Further results on binary codes obtained by doubling construction

Alexander A. Davydov¹

adav@iitp.ru

Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Bol'shoi Karetnyi pereulok 19, GSP-4, Moscow, 127994, Russian Federation STEFANO MARCUGINI², FERNANDA PAMBIANCO²

{stefano.marcugini,fernanda.pambianco}@unipg.it Dipartimento di Matematica e Informatica, Università degli Studi di Perugia Via Vanvitelli 1, Perugia, 06123, Italy

Abstract. Binary codes created by doubling construction, including quasi-perfect ones with distance d = 4, are investigated. All $[17 \cdot 2^{r-6}, 17 \cdot 2^{r-6} - r, 4]$ quasi-perfect codes are classified. Weight spectrum of the codes dual to quasi-perfect ones with d = 4 is obtained. The automorphism group $\operatorname{Aut}(\mathcal{C})$ of codes obtained by doubling construction is studied. A subgroup of $\operatorname{Aut}(\mathcal{C})$ is described and it is proved that the subgroup coincides with $\operatorname{Aut}(\mathcal{C})$ if the starting matrix of doubling construction has an odd number of columns. (It happens for all quasi-perfect codes with d = 4 except for Hamming one.) The properness and t-properness for error detection of codes obtained by doubling construction are considered.

1 Introduction

Let an [n, n - r, d] code be a linear binary code of length n, redundancy r, and minimum distance d. A code with d = 4 is *quasi-perfect* if its covering radius is equal to 2. Addition of any column to a parity check matrix of a quasi-perfect code decreases the code distance. A parity check matrix of a quasi-perfect [n, n - r, 4] code can be treated as a complete n-cap in the projective space PG(r - 1, 2) of dimension r - 1. A cap in PG(N, 2) is a set of points no three of which are collinear. A cap is complete if no point can be added to it.

An arbitrary [n, n - r, 4] code is either a quasi-perfect code or shortening of some quasi-perfect code with d = 4 and redundancy r.

So, studying quasi-perfect codes is important. The $[2^{r-1}, 2^{r-1} - r, 4]$ extended Hamming code is deeply investigated. The $[5 \cdot 2^{r-4}, 5 \cdot 2^{r-4} - r, 4]$ Panchenko code [1, 2, 4, 5, 10] draws attention as in it the number of weight

¹The research of A.A. Davydov was carried out at the IITP RAS at the expense of the Russian Foundation for Sciences (project 14-50-00150).

²The research of S. Marcugini and F. Pambianco was supported in part by Ministry for Education, University and Research of Italy (MIUR) (Project "Geometrie di Galois e strutture di incidenza") and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INDAM).

4 codewords is small and, in a number of cases, the smallest possible among all codes with d = 4. This essentially increases the error detection capability of Panchenko code. Nevertheless, Panchenko code is studied insufficiently. The same can be said about other quasi perfect [n, n - r, 4] codes (not about Hamming one).

All quasi-perfect [n, n - r, 4] codes of length $n \ge 2^{r-2} + 2$ can be described by doubling construction (1), see [4].

So, it is appropriate to study quasi-perfect [n, n-r, 4] codes from the point of view of doubling construction, see [1,2,4,5]. In *this work* we continue investigations of codes created by doubling construction, including quasi-perfect ones.

In Section 2, we classified all quasi-perfect [17, 17 - 6, 4] codes and thereby all quasi-perfect $[n_r, n_r - r, 4]$ codes with $n_r = 17 \cdot 2^{r-6}, r \ge 6$. Also, we proved a general theorem on weight spectrum of the code dual to quasi perfect one and obtained all these spectra for $n_r = 2^{r-2} + 2^{r-2-g}, g = 2, 3, 4, r \ge g + 2$. In Section 3, we investigate the automorphism group $\operatorname{Aut}(\mathcal{C})$ of codes obtained by doubling construction. We describe a subgroup G of $\operatorname{Aut}(\mathcal{C})$. We prove that if the starting matrix of doubling construction has an odd number of columns then $G = \operatorname{Aut}(\mathcal{C})$. It happens for all quasi perfect codes with d = 4 except for Hamming one. In Section 4, we consider the properness and t-properness for error detection of codes obtained by doubling construction.

