Further results on binary codes obtained by doubling construction

Alexander A. Davydov ${ }^{1}$ adav@iitp.ru
Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Bol'shoi Karetnyi pereulok 19, GSP-4, Moscow, 127994, Russian Federation
Stefano Marcugini ${ }^{2}$, Fernanda Pambianco ${ }^{2}$
\{stefano.marcugini,fernanda.pambianco\}@unipg.it
Dipartimento di Matematica e Informatica, Università degli Studi di Perugia
Via Vanvitelli 1, Perugia, 06123, Italy

Abstract

Binary codes created by doubling construction, including quasi-perfect ones with distance $d=4$, are investigated. All $\left[17 \cdot 2^{r-6}, 17 \cdot 2^{r-6}-r, 4\right]$ quasi-perfect codes are classified. Weight spectrum of the codes dual to quasi-perfect ones with $d=4$ is obtained. The automorphism group $\operatorname{Aut}(\mathcal{C})$ of codes obtained by doubling construction is studied. A subgroup of $\operatorname{Aut}(\mathcal{C})$ is described and it is proved that the subgroup coincides with $\operatorname{Aut}(\mathcal{C})$ if the starting matrix of doubling construction has an odd number of columns. (It happens for all quasi-perfect codes with $d=4$ except for Hamming one.) The properness and t-properness for error detection of codes obtained by doubling construction are considered.

1 Introduction

Let an $[n, n-r, d]$ code be a linear binary code of length n, redundancy r, and minimum distance d. A code with $d=4$ is quasi-perfect if its covering radius is equal to 2 . Addition of any column to a parity check matrix of a quasi-perfect code decreases the code distance. A parity check matrix of a quasi-perfect [$n, n-r, 4]$ code can be treated as a complete n-cap in the projective space $\mathrm{PG}(r-1,2)$ of dimension $r-1$. A cap in $\mathrm{PG}(N, 2)$ is a set of points no three of which are collinear. A cap is complete if no point can be added to it.

An arbitrary $[n, n-r, 4]$ code is either a quasi-perfect code or shortening of some quasi-perfect code with $d=4$ and redundancy r.

So, studying quasi-perfect codes is important. The $\left[2^{r-1}, 2^{r-1}-r, 4\right]$ extended Hamming code is deeply investigated. The $\left[5 \cdot 2^{r-4}, 5 \cdot 2^{r-4}-r, 4\right]$ Panchenko code $[1,2,4,5,10]$ draws attention as in it the number of weight

[^0]4 codewords is small and, in a number of cases, the smallest possible among all codes with $d=4$. This essentially increases the error detection capability of Panchenko code. Nevertheless, Panchenko code is studied insufficiently. The same can be said about other quasi perfect $[n, n-r, 4]$ codes (not about Hamming one).

All quasi-perfect $[n, n-r, 4]$ codes of length $n \geq 2^{r-2}+2$ can be described by doubling construction (1), see [4].

So, it is appropriate to study quasi-perfect $[n, n-r, 4]$ codes from the point of view of doubling construction, see $[1,2,4,5]$. In this work we continue investigations of codes created by doubling construction, including quasi-perfect ones.

In Section 2, we classified all quasi-perfect $[17,17-6,4]$ codes and thereby all quasi-perfect $\left[n_{r}, n_{r}-r, 4\right]$ codes with $n_{r}=17 \cdot 2^{r-6}, r \geq 6$. Also, we proved a general theorem on weight spectrum of the code dual to quasi perfect one and obtained all these spectra for $n_{r}=2^{r-2}+2^{r-2-g}, g=2,3,4, r \geq g+2$. In Section 3, we investigate the automorphism group $\operatorname{Aut}(\mathcal{C})$ of codes obtained by doubling construction. We describe a subgroup G of $\operatorname{Aut}(\mathcal{C})$. We prove that if the starting matrix of doubling construction has an odd number of columns then $G=\operatorname{Aut}(\mathcal{C})$. It happens for all quasi perfect codes with $d=4$ except for Hamming one. In Section 4, we consider the properness and t-properness for error detection of codes obtained by doubling construction.

