect [n, n − r, 4] codes of length n ≥ 2r−2 + 2 can be described
by doubling construction (1), see [4].

So, it is appropriate to study quasi-perfect [n, n− r, 4] codes from the point
of view of doubling construction, see [1,2,4,5]. In this work we continue investi-
gations of codes created by doubling construction, including quasi-perfect ones.

In Section 2, we classified all quasi-perfect [17, 17− 6, 4] codes and thereby
all quasi-perfect [nr, nr− r, 4] codes with nr = 17 · 2r−6, r ≥ 6. Also, we proved
a general theorem on weight spectrum of the code dual to quasi perfect one
and obtained all these spectra for nr = 2r−2 + 2r−2−g, g = 2, 3, 4, r ≥ g + 2.
In Section 3, we investigate the automorphism group Aut(C) of codes obtained
by doubling construction. We describe a subgroup G of Aut(C). We prove that
if the starting matrix of doubling construction has an odd number of columns
then G = Aut(C). It happens for all quasi perfect codes with d = 4 except for
Hamming one. In Section 4, we consider the properness and t-properness for
error detection of codes obtained by doubling construction.

2 Doubling construction and classification of binary
quasi-perfect codes with distance 4

For a code with redundancy r we introduce the following notations: nr is length
of the code, Hr is its parity check matrix of size r×nr, and dr is code distance.

Definition 1. Doubling construction creates a parity check matrix Hr of an
[nr, nr − r, dr] code from a parity check matrix Hr−1 of an [nr−1, nr−1 − (r −
1), dr−1] code as follows

Hr =

[
0 . . . 0 | 1 . . . 1
−−−− | − −−
Hr−1 | Hr−1

]
. (1)

By (1), nr = 2nr−1. Also, if dr−1 = 3 then dr = 3; if dr−1 ≥ 4 then dr = 4.
Doubling construction is called also Plotkin construction, see [4] and the

refences therein.
Let us define matrices M , S, Ω, and Φ1, . . . , Φ5 as

M =
[01
11

]
, S =




10001
01001
00101
00011


 , Ω =




00000 1111
10001 0000
01001 1001
00101 0101
00011 0011


 , Φ1 =




0000000 00000000 11
1111111 11111111 10
0000000 11111111 11
0001111 00001111 11
0110011 00110011 11
1010101 01010101 11


 ,
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Φ2 =




00000 00000000 1111
11111 11111111 1000
00000 11111111 1111
01111 00001111 1111
10011 00110011 1110
10101 01010101 1101


 , Φ3 =




0000 00000000 11111
1111 11111111 10000
0000 11111111 11111
0111 00001111 11110
1011 00110011 11101
1101 01010101 11011


 ,

Φ4 =




0000 0000000 111111
1111 1111111 100000
0000 1111111 111110
0111 0001111 111101
1011 0110011 111011
1101 1010101 110111


 , Φ5 =




0000 000000 1111111
1111 111111 1000000
0000 111111 1111100
0111 000111 1111010
1011 011001 1110110
1101 101010 0010001


 .

Let B
(r)
j,g = [bj . . . bj ] be the (r− g−2)× (2g +1) matrix of identical columns bj ,

where r ≥ 5 is code redundancy, bj is the binary representation of the integer j
(with the most significant bit at the top position).

From the results of the paper [4], we have a general description of a parity
check matrix for a whole class of quasi-perfect codes with distance 4.

Theorem 1. [4] (i) Let nr ≥ 2r−2 + 2, r ≥ 5, and let an [nr, nr − r, 4] code be
quasi-perfect. Then length nr can take any value from the sequence

nr = 2r−2 + 2r−2−g = (2g + 1)2r−2−g for g = 0, 2, 3, 4, 5, . . . , r − 3. (2)

Moreover, nr may not take any other value that is not noted in (2). Also, for
each g = 0, 2, 3, 4, 5, . . . , r − 3, there exists an [nr, nr − r, 4] quasi-perfect code
with nr = 2r−2 + 2r−2−g.

(ii) Let nr = 2r−2 + 2r−2−g = (2g + 1)2r−2−g, g ∈ {0, 2, 3, 4, 5, . . . , r − 3},
r ≥ 5, and let an [nr, nr−r, 4] code be quasi-perfect. Then a parity check matrix
Hr of this code can be presented in the form

Hr =


 B

(r)
0,g | B

(r)
1,g | | B

(r)
D,g

−−− | − −− | . . . | − − −
Hg+2 | Hg+2 | | Hg+2


 , (3)

where D = 2r−g−2 − 1, H2 = M , H4 = S, H5 = Ω, Hg+2 is a parity check
matrix of a quasi-perfect [2g + 1, 2g + 1− (g + 2), 4] code if g ≥ 4.