2 Doubling construction and classification of binary quasi-perfect codes with distance 4

For a code with redundancy r we introduce the following notations: n_r is length of the code, H_r is its parity check matrix of size $r \times n_r$, and d_r is code distance.

Definition 1. Doubling construction creates a parity check matrix H_r of an $[n_r, n_r - r, d_r]$ code from a parity check matrix H_{r-1} of an $[n_{r-1}, n_{r-1} - (r - 1), d_{r-1}]$ code as follows

$$H_r = \begin{bmatrix} 0...0 & | & 1...1 \\ ----- & | & ---- \\ H_{r-1} & | & H_{r-1} \end{bmatrix}.$$
 (1)

By (1), $n_r = 2n_{r-1}$. Also, if $d_{r-1} = 3$ then $d_r = 3$; if $d_{r-1} \ge 4$ then $d_r = 4$. Doubling construction is called also *Plotkin construction*, see [4] and the references therein.

Let us define matrices M, S, Ω , and Φ_1, \ldots, Φ_5 as

$$\Phi_{2} = \begin{bmatrix} 00000 & 00000000 & 1111 \\ 1111 & 1111111 & 1000 \\ 00000 & 1111111 & 1100 \\ 0111 & 00001111 & 1111 \\ 10011 & 00110011 & 1100 \\ 10101 & 01010101 & 1101 \end{bmatrix}, \qquad \Phi_{3} = \begin{bmatrix} 0000 & 0000000 & 11111 \\ 1111 & 111111 & 1100 \\ 0000 & 1111111 & 11110 \\ 1011 & 00001111 & 11101 \\ 1011 & 0101011 & 11011 \\ 0111 & 0001111 & 11101 \\ 1011 & 0100111 & 11101 \\ 1011 & 0100111 & 111011 \\ 1011 & 010011 & 110111 \end{bmatrix}, \qquad \Phi_{5} = \begin{bmatrix} 0000 & 0000000 & 11111 \\ 0000 & 000000 & 111111 \\ 1111 & 11111 & 100000 \\ 0000 & 111111 & 111100 \\ 0000 & 111111 & 111100 \\ 0111 & 0001111 & 111011 \\ 1011 & 0110011 & 111011 \\ 1011 & 0110011 & 110011 \\ 1011 & 011001 & 110011 \\ 1011 & 011001 & 110011 \\ 1011 & 011001 & 0010001 \end{bmatrix}.$$

Let $B_{j,g}^{(r)} = [b_j \dots b_j]$ be the $(r - g - 2) \times (2^g + 1)$ matrix of identical columns b_j , where $r \ge 5$ is code redundancy, b_j is the binary representation of the integer j(with the most significant bit at the top position).

From the results of the paper [4], we have a general description of a parity check matrix for a whole class of quasi-perfect codes with distance 4.

Theorem 1. [4] (i) Let $n_r \ge 2^{r-2} + 2$, $r \ge 5$, and let an $[n_r, n_r - r, 4]$ code be quasi-perfect. Then length n_r can take any value from the sequence

$$n_r = 2^{r-2} + 2^{r-2-g} = (2^g + 1)2^{r-2-g} \text{ for } g = 0, 2, 3, 4, 5, \dots, r-3.$$
(2)

Moreover, n_r may not take any other value that is not noted in (2). Also, for each g = 0, 2, 3, 4, 5, ..., r - 3, there exists an $[n_r, n_r - r, 4]$ quasi-perfect code with $n_r = 2^{r-2} + 2^{r-2-g}$.

(ii) Let $n_r = 2^{r-2} + 2^{r-2-g} = (2^g + 1)2^{r-2-g}, g \in \{0, 2, 3, 4, 5, \dots, r-3\},\$ $r \geq 5$, and let an $[n_r, n_r - r, 4]$ code be quasi-perfect. Then a parity check matrix H_r of this code can be presented in the form

$$H_r = \begin{bmatrix} B_{0,g}^{(r)} & | & B_{1,g}^{(r)} & | & | & B_{D,g}^{(r)} \\ ---- & | & ---- & | & \dots & | & ---- \\ H_{g+2} & | & H_{g+2} & | & \dots & | & H_{g+2} \end{bmatrix},$$
(3)

where $D = 2^{r-g-2} - 1$, $H_2 = M$, $H_4 = S$, $H_5 = \Omega$, H_{g+2} is a parity check matrix of a quasi-perfect $[2^g + 1, 2^g + 1 - (g+2), 4]$ code if $g \ge 4$.