2 Doubling construction and classification of binary quasi-perfect codes with distance 4

For a code with redundancy r we introduce the following notations: n_{r} is length of the code, H_{r} is its parity check matrix of size $r \times n_{r}$, and d_{r} is code distance.
Definition 1. Doubling construction creates a parity check matrix H_{r} of an $\left[n_{r}, n_{r}-r, d_{r}\right]$ code from a parity check matrix H_{r-1} of an $\left[n_{r-1}, n_{r-1}-(r-\right.$ 1), d_{r-1}] code as follows

$$
H_{r}=\left[\begin{array}{c|c}
0 \ldots 0 & 1 \ldots 1 \tag{1}\\
---- & --- \\
H_{r-1} & H_{r-1}
\end{array}\right] .
$$

By (1), $n_{r}=2 n_{r-1}$. Also, if $d_{r-1}=3$ then $d_{r}=3$; if $d_{r-1} \geq 4$ then $d_{r}=4$.
Doubling construction is called also Plotkin construction, see [4] and the refences therein.

Let us define matrices M, S, Ω, and $\Phi_{1}, \ldots, \Phi_{5}$ as

$$
M=\left[\begin{array}{l}
01 \\
11
\end{array}\right], S=\left[\begin{array}{l}
10001 \\
01001 \\
00101 \\
00011
\end{array}\right], \Omega=\left[\begin{array}{ll}
00000 & 1111 \\
10001 & 0000 \\
01001 & 1001 \\
00101 \\
00011 & 01011
\end{array}\right], \Phi_{1}=\left[\begin{array}{lll}
0000000 & 00000000 & 11 \\
1111111 & 11111111 & 10 \\
0000000 & 11111111 & 11 \\
0001111 & 00001111 & 11 \\
0110011 & 00110011 & 11 \\
1010101 & 01010101 & 11
\end{array}\right],
$$

Let $B_{j, g}^{(r)}=\left[b_{j} \ldots b_{j}\right]$ be the $(r-g-2) \times\left(2^{g}+1\right)$ matrix of identical columns b_{j}, where $r \geq 5$ is code redundancy, b_{j} is the binary representation of the integer j (with the most significant bit at the top position).

From the results of the paper [4], we have a general description of a parity check matrix for a whole class of quasi-perfect codes with distance 4.
Theorem 1. [4] (i) Let $n_{r} \geq 2^{r-2}+2, r \geq 5$, and let an $\left[n_{r}, n_{r}-r, 4\right]$ code be quasi-perfect. Then length n_{r} can take any value from the sequence

$$
\begin{equation*}
n_{r}=2^{r-2}+2^{r-2-g}=\left(2^{g}+1\right) 2^{r-2-g} \text { for } g=0,2,3,4,5, \ldots, r-3 \tag{2}
\end{equation*}
$$

Moreover, n_{r} may not take any other value that is not noted in (2). Also, for each $g=0,2,3,4,5, \ldots, r-3$, there exists an $\left[n_{r}, n_{r}-r, 4\right]$ quasi-perfect code with $n_{r}=2^{r-2}+2^{r-2-g}$.
(ii) Let $n_{r}=2^{r-2}+2^{r-2-g}=\left(2^{g}+1\right) 2^{r-2-g}, g \in\{0,2,3,4,5, \ldots, r-3\}$, $r \geq 5$, and let an $\left[n_{r}, n_{r}-r, 4\right]$ code be quasi-perfect. Then a parity check matrix H_{r} of this code can be presented in the form

$$
H_{r}=\left[\begin{array}{c|c|c|c}
B_{0, g}^{(r)} & B_{1, g}^{(r)} & & B_{D, g}^{(r)} \tag{3}\\
--- & --- & \cdots & --- \\
H_{g+2} & H_{g+2} & & H_{g+2}
\end{array}\right]
$$

where $D=2^{r-g-2}-1, H_{2}=M, H_{4}=S, H_{5}=\Omega, H_{g+2}$ is a parity check matrix of a quasi-perfect $\left[2^{g}+1,2^{g}+1-(g+2), 4\right]$ code if $g \geq 4$.