By Theorem 1, all quasi-perfect [nr, nr − r, 4] codes with g = 0, 2, 3, and,
respectively, nr = 2r−1, nr = 5 · 2r−4, and nr = 9 · 2r−4, are classified.

The [2r−1, 2r−1 − r, 4] code (with starting matrix M) is the extended Ham-
ming code. The [5 · 2r−4, 5 · 2r−4 − r, 4] code (with starting matrix S) is the
Panchenko code Πr proposed in [10], see also [2,5]. The parity check matrix of
Πr is the matrix Hr of (3) with g = 2, D = 2r−4 − 1, Hg+2 = S. We denote
with Wr the [9 · 2r−5, 9 · 2r−5 − r, 4] code (with starting matrix Ω).

Corollary 1. For g ≥ 4 and nr = 2r−2 + 2r−2−g, in order to classify all
quasi-perfect [nr, nr − r, 4] codes, it is sufficient to classify all quasi-perfect
[2g + 1, 2g + 1− (g + 2), 4] codes.
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Using the results of this work and of [4,8], we proved the following theorem.

Theorem 2. Let Φj be a parity check matrix of a [17, 11, 4] code. The five codes
with the parity check matrices Φ1, . . . ,Φ5 are all distinct, up to equivalence,
[24 + 1, 24 + 1− (4 + 2), 4] quasi-perfect codes.

For a code C, let Aw (resp. A⊥w) be the number of codewords of weight w
in C (resp. in the dual code C⊥). Usually, the code is clear by context. To
emphasize the code we can write Aw(C) or A⊥w(C).

Let Vr,j be the [17 · 2r−6, 17 · 2r−6 − r, 4] code with the parity check matrix
Hr of (3) where g = 4, Hg+2 = H6 = Φj , D = 2r−6 − 1.

We proved the following theorem and proposition.

Theorem 3. Let {A⊥w(Tg+2), w = 0, 1, . . . , 2g + 1} be the weight spectrum of
the code dual to the starting [2g +1, 2g +1− (g +2), 4] code Tg+2 with the parity
check matrix Hg+2 of the construction (3). Then the weight spectrum of the
code dual to the resultant [(2g +1)2r−2−g, (2g +1)2r−2−g− r, 4] code Cr with the
parity check matrix Hr of (3) is as follows.

A⊥w2r−2−g(Cr) = A⊥w(Tg+2), w = 0, 1, . . . , 2g + 1; A⊥(2g+1)2r−3−g(Cr) = 2r − 2g+2;

A⊥u (Cr) = 0, u /∈ {0 · 2r−2−g, 1 · 2r−2−g, . . . , (2g + 1)2r−2−g} ∪ {(2g + 1)2r−3−g}.
Proposition 1. For the codes Πr, Wr, and Vr,1, . . . ,Vr,5, weight spectrum of
the nonzero weigths of the dual codes is as follows.

Πr : A⊥2·2r−4 = 10, A⊥5·2r−5 = 2r − 24, A⊥4·2r−4 = 5;

Wr : A⊥2·2r−5 = 1, A⊥4·2r−5 = 21, A⊥9·2r−6 = 2r − 25, A⊥6·2r−5 = 7, A⊥8·2r−5 = 2;

Vr,1 : A⊥2·2r−6 = 1, A⊥8·2r−6 = 45, A⊥17·2r−7 = 2r − 26, A⊥10·2r−6 = 15, A⊥16·2r−6 = 2;

Vr,2 : A⊥4·2r−6 = 1, A⊥6·2r−6 = 3, A⊥8·2r−6 = 42, A⊥17·2r−7 = 2r − 26,

A⊥10·2r−6 = 12, A⊥12·2r−6 = 3, A⊥14·2r−6 = 1, A⊥16·2r−6 = 1;

Vr,3 : A⊥5·2r−6 = 2, A⊥7·2r−6 = 8, A⊥8·2r−6 = 30, A⊥17·2r−7 = 2r − 26,

A⊥9·2r−6 = 12, A⊥11·2r−6 = 8, A⊥13·2r−6 = 2, A⊥16·2r−6 = 1;

Vr,4 : A⊥6·2r−6 = 6, A⊥8·2r−6 = 40, A⊥17·2r−7 = 2r − 26, A⊥10·2r−6 = 10,

A⊥12·2r−6 = 6, A⊥16·2r−6 = 1;

Vr,5 : A⊥7·2r−6 = 16, A⊥8·2r−6 = 30, A⊥17·2r−7 = 2r − 26, A⊥11·2r−6 = 16, A⊥16·2r−6 = 1.

3 The automorphism group of codes created by
doubling construction

In this section we investigate the properties of the automorphism group of the
codes obtained applying doubling construction.
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Definition 2. The permutations of coordinate places which send a code C into
itself form the code automorphism group of C, denoted by Aut(C).