By Theorem 1, all quasi-perfect $[n_r, n_r - r, 4]$ codes with g = 0, 2, 3, and, respectively, $n_r = 2^{r-1}$, $n_r = 5 \cdot 2^{r-4}$, and $n_r = 9 \cdot 2^{r-4}$, are classified. The $[2^{r-1}, 2^{r-1} - r, 4]$ code (with starting matrix M) is the extended Hamming code. The $[5 \cdot 2^{r-4}, 5 \cdot 2^{r-4} - r, 4]$ code (with starting matrix S) is the Panchenko code Π_r proposed in [10], see also [2,5]. The parity check matrix of Π_r is the matrix H_r of (3) with g = 2, $D = 2^{r-4} - 1$, $H_{g+2} = S$. We denote with \mathcal{W}_r the $[9 \cdot 2^{r-5}, 9 \cdot 2^{r-5} - r, 4]$ code (with starting matrix Ω).

Corollary 1. For $g \geq 4$ and $n_r = 2^{r-2} + 2^{r-2-g}$, in order to classify all quasi-perfect $[n_r, n_r - r, 4]$ codes, it is sufficient to classify all quasi-perfect $[2^{g}+1, 2^{g}+1-(g+2), 4]$ codes.

Using the results of this work and of [4,8], we proved the following theorem.

Theorem 2. Let Φ_j be a parity check matrix of a [17, 11, 4] code. The five codes with the parity check matrices Φ_1, \ldots, Φ_5 are all distinct, up to equivalence, $[2^4 + 1, 2^4 + 1 - (4 + 2), 4]$ quasi-perfect codes.

For a code C, let A_w (resp. A_w^{\perp}) be the number of codewords of weight w in C (resp. in the dual code C^{\perp}). Usually, the code is clear by context. To emphasize the code we can write $A_w(C)$ or $A_w^{\perp}(C)$. Let $\mathcal{V}_{r,j}$ be the $[17 \cdot 2^{r-6}, 17 \cdot 2^{r-6} - r, 4]$ code with the parity check matrix

Let $\mathcal{V}_{r,j}$ be the $[17 \cdot 2^{r-6}, 17 \cdot 2^{r-6} - r, 4]$ code with the parity check matrix H_r of (3) where g = 4, $H_{g+2} = H_6 = \Phi_j$, $D = 2^{r-6} - 1$.

We proved the following theorem and proposition.

Theorem 3. Let $\{A_w^{\perp}(\mathcal{T}_{g+2}), w = 0, 1, \ldots, 2^g + 1\}$ be the weight spectrum of the code dual to the starting $[2^g + 1, 2^g + 1 - (g+2), 4]$ code \mathcal{T}_{g+2} with the parity check matrix H_{g+2} of the construction (3). Then the weight spectrum of the code dual to the resultant $[(2^g + 1)2^{r-2-g}, (2^g + 1)2^{r-2-g} - r, 4]$ code \mathcal{C}_r with the parity check matrix H_r of (3) is as follows.

$$A_{w2^{r-2-g}}^{\perp}(\mathcal{C}_r) = A_w^{\perp}(\mathcal{T}_{g+2}), \ w = 0, 1, \dots, 2^g + 1; \ A_{(2^g+1)2^{r-3-g}}^{\perp}(\mathcal{C}_r) = 2^r - 2^{g+2}; A_u^{\perp}(\mathcal{C}_r) = 0, u \notin \{0 \cdot 2^{r-2-g}, 1 \cdot 2^{r-2-g}, \dots, (2^g+1)2^{r-2-g}\} \cup \{(2^g+1)2^{r-3-g}\}.$$

Proposition 1. For the codes Π_r , \mathcal{W}_r , and $\mathcal{V}_{r,1}, \ldots, \mathcal{V}_{r,5}$, weight spectrum of the nonzero weights of the dual codes is as follows.