By Theorem 1, all quasi-perfect $\left[n_{r}, n_{r}-r, 4\right]$ codes with $g=0,2,3$, and, respectively, $n_{r}=2^{r-1}, n_{r}=5 \cdot 2^{r-4}$, and $n_{r}=9 \cdot 2^{r-4}$, are classified.

The $\left[2^{r-1}, 2^{r-1}-r, 4\right]$ code (with starting matrix M) is the extended Hamming code. The $\left[5 \cdot 2^{r-4}, 5 \cdot 2^{r-4}-r, 4\right]$ code (with starting matrix S) is the Panchenko code Π_{r} proposed in [10], see also [2,5]. The parity check matrix of Π_{r} is the matrix H_{r} of (3) with $g=2, D=2^{r-4}-1, H_{g+2}=S$. We denote with \mathcal{W}_{r} the $\left[9 \cdot 2^{r-5}, 9 \cdot 2^{r-5}-r, 4\right]$ code (with starting matrix Ω).
Corollary 1. For $g \geq 4$ and $n_{r}=2^{r-2}+2^{r-2-g}$, in order to classify all quasi-perfect $\left[n_{r}, n_{r}-r, 4\right]$ codes, it is sufficient to classify all quasi-perfect $\left[2^{g}+1,2^{g}+1-(g+2), 4\right]$ codes.

Using the results of this work and of $[4,8]$, we proved the following theorem.
Theorem 2. Let Φ_{j} be a parity check matrix of a $[17,11,4]$ code. The five codes with the parity check matrices $\Phi_{1}, \ldots, \Phi_{5}$ are all distinct, up to equivalence, $\left[2^{4}+1,2^{4}+1-(4+2), 4\right]$ quasi-perfect codes.

For a code C, let A_{w} (resp. A_{w}^{\perp}) be the number of codewords of weight w in C (resp. in the dual code C^{\perp}). Usually, the code is clear by context. To emphasize the code we can write $A_{w}(C)$ or $A_{w}^{\perp}(C)$.

Let $\mathcal{V}_{r, j}$ be the $\left[17 \cdot 2^{r-6}, 17 \cdot 2^{r-6}-r, 4\right]$ code with the parity check matrix H_{r} of (3) where $g=4, H_{g+2}=H_{6}=\Phi_{j}, D=2^{r-6}-1$.

We proved the following theorem and proposition.
Theorem 3. Let $\left\{A_{w}^{\perp}\left(\mathcal{T}_{g+2}\right)\right.$, w $\left.=0,1, \ldots, 2^{g}+1\right\}$ be the weight spectrum of the code dual to the starting $\left[2^{g}+1,2^{g}+1-(g+2), 4\right]$ code \mathcal{T}_{g+2} with the parity check matrix H_{g+2} of the construction (3). Then the weight spectrum of the code dual to the resultant $\left[\left(2^{g}+1\right) 2^{r-2-g},\left(2^{g}+1\right) 2^{r-2-g}-r, 4\right]$ code \mathcal{C}_{r} with the parity check matrix H_{r} of (3) is as follows.
$A_{w 2^{r-2-g}}^{\perp}\left(\mathcal{C}_{r}\right)=A_{w}^{\perp}\left(\mathcal{T}_{g+2}\right), w=0,1, \ldots, 2^{g}+1 ; A_{\left(2^{g}+1\right) 2^{r-3-g}}^{\perp}\left(\mathcal{C}_{r}\right)=2^{r}-2^{g+2} ;$
$A_{u}^{\perp}\left(\mathcal{C}_{r}\right)=0, u \notin\left\{0 \cdot 2^{r-2-g}, 1 \cdot 2^{r-2-g}, \ldots,\left(2^{g}+1\right) 2^{r-2-g}\right\} \cup\left\{\left(2^{g}+1\right) 2^{r-3-g}\right\}$.
Proposition 1. For the codes Π_{r}, \mathcal{W}_{r}, and $\mathcal{V}_{r, 1}, \ldots, \mathcal{V}_{r, 5}$, weight spectrum of the nonzero weigths of the dual codes is as follows.