A code and its dual have the same automorphism group.

Theorem 4. [9, Chapter 8, Problem 29] Aut(C)= Aut(C⊥).

Let π ∈ Aut(C) and let g1, . . . , gn−r be the rows of a generator matrix G
of C. Then π(g1), . . . , π(gn−r) is a basis of C too. Therefore a change of basis
matrix belonging to the general linear group GL(n− r, 2) corresponds to π.

On the other hand we can consider the columns cj of G as points of the
projective space PG(n − r − 1, 2). Let K ∈ GL(n − r, 2) = PGL(n − r, 2)
belong to the stabilizer group of the set Σ = {cj}j=1,...,n, i.e. Kcj ∈ Σ, ∀j ∈
{1, . . . , n}. Then K induces a permutation of the coordinate place and therefore
preserves the weight of each codeword. Then, by [9, Chapter 8, Problem 33], if
no coordinate of C is always zero, K corresponds to a permutation π ∈ Aut(C).

From the discussion above and Theorem 4, we can represent Aut(C) as the
stabilizer group of the columns of its parity check matrix Hr treated as points
of PG(r − 1, 2). We will denote Aut(C) also as Aut(Hr).

We consider the matrices Hr obtained from a starting matrix Hs applying
double construction r − s times.

Lemma 1. The columns of Hr are [bi|hj ]T , where hj is any column of Hs and
bi is the binary representation of any integer in the interval [0, . . . , 2r−s − 1].

Proof. By induction on r − s.

Now we describe a subgroup of Aut(C). Let Z`,m be the `×m matrix with
all entries equal to 0 and let T`,m be any binary ` ×m matrix. We denote by

Γr the set of matrices

{[
Kr−s | Tr−s,s
−−−− |− −−
Zs,r−s | As

]
: Kr−s ∈ GL(r− s, 2), Tr−s,s is any

binary (r − s)× s matrix, As ∈ Aut(Hs)}.
Remark 1. |Γr| = (2r−s − 1)(2r−s − 2) . . . (2r−s − 2r−s−1)|Aut(Hs)|2(r−s)s.

Theorem 5. Γr is a subgroup of Aut(Hr).

Proof. Let [br−s|hs]T ∈ Hr and let Mr =

[
Kr−s | Tr−s,s
−−−− |− −−
Zs,r−s | As

]
∈ Γr. Then

[
Kr−s | Tr−s,s
−−−− |− −−
Zs,r−s | As

] [
br−s−−−−
hs

]
=

[
Kr−sbr−s + Tr−s,shs−−−−−−−−−

Ashs

]
∈ Hr.

Moreover, Det(Mr) = Det(Kr−s) · Det(As) 6= 0, so Γr ⊂ Aut(Hr). Finally,[
K ′

r−s | T ′r−s,s
−−−− |− −−
Zs,r−s | A′s

] [
K ′′

r−s | T ′′r−s,s
−−−− |− −−
Zs,r−s | A′′s

]
=
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[
K ′

r−sK
′′
r−s | K ′

r−sT
′′
r−s,s + K ′′

r−sT
′
r−s,s

−−−− |− −−−−−−−−−−−
Zs,r−s | A′sA′′s

]
∈ Γr.

In general, Γr 6= Aut(Hr). For example, if we apply repeatedly doubling
construction starting from matrix M (so, s = 2), the columns of Hr form a cap
of PG(r − 1, 2) that is the complement of a hyperplane; its stabilizer group is
AGL(r − 1, 2) and |AGL(r − 1, 2)| = (2r − 2) . . . (2r − 2r−1).

On the other hand, there exist codes of redundancy r obtained by doubling
construction whose automorphism group is Γr.

Theorem 6. Let Cs be an [n, n − s] code having a parity check matrix Hs

without zero columns and without rows of weight n/2. Then for the codes Cr

obtained applying doubling construction r-s times starting from Hs, it holds that
Aut(Cr) = Γr.

Proof. By induction on r−s. Let r = s+1. Let Hs+1 =

[
0 . . . 0 | 1 . . . 1
−−−− | − −−
h1 . . . hns |h1 . . . hns

]

be a parity check matrix of Cs+1 and Ms+1 =




x1,1 | t1
−−−− |− −−

x2,1 | a1
... | ...

xs+1,1 | as



∈ Aut(Cs+1).