$$\begin{split} \Pi_r : A_{2\cdot 2^{r-4}}^{\perp} &= 10, \ A_{5\cdot 2^{r-5}}^{\perp} = 2^r - 2^4, \ A_{4\cdot 2^{r-4}}^{\perp} = 5; \\ \mathcal{W}_r : A_{2\cdot 2^{r-5}}^{\perp} &= 1, \ A_{4\cdot 2^{r-5}}^{\perp} = 21, \ A_{9\cdot 2^{r-6}}^{\perp} = 2^r - 2^5, \ A_{6\cdot 2^{r-5}}^{\perp} = 7, \ A_{8\cdot 2^{r-5}}^{\perp} = 2; \\ \mathcal{V}_{r,1} : A_{2\cdot 2^{r-6}}^{\perp} &= 1, \ A_{8\cdot 2^{r-6}}^{\perp} = 45, \ A_{17\cdot 2^{r-7}}^{\perp} = 2^r - 2^6, \ A_{10\cdot 2^{r-6}}^{\perp} = 15, \ A_{16\cdot 2^{r-6}}^{\perp} = 2; \\ \mathcal{V}_{r,2} : A_{4\cdot 2^{r-6}}^{\perp} &= 1, \ A_{6\cdot 2^{r-6}}^{\perp} = 3, \ A_{8\cdot 2^{r-6}}^{\perp} = 42, \ A_{17\cdot 2^{r-7}}^{\perp} = 2^r - 2^6, \\ A_{10\cdot 2^{r-6}}^{\perp} &= 12, \ A_{12\cdot 2^{r-6}}^{\perp} = 3, \ A_{14\cdot 2^{r-6}}^{\perp} = 1, \ A_{16\cdot 2^{r-6}}^{\perp} = 1; \\ \mathcal{V}_{r,3} : A_{5\cdot 2^{r-6}}^{\perp} &= 2, \ A_{7\cdot 2^{r-6}}^{\perp} = 8, \ A_{8\cdot 2^{r-6}}^{\perp} = 30, \ A_{17\cdot 2^{r-7}}^{\perp} = 2^r - 2^6, \\ A_{9\cdot 2^{r-6}}^{\perp} &= 12, \ A_{11\cdot 2^{r-6}}^{\perp} = 8, \ A_{13\cdot 2^{r-6}}^{\perp} = 2, \ A_{16\cdot 2^{r-6}}^{\perp} = 1; \\ \mathcal{V}_{r,4} : A_{6\cdot 2^{r-6}}^{\perp} &= 6, \ A_{8\cdot 2^{r-6}}^{\perp} = 40, \ A_{17\cdot 2^{r-7}}^{\perp} = 2^r - 2^6, \ A_{10\cdot 2^{r-6}}^{\perp} = 10, \\ A_{12\cdot 2^{r-6}}^{\perp} &= 6, \ A_{16\cdot 2^{r-6}}^{\perp} = 1; \\ \mathcal{V}_{r,5} : A_{7\cdot 2^{r-6}}^{\perp} &= 16, \ A_{8\cdot 2^{r-6}}^{\perp} &= 30, \ A_{17\cdot 2^{r-7}}^{\perp} = 2^r - 2^6, \ A_{10\cdot 2^{r-6}}^{\perp} = 16, \ A_{16\cdot 2^{r-6}}^{\perp} = 1. \end{split}$$

3 The automorphism group of codes created by doubling construction

In this section we investigate the properties of the automorphism group of the codes obtained applying doubling construction.

Definition 2. The permutations of coordinate places which send a code C into itself form the code automorphism group of \mathcal{C} , denoted by $\operatorname{Aut}(\mathcal{C})$.

A code and its dual have the same automorphism group.

Theorem 4. [9, Chapter 8, Problem 29] $\operatorname{Aut}(\mathcal{C}) = \operatorname{Aut}(\mathcal{C}^{\perp})$.

Let $\pi \in Aut(\mathcal{C})$ and let g_1, \ldots, g_{n-r} be the rows of a generator matrix G of \mathcal{C} . Then $\pi(g_1), \ldots, \pi(g_{n-r})$ is a basis of \mathcal{C} too. Therefore a change of basis matrix belonging to the general linear group GL(n-r,2) corresponds to π .

On the other hand we can consider the columns c_j of G as points of the projective space PG(n - r - 1, 2). Let $K \in GL(n - r, 2) = PGL(n - r, 2)$ belong to the stabilizer group of the set $\Sigma = \{c_j\}_{j=1,\dots,n}$, i.e. $Kc_j \in \Sigma, \forall j \in$ $\{1, \ldots, n\}$. Then K induces a permutation of the coordinate place and therefore preserves the weight of each codeword. Then, by [9, Chapter 8, Problem 33], if no coordinate of \mathcal{C} is always zero, K corresponds to a permutation $\pi \in \operatorname{Aut}(\mathcal{C})$.