$$
\begin{aligned}
\Pi_{r}: & A_{2 \cdot 2^{r-4}}^{\perp}=10, A_{5 \cdot 2^{r-5}}^{\perp}=2^{r}-2^{4}, A_{4 \cdot 2^{r-4}}^{\perp}=5 \\
\mathcal{W}_{r}: & A_{2 \cdot 2^{r-5}}^{\perp}=1, A_{4 \cdot 2^{r-5}}^{\perp}=21, A_{9 \cdot 2^{r-6}}^{\perp}=2^{r}-2^{5}, A_{6 \cdot 2^{r-5}}^{\perp}=7, A_{8 \cdot 2^{r-5}}^{\perp}=2 \\
\mathcal{V}_{r, 1}: & A_{2 \cdot 2^{r-6}}^{\perp}=1, A_{8 \cdot 2^{r-6}}^{\perp}=45, A_{17 \cdot 2^{r-7}}^{\perp}=2^{r}-2^{6}, A_{10 \cdot 2^{r-6}}^{\perp}=15, A_{16 \cdot 2^{r-6}}^{\perp}=2 ; \\
\mathcal{V}_{r, 2}: & A_{4 \cdot 2^{r-6}}^{\perp}=1, A_{6 \cdot 2^{r-6}}^{\perp}=3, A_{8 \cdot 2^{r-6}}^{\perp}=42, A_{17 \cdot 2^{r-7}}^{\perp}=2^{r}-2^{6} \\
& A_{10 \cdot 2^{r-6}}^{\perp}=12, A_{12 \cdot 2^{r-6}}^{\perp}=3, A_{14 \cdot 2^{r-6}}^{\perp}=1, A_{16 \cdot 2^{r-6}}^{\perp}=1 ; \\
\mathcal{V}_{r, 3}: & A_{5 \cdot 2^{r-6}}^{\perp}=2, A_{7 \cdot 2^{r-6}}^{\perp}=8, A_{8 \cdot 2^{r-6}}^{\perp}=30, A_{17 \cdot 2^{r-7}}^{\perp}=2^{r}-2^{6} \\
& A_{9 \cdot 2^{r-6}}^{\perp}=12, A_{11 \cdot 2^{r-6}}^{\perp}=8, A_{13 \cdot 2^{r-6}}^{\perp}=2, A_{16 \cdot 2^{r-6}}^{\perp}=1 ; \\
\mathcal{V}_{r, 4}: & A_{6 \cdot 2^{r-6}}^{\perp}=6, A_{8 \cdot 2^{r-6}}^{\perp}=40, A_{17 \cdot 2^{r-7}}^{\perp}=2^{r}-2^{6}, A_{10 \cdot 2^{r-6}}^{\perp}=10 \\
& A_{12 \cdot 2^{r-6}}^{\perp}=6, A_{16 \cdot 2^{r-6}}^{\perp}=1 ; \\
\mathcal{V}_{r, 5}: & A_{7 \cdot 2^{r-6}}^{\perp}=16, A_{8 \cdot 2^{r-6}}^{\perp}=30, A_{17 \cdot 2^{r-7}}^{\perp}=2^{r}-2^{6}, A_{11 \cdot 2^{r-6}}^{\perp}=16, A_{16 \cdot 2^{r-6}}^{\perp}=1 .
\end{aligned}
$$

3 The automorphism group of codes created by doubling construction

In this section we investigate the properties of the automorphism group of the codes obtained applying doubling construction.

Definition 2. The permutations of coordinate places which send a code \mathcal{C} into itself form the code automorphism group of \mathcal{C}, denoted by $\operatorname{Aut}(\mathcal{C})$.

A code and its dual have the same automorphism group.
Theorem 4. [9, Chapter 8, Problem 29] $\operatorname{Aut}(\mathcal{C})=\operatorname{Aut}\left(\mathcal{C}^{\perp}\right)$.
Let $\pi \in \operatorname{Aut}(\mathcal{C})$ and let g_{1}, \ldots, g_{n-r} be the rows of a generator matrix G of \mathcal{C}. Then $\pi\left(g_{1}\right), \ldots, \pi\left(g_{n-r}\right)$ is a basis of \mathcal{C} too. Therefore a change of basis matrix belonging to the general linear group $\mathrm{GL}(n-r, 2)$ corresponds to π.