Let rj be the j-th row of Ms+1Hs+1, j = 2, . . . , s + 1. Then rj =
[aj−1·hT

1 . . . aj−1·hT
ns
|xj,1 +aj−1·hT

1 . . . xj,1 +aj−1·hT
ns

]. As Ms+1 ∈ Aut(Cs+1),
it induces a permutation on the coordinates of the codewords, so weight(rj) =
2 weight(pj−1), where pj is the j-th row of Hs. On the other hand, consider
the elements of rj of position i and i + ns, i = 1, . . . , ns; they are aj−1·hT

i and
xj,1 + aj−1·hT

i . If xj,1 = 1, exactly one of these elements is equal to 1, so
weight(rj) = ns. This is not possible by hypothesis. Moreover x2,1 = · · · =
xs+1,1 = 0 implies x1,1 = 1, otherwise Det(Ms+1) = 0. Finally, the sub-matrix

As =




a1
...
as


 permutes the columns of Hs, so it belongs to Aut(Cs). In fact, let

[b|hi]T be a column of Hs+1. Then Ms+1

[
b
−
hj

]
=

[
y
−

Ashj

]
is a column of Hs+1

if and only if Ashj is a column of Hs. Moreover, if Ashi = Ashj , i 6= j, then
two of the columns [0|hi]T , [0|hj ]T , [1|hj ]T have the same image under Ms+1.
The proof of the general case, i.e, r − s > 1, is similar.

Corollary 2. Let Cs be an [n, n−s] code having a parity check matrix Hs without
zero columns. If n is odd then for the codes Cr obtained applying doubling
construction r-s times starting from Hs, it holds that Aut(Cr) = Γr
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Remark 2. |Aut(S)| = 120, |Aut(Ω)| = 336, |Aut(Φ1)| = 40320, |Aut(Φ2)| =
576, |Aut(Φ3)| = 384, |Aut(Φ4)| = 720, |Aut(Φ5)| = 11520.

Corollary 3. |Aut(Πr)| = 120(2r−4 − 1)(2r−4 − 2) . . . (2r−4 − 2r−3)24(r−4).
|Aut(Wr)| = 336(2r−5 − 1)(2r−5 − 2) . . . (2r−5 − 2r−4)25(r−5).

4 Properness and t-properness for error detection of
codes obtained by doubling construction

Problems connected with error detection are considered, e.g., in [3,6,7], see also
the references therein. Here we consider the binary symmetric channel.

Let p be the error probability by symbol in the channel.
Let Pue(C, p) be the undetected error probability for the code C under

condition that the code is used only for error detection;
Let P

(t)
ue (C, p) be the undetected error probability for the code C under

condition that d ≥ 2t + 1 and the code is used for correction of ≤ t errors.

Definition 3. (i) A binary code C is proper (resp. t-proper) if Pue(C, p) (resp.
P

(t)
ue (C, p)) is an increasing function of p in the interval [0, 1

2 ].
(ii) Let a ≥ 0 and b ≤ 1

2 be real values. A binary code C is proper (resp.
t-proper) in the interval [a, b] if Pue(C, p) (resp. P

(t)
ue (C, p)) is an increasing

function of p in [a, b].

Using the results of this work, in particular Theorem 3 and Proposition 1,
and papers [2, 3, 6, 7], we proved a number of results on the properness and
t-properness of codes obtained by doubling construction.

Lemma 2. In doubling construction (1), let the starting [nr−1, nr−1 − (r −
1), dr−1] code given by the parity check matrix Hr−1 have dual distance in the
region

⌈nr−1

3

⌉ ≤ d⊥r−1 ≤ nr−1

2 . Then the resultant [nr, nr − r, dr] code given by
the parity check matrix Hr has dual distance in the region

⌈
nr
3

⌉ ≤ d⊥r ≤ nr
2 .

Theorem 7. The codes Πr, Vr,4, and Vr,5, are proper in intervals [a, 1
2 ], where

a = 1
3 + 1

3·2r−4 for Πr, a = 5
11 + 1

11·2r−6 for Vr,4, a = 3
10 + 1

10·2r−6 for Vr,5.

Proposition 2. The codes Π⊥r , W⊥
r , V⊥r,j dual to the codes Πr, Wr, Vr,j, are

proper in intervals [0, b], where b = 2
5 for Π⊥r , b = 2

9 for W⊥
r , b = 2

17 for V⊥r,1,
b = 4

17 for V⊥r,2, b = 5
17 for V⊥r,3, b = 6

17 for V⊥r,4, b = 7
17 for V⊥r,5.

Proposition 3. The codes with the parity check matrices S and Ω are proper
and 1-proper. The codes Πr are proper for r = 5, 6, 7, 8, 9 and 1-proper for
r = 5, 6, 7. The codes Wr are proper and 1-proper for r = 6.
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Open Problem. Assume that in doubling construction (1), the starting code
given by the parity check matrix Hr−1 is proper (resp. 1-proper) for error de-
tection. Is the resulting code with the the parity check matrix Hr proper (resp.
1-proper) too? (For example, see Construction * in [7, Section 2]; see also
Proposition 3.)
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