From the discussion above and Theorem 4, we can represent $Aut(\mathcal{C})$ as the stabilizer group of the columns of its parity check matrix H_r treated as points of PG(r-1,2). We will denote $Aut(\mathcal{C})$ also as $Aut(H_r)$.

We consider the matrices H_r obtained from a starting matrix H_s applying double construction r - s times.

Lemma 1. The columns of H_r are $[b_i|h_j]^T$, where h_j is any column of H_s and b_i is the binary representation of any integer in the interval $[0, \ldots, 2^{r-s} - 1]$.

Proof. By induction on r - s.

Now we describe a subgroup of Aut(\mathcal{C}). Let $Z_{\ell,m}$ be the $\ell \times m$ matrix with all entries equal to 0 and let $T_{\ell,m}$ be any binary $\ell \times m$ matrix. We denote by

 $\Gamma_r \text{ the set of matrices } \left\{ \begin{bmatrix} K_{r-s} & | T_{r-s,s} \\ ---- & | ---- \\ Z_{s,r-s} & | A_s \end{bmatrix} : K_{r-s} \in \mathrm{GL}(r-s,2), T_{r-s,s} \text{ is any binary } (r-s) \times s \text{ matrix}, A_s \in \mathrm{Aut}(H_s) \right\}.$

Remark 1. $|\Gamma_r| = (2^{r-s} - 1)(2^{r-s} - 2) \dots (2^{r-s} - 2^{r-s-1}) |\operatorname{Aut}(H_s)| 2^{(r-s)s}$

Theorem 5. Γ_r is a subgroup of $\operatorname{Aut}(H_r)$.

Proof. Let
$$[b_{r-s}|h_s]^T \in H_r$$
 and let $M_r = \begin{bmatrix} K_{r-s} & T_{r-s,s} \\ ---- & Z_{s,r-s} & A_s \end{bmatrix} \in \Gamma_r$. Then
 $\begin{bmatrix} K_{r-s} & T_{r-s,s} \\ ---- & A_s \end{bmatrix} \begin{bmatrix} b_{r-s} \\ ---- & A_s \end{bmatrix} = \begin{bmatrix} K_{r-s}b_{r-s} + T_{r-s,s}h_s \\ ----- & A_sh_s \end{bmatrix} \in H_r$.

Moreover, $\operatorname{Det}(M_r) = \operatorname{Det}(K_{r-s}) \cdot \operatorname{Det}(A_s) \neq 0$, so $\Gamma_r \subset \operatorname{Aut}(H_r)$. Finally, $\begin{bmatrix} K'_{r-s} & | T'_{r-s,s} \\ ---- & | ---- & | ---- \\ Z_{s,r-s} & | A'_s \end{bmatrix} \begin{bmatrix} K''_{r-s} & | T''_{r-s,s} \\ ---- & | ---- \\ Z_{s,r-s} & | A''_s \end{bmatrix} =$

In general, $\Gamma_r \neq \operatorname{Aut}(H_r)$. For example, if we apply repeatedly doubling construction starting from matrix M (so, s = 2), the columns of H_r form a cap of $\operatorname{PG}(r-1,2)$ that is the complement of a hyperplane; its stabilizer group is $\operatorname{AGL}(r-1,2)$ and $|\operatorname{AGL}(r-1,2)| = (2^r-2) \dots (2^r-2^{r-1})$.

On the other hand, there exist codes of redundancy r obtained by doubling construction whose automorphism group is Γ_r .

Theorem 6. Let C_s be an [n, n - s] code having a parity check matrix H_s without zero columns and without rows of weight n/2. Then for the codes C_r obtained applying doubling construction r-s times starting from H_s , it holds that $\operatorname{Aut}(C_r) = \Gamma_r$.