On the other hand we can consider the columns c_{j} of G as points of the projective space $\operatorname{PG}(n-r-1,2)$. Let $K \in \operatorname{GL}(n-r, 2)=\operatorname{PGL}(n-r, 2)$ belong to the stabilizer group of the set $\Sigma=\left\{c_{j}\right\}_{j=1, \ldots, n}$, i.e. $K c_{j} \in \Sigma, \forall j \in$ $\{1, \ldots, n\}$. Then K induces a permutation of the coordinate place and therefore preserves the weight of each codeword. Then, by [9, Chapter 8, Problem 33], if no coordinate of \mathcal{C} is always zero, K corresponds to a permutation $\pi \in \operatorname{Aut}(\mathcal{C})$.

From the discussion above and Theorem 4, we can represent $\operatorname{Aut}(\mathcal{C})$ as the stabilizer group of the columns of its parity check matrix H_{r} treated as points of $\operatorname{PG}(r-1,2)$. We will denote $\operatorname{Aut}(\mathcal{C})$ also as $\operatorname{Aut}\left(H_{r}\right)$.

We consider the matrices H_{r} obtained from a starting matrix H_{s} applying double construction $r-s$ times.

Lemma 1. The columns of H_{r} are $\left[b_{i} \mid h_{j}\right]^{T}$, where h_{j} is any column of H_{s} and b_{i} is the binary representation of any integer in the interval $\left[0, \ldots, 2^{r-s}-1\right]$.
Proof. By induction on $r-s$.
Now we describe a subgroup of $\operatorname{Aut}(\mathcal{C})$. Let $Z_{\ell, m}$ be the $\ell \times m$ matrix with all entries equal to 0 and let $T_{\ell, m}$ be any binary $\ell \times m$ matrix. We denote by Γ_{r} the set of matrices $\left\{\left[\begin{array}{c|c}K_{r-s} & T_{r-s, s} \\ ---- & --- \\ \hline Z_{s, r-s} & A_{s}\end{array}\right]: K_{r-s} \in \mathrm{GL}(r-s, 2), T_{r-s, s}\right.$ is any binary $(r-s) \times s$ matrix, $\left.A_{s} \in \operatorname{Aut}\left(H_{s}\right)\right\}$.
Remark 1. $\left|\Gamma_{r}\right|=\left(2^{r-s}-1\right)\left(2^{r-s}-2\right) \ldots\left(2^{r-s}-2^{r-s-1}\right)\left|\operatorname{Aut}\left(H_{s}\right)\right| 2^{(r-s) s}$.
Theorem 5. Γ_{r} is a subgroup of $\operatorname{Aut}\left(H_{r}\right)$.
Proof. Let $\left[b_{r-s} \mid h_{s}\right]^{T} \in H_{r}$ and let $M_{r}=\left[\begin{array}{c|c}K_{r-s} & T_{r-s, s} \\ ---- & --- \\ Z_{s, r-s} & A_{s}\end{array}\right] \in \Gamma_{r}$. Then
$\left[\begin{array}{c|c}K_{r-s} & T_{r-s, s} \\ ---- & --- \\ Z_{s, r-s} & A_{s}\end{array}\right]\left[\begin{array}{c}b_{r-s} \\ ---- \\ h_{s}\end{array}\right]=\left[\begin{array}{c}K_{r-s} b_{r-s}+T_{r-s, s} h_{s} \\ -----------H_{r} .\end{array}\right] \in H_{s}$.
Moreover, $\operatorname{Det}\left(M_{r}\right)=\operatorname{Det}\left(K_{r-s}\right) \cdot \operatorname{Det}\left(A_{s}\right) \neq 0$, so $\Gamma_{r} \subset \operatorname{Aut}\left(H_{r}\right)$. Finally, $\left[\begin{array}{c|c}K_{r-s}^{\prime} & T_{r-s, s}^{\prime} \\ ---- & --- \\ Z_{s, r-s} & A_{s}^{\prime}\end{array}\right]\left[\begin{array}{c|c}K_{r-s}^{\prime \prime} & T_{r-s, s}^{\prime \prime} \\ ---- & --- \\ Z_{s, r-s} & A_{s}^{\prime \prime}\end{array}\right]=$
$\left[\begin{array}{c|c}K_{r-s}^{\prime} K_{r-s}^{\prime \prime} & K_{r-s}^{\prime} T_{r-s, s}^{\prime \prime}+K_{r-s}^{\prime \prime} T_{r-s, s}^{\prime} \\ ---- & ----------1\end{array}\right] \in \Gamma_{r}$.
In general, $\Gamma_{r} \neq \operatorname{Aut}\left(H_{r}\right)$. For example, if we apply repeatedly doubling construction starting from matrix M (so, $s=2$), the columns of H_{r} form a cap of $\mathrm{PG}(r-1,2)$ that is the complement of a hyperplane; its stabilizer group is $\operatorname{AGL}(r-1,2)$ and $|\operatorname{AGL}(r-1,2)|=\left(2^{r}-2\right) \ldots\left(2^{r}-2^{r-1}\right)$.

On the other hand, there exist codes of redundancy r obtained by doubling construction whose automorphism group is Γ_{r}.
Theorem 6. Let \mathcal{C}_{s} be an $[n, n-s]$ code having a parity check matrix H_{s} without zero columns and without rows of weight $n / 2$. Then for the codes \mathcal{C}_{r} obtained applying doubling construction r-s times starting from H_{s}, it holds that $\operatorname{Aut}\left(\mathcal{C}_{r}\right)=\Gamma_{r}$.
Proof. By induction on $r-s$. Let $r=s+1$. Let $H_{s+1}=\left[\begin{array}{c|c}0 \ldots 0 & 1 \ldots 1 \\ --\ldots- & --- \\ h_{1} \ldots h_{n_{s}} & h_{1} \ldots h_{n_{s}}\end{array}\right]$
be a parity check matrix of \mathcal{C}_{s+1} and $M_{s+1}=\left[\begin{array}{c|c}x_{1,1} & t_{1} \\ --- & --- \\ x_{2,1} & a_{1} \\ \vdots & \vdots \\ x_{s+1,1} & a_{s}\end{array}\right] \in \operatorname{Aut}\left(\mathcal{C}_{s+1}\right)$.
Let r_{j} be the j-th row of $M_{s+1} H_{s+1}, j=2, \ldots, s+1$. Then $r_{j}=$
$\left[a_{j-1} \cdot h_{1}^{T} \ldots a_{j-1} \cdot h_{n_{s}}^{T} \mid x_{j, 1}+a_{j-1} \cdot h_{1}^{T} \ldots x_{j, 1}+a_{j-1} \cdot h_{n_{s}}^{T}\right]$. As $M_{s+1} \in \operatorname{Aut}\left(\mathcal{C}_{s+1}\right)$, it induces a permutation on the coordinates of the codewords, so weight $\left(r_{j}\right)=$ 2 weight $\left(p_{j-1}\right)$, where p_{j} is the j-th row of H_{s}. On the other hand, consider the elements of r_{j} of position i and $i+n_{s}, i=1, \ldots, n_{s}$; they are $a_{j-1} \cdot h_{i}^{T}$ and $x_{j, 1}+a_{j-1} \cdot h_{i}^{T}$. If $x_{j, 1}=1$, exactly one of these elements is equal to 1 , so weight $\left(r_{j}\right)=n_{s}$. This is not possible by hypothesis. Moreover $x_{2,1}=\cdots=$ $x_{s+1,1}=0$ implies $x_{1,1}=1$, otherwise $\operatorname{Det}\left(M_{s+1}\right)=0$. Finally, the sub-matrix $A_{s}=\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{s}\end{array}\right]$ permutes the columns of H_{s}, so it belongs to $\operatorname{Aut}\left(\mathcal{C}_{s}\right)$. In fact, let
$\left[b \mid h_{i}\right]^{T}$ be a column of H_{s+1}. Then $M_{s+1}\left[\begin{array}{c}b \\ - \\ h_{j}\end{array}\right]=\left[\begin{array}{c}y \\ - \\ A_{s} h_{j}\end{array}\right]$ is a column of H_{s+1} if and only if $A_{s} h_{j}$ is a column of H_{s}. Moreover, if $A_{s} h_{i}=A_{s} h_{j}, i \neq j$, then two of the columns $\left[0 \mid h_{i}\right]^{T},\left[0 \mid h_{j}\right]^{T},\left[1 \mid h_{j}\right]^{T}$ have the same image under M_{s+1}. The proof of the general case, i.e, $r-s>1$, is similar.
Corollary 2. Let \mathcal{C}_{s} be an $[n, n-s]$ code having a parity check matrix H_{s} without zero columns. If n is odd then for the codes \mathcal{C}_{r} obtained applying doubling construction $r-s$ times starting from H_{s}, it holds that $\operatorname{Aut}\left(\mathcal{C}_{r}\right)=\Gamma_{r}$