Proof. By induction on r-s. Let r = s+1. Let $H_{s+1} = \begin{bmatrix} 0 \dots 0 \\ ---- \\ h_1 \dots h_{n_s} \end{bmatrix} \begin{bmatrix} 1 \dots 1 \\ h_1 \dots h_{n_s} \end{bmatrix}$ be a parity check matrix of \mathcal{C}_{s+1} and $M_{s+1} = \begin{bmatrix} x_{1,1} \\ --- \\ x_{2,1} \\ \vdots \\ x_{s+1,1} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \in \operatorname{Aut}(\mathcal{C}_{s+1}).$ Let r_j be the j-th row of $M_{s+1}H_{s+1}$, $j = 2, \dots, s+1$. Then $r_j = 1$

 $\begin{bmatrix} a_{j-1} \cdot h_1^T \dots a_{j-1} \cdot h_{n_s}^T | x_{j,1} + a_{j-1} \cdot h_1^T \dots x_{j,1} + a_{j-1} \cdot h_{n_s}^T \end{bmatrix}. \text{ As } M_{s+1} \in \operatorname{Aut}(\mathcal{C}_{s+1}),$ it induces a permutation on the coordinates of the codewords, so weight $(r_j) = 2$ weight (p_{j-1}) , where p_j is the *j*-th row of H_s . On the other hand, consider the elements of r_j of position *i* and $i + n_s, i = 1, \dots, n_s$; they are $a_{j-1} \cdot h_i^T$ and $x_{j,1} + a_{j-1} \cdot h_i^T$. If $x_{j,1} = 1$, exactly one of these elements is equal to 1, so weight $(r_j) = n_s$. This is not possible by hypothesis. Moreover $x_{2,1} = \dots = x_{s+1,1} = 0$ implies $x_{1,1} = 1$, otherwise $\operatorname{Det}(M_{s+1}) = 0$. Finally, the sub-matrix $\begin{bmatrix} a_1 \end{bmatrix}$

 $A_s = \begin{bmatrix} a_1 \\ \vdots \\ a_s \end{bmatrix} \text{ permutes the columns of } H_s, \text{ so it belongs to } \operatorname{Aut}(\mathcal{C}_s). \text{ In fact, let}$

 $[b|h_i]^T$ be a column of H_{s+1} . Then $M_{s+1}\begin{bmatrix} b\\ -h_j \end{bmatrix} = \begin{bmatrix} y\\ -A_sh_j \end{bmatrix}$ is a column of H_{s+1} if and only if A_sh_j is a column of H_s . Moreover, if $A_sh_i = A_sh_j, i \neq j$, then

two of the columns $[0|h_i]^T$, $[0|h_j]^T$, $[1|h_j]^T$ have the same image under M_{s+1} . The proof of the general case, i.e, r-s > 1, is similar.

Corollary 2. Let C_s be an [n, n-s] code having a parity check matrix H_s without zero columns. If n is odd then for the codes C_r obtained applying doubling construction r-s times starting from H_s , it holds that $\operatorname{Aut}(C_r) = \Gamma_r$

Remark 2. $|\operatorname{Aut}(S)| = 120$, $|\operatorname{Aut}(\Omega)| = 336$, $|\operatorname{Aut}(\Phi_1)| = 40320$, $|\operatorname{Aut}(\Phi_2)| = 576$, $|\operatorname{Aut}(\Phi_3)| = 384$, $|\operatorname{Aut}(\Phi_4)| = 720$, $|\operatorname{Aut}(\Phi_5)| = 11520$.

Corollary 3. $|\operatorname{Aut}(\Pi_r)| = 120(2^{r-4} - 1)(2^{r-4} - 2)\dots(2^{r-4} - 2^{r-3})2^{4(r-4)}$. $|\operatorname{Aut}(\mathcal{W}_r)| = 336(2^{r-5} - 1)(2^{r-5} - 2)\dots(2^{r-5} - 2^{r-4})2^{5(r-5)}$.

4 Properness and t-properness for error detection of codes obtained by doubling construction

Problems connected with error detection are considered, e.g., in [3,6,7], see also the references therein. Here we consider the *binary symmetric channel*.

Let p be the error probability by symbol in the channel.

Let $P_{ue}(C, p)$ be the undetected error probability for the code C under condition that the code is used only for error detection;

Let $P_{ue}^{(t)}(C,p)$ be the undetected error probability for the code C under condition that $d \ge 2t + 1$ and the code is used for correction of $\le t$ errors.

Definition 3. (i) A binary code C is proper (resp. t-proper) if $P_{ue}(C, p)$ (resp. $P_{ue}^{(t)}(C, p)$) is an increasing function of p in the interval $[0, \frac{1}{2}]$.