Remark 2. $|\operatorname{Aut}(S)|=120,|\operatorname{Aut}(\Omega)|=336,\left|\operatorname{Aut}\left(\Phi_{1}\right)\right|=40320,\left|\operatorname{Aut}\left(\Phi_{2}\right)\right|=$ $576,\left|\operatorname{Aut}\left(\Phi_{3}\right)\right|=384,\left|\operatorname{Aut}\left(\Phi_{4}\right)\right|=720,\left|\operatorname{Aut}\left(\Phi_{5}\right)\right|=11520$.

Corollary 3. $\left|\operatorname{Aut}\left(\Pi_{r}\right)\right|=120\left(2^{r-4}-1\right)\left(2^{r-4}-2\right) \ldots\left(2^{r-4}-2^{r-3}\right) 2^{4(r-4)}$. $\left|\operatorname{Aut}\left(\mathcal{W}_{r}\right)\right|=336\left(2^{r-5}-1\right)\left(2^{r-5}-2\right) \ldots\left(2^{r-5}-2^{r-4}\right) 2^{5(r-5)}$.

4 Properness and t-properness for error detection of codes obtained by doubling construction

Problems connected with error detection are considered, e.g., in [3,6,7], see also the references therein. Here we consider the binary symmetric channel.

Let p be the error probability by symbol in the channel.
Let $P_{u e}(C, p)$ be the undetected error probability for the code C under condition that the code is used only for error detection;

Let $P_{u e}^{(t)}(C, p)$ be the undetected error probability for the code C under condition that $d \geq 2 t+1$ and the code is used for correction of $\leq t$ errors.

Definition 3. (i) A binary code C is proper (resp. t-proper) if $P_{u e}(C, p)$ (resp. $\left.P_{u e}^{(t)}(C, p)\right)$ is an increasing function of p in the interval $\left[0, \frac{1}{2}\right]$.
(ii) Let $a \geq 0$ and $b \leq \frac{1}{2}$ be real values. A binary code C is proper (resp. t-proper) in the interval $[a, b]$ if $P_{u e}(C, p)\left(\right.$ resp. $\left.\quad P_{u e}^{(t)}(C, p)\right)$ is an increasing function of p in $[a, b]$.

Using the results of this work, in particular Theorem 3 and Proposition 1, and papers $[2,3,6,7]$, we proved a number of results on the properness and t-properness of codes obtained by doubling construction.

Lemma 2. In doubling construction (1), let the starting $\left[n_{r-1}, n_{r-1}-(r-\right.$ 1), d_{r-1}] code given by the parity check matrix H_{r-1} have dual distance in the region $\left\lceil\frac{n_{r-1}}{3}\right\rceil \leq d_{r-1}^{\perp} \leq \frac{n_{r-1}}{2}$. Then the resultant $\left[n_{r}, n_{r}-r, d_{r}\right]$ code given by the parity check matrix H_{r} has dual distance in the region $\left\lceil\frac{n_{r}}{3}\right\rceil \leq d_{r}^{\perp} \leq \frac{n_{r}}{2}$.
Theorem 7. The codes $\Pi_{r}, \mathcal{V}_{r, 4}$, and $\mathcal{V}_{r, 5}$, are proper in intervals $\left[a, \frac{1}{2}\right]$, where $a=\frac{1}{3}+\frac{1}{3 \cdot 2^{r-4}}$ for $\Pi_{r}, a=\frac{5}{11}+\frac{1}{11 \cdot 2^{r-6}}$ for $\mathcal{V}_{r, 4}, a=\frac{3}{10}+\frac{1}{10 \cdot 2^{r-6}}$ for $\mathcal{V}_{r, 5}$.

Proposition 2. The codes $\Pi_{r}^{\perp}, \mathcal{W}_{r}^{\perp}, \mathcal{V}_{r, j}^{\perp}$ dual to the codes $\Pi_{r}, \mathcal{W}_{r}, \mathcal{V}_{r, j}$, are proper in intervals $[0, b]$, where $b=\frac{2}{5}$ for $\Pi_{r}^{\perp}, b=\frac{2}{9}$ for $\mathcal{W}_{r}^{\perp}, b=\frac{2}{17}$ for $\mathcal{V}_{r, 1}^{\perp}$, $b=\frac{4}{17}$ for $\mathcal{V}_{r, 2}^{\perp}, b=\frac{5}{17}$ for $\mathcal{V}_{r, 3}^{\perp}, b=\frac{6}{17}$ for $\mathcal{V}_{r, 4}^{\perp}, b=\frac{7}{17}$ for $\mathcal{V}_{r, 5}^{\perp}$.

Proposition 3. The codes with the parity check matrices S and Ω are proper and 1-proper. The codes Π_{r} are proper for $r=5,6,7,8,9$ and 1-proper for $r=5,6,7$. The codes \mathcal{W}_{r} are proper and 1-proper for $r=6$.

Open Problem. Assume that in doubling construction (1), the starting code given by the parity check matrix H_{r-1} is proper (resp. 1-proper) for error detection. Is the resulting code with the the parity check matrix H_{r} proper (resp. 1-proper) too? (For example, see Construction * in [7, Section 2]; see also Proposition 3.)

References

[1] V.B. Afanassiev and A. A. Davydov, Weight Spectrum of Quasi-Perfect Binary Codes with Distance 4, in Proc. IEEE Int. Symp. Inform. Theory (ISIT), Aachen, Germany, 2017, to appear.
[2] V.B. Afanassiev, A. A. Davydov, and D. K. Zigangirov, Design and analysis of codes with distance 4 and 6 minimizing the probability of decoder error, J. Communic. Technology Electronics, 61, 1440-1455, 2016.
[3] Ts. Baicheva, S. Dodunekov, and P. Kazakov, On the undetected error probability performance of cyclic redundancy-check codes of 16-bit redundancy, IEEE Trans. Comm. 147 (2000) 253-256.
[4] A. A. Davydov and L. M. Tombak, Quasiperfect Linear Binary Codes with Minimal Distance 4 and Complete Caps in Projective Geometry", Problems of Inform. Transm., 25, 265-275, 1989.
[5] A. A. Davydov and L. M. Tombak, An Alternative to the Hamming code in the Class of SEC-DED Codes in Semiconductor Memory, IEEE Trans. Inform. Theory, IT-37, 897-902, 1991.
[6] R. Dodunekova, S. M. Dodunekov, and E. Nikolova, A Survey on Proper Codes, Discrete Appl. Math., 156, 1499-1509, 2008.
[7] R. Dodunekova and E. Nikolova, Sufficient Conditions for Monotonicity of the Undetected Error Probability for Large Channel Error Probabilities, Probl. Inform. Transm., 41, 187-198, 2005.
[8] M. Khatirinejad and P. Lisonek, Classification and Constructions of Complete Caps in Binary Spaces, Des. Codes Cryptogr., 39, 17-31, 2006.
[9] F. J. MacWilliams and N. J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977.
[10] V.I. Panchenko, On optimization of linear code with distance 4, in Proc. 8th All-Union Conf. on Coding Theory and Communications, Kuibyshev, 1981, Part 2: Coding Theory (Moscow, 1981), pp. 132-134 [in Russian].

[^0]: ${ }^{1}$ The research of A.A. Davydov was carried out at the IITP RAS at the expense of the Russian Foundation for Sciences (project 14-50-00150).
 ${ }^{2}$ The research of S. Marcugini and F. Pambianco was supported in part by Ministry for Education, University and Research of Italy (MIUR) (Project "Geometrie di Galois e strutture di incidenza") and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INDAM).