(ii) Let $a \ge 0$ and $b \le \frac{1}{2}$ be real values. A binary code C is proper (resp. t-proper) in the interval [a,b] if $P_{ue}(C,p)$ (resp. $P_{ue}^{(t)}(C,p)$) is an increasing function of p in [a,b].

Using the results of this work, in particular Theorem 3 and Proposition 1, and papers [2, 3, 6, 7], we proved a number of results on the properness and t-properness of codes obtained by doubling construction.

Lemma 2. In doubling construction (1), let the starting $[n_{r-1}, n_{r-1} - (r - 1), d_{r-1}]$ code given by the parity check matrix H_{r-1} have dual distance in the region $\left\lceil \frac{n_{r-1}}{3} \right\rceil \leq d_{r-1}^{\perp} \leq \frac{n_{r-1}}{2}$. Then the resultant $[n_r, n_r - r, d_r]$ code given by the parity check matrix H_r has dual distance in the region $\left\lceil \frac{n_r}{3} \right\rceil \leq d_r^{\perp} \leq \frac{n_r}{2}$.

Theorem 7. The codes Π_r , $\mathcal{V}_{r,4}$, and $\mathcal{V}_{r,5}$, are proper in intervals $[a, \frac{1}{2}]$, where $a = \frac{1}{3} + \frac{1}{3 \cdot 2^{r-4}}$ for Π_r , $a = \frac{5}{11} + \frac{1}{11 \cdot 2^{r-6}}$ for $\mathcal{V}_{r,4}$, $a = \frac{3}{10} + \frac{1}{10 \cdot 2^{r-6}}$ for $\mathcal{V}_{r,5}$.

Proposition 2. The codes Π_r^{\perp} , \mathcal{W}_r^{\perp} , $\mathcal{V}_{r,j}^{\perp}$ dual to the codes Π_r , \mathcal{W}_r , $\mathcal{V}_{r,j}$, are proper in intervals [0,b], where $b = \frac{2}{5}$ for Π_r^{\perp} , $b = \frac{2}{9}$ for \mathcal{W}_r^{\perp} , $b = \frac{2}{17}$ for $\mathcal{V}_{r,1}^{\perp}$, $b = \frac{4}{17}$ for $\mathcal{V}_{r,2}^{\perp}$, $b = \frac{5}{17}$ for $\mathcal{V}_{r,3}^{\perp}$, $b = \frac{6}{17}$ for $\mathcal{V}_{r,4}^{\perp}$, $b = \frac{7}{17}$ for $\mathcal{V}_{r,5}^{\perp}$.

Proposition 3. The codes with the parity check matrices S and Ω are proper and 1-proper. The codes Π_r are proper for r = 5, 6, 7, 8, 9 and 1-proper for r = 5, 6, 7. The codes W_r are proper and 1-proper for r = 6. **Open Problem.** Assume that in doubling construction (1), the starting code given by the parity check matrix H_{r-1} is proper (resp. 1-proper) for error detection. Is the resulting code with the the parity check matrix H_r proper (resp. 1-proper) too? (For example, see Construction * in [7, Section 2]; see also Proposition 3.)

References

- V. B. Afanassiev and A. A. Davydov, Weight Spectrum of Quasi-Perfect Binary Codes with Distance 4, in *Proc. IEEE Int. Symp. Inform. Theory* (ISIT), Aachen, Germany, 2017, to appear.
- [2] V. B. Afanassiev, A. A. Davydov, and D. K. Zigangirov, Design and analysis of codes with distance 4 and 6 minimizing the probability of decoder error, J. Communic. Technology Electronics, 61, 1440–1455, 2016.
- [3] Ts. Baicheva, S. Dodunekov, and P. Kazakov, On the undetected error probability performance of cyclic redundancy-check codes of 16-bit redundancy, *IEEE Trans. Comm.* 147 (2000) 253–256.
- [4] A. A. Davydov and L. M. Tombak, Quasiperfect Linear Binary Codes with Minimal Distance 4 and Complete Caps in Projective Geometry", *Problems* of Inform. Transm., 25, 265–275, 1989.
- [5] A. A. Davydov and L. M. Tombak, An Alternative to the Hamming code in the Class of SEC-DED Codes in Semiconductor Memory, *IEEE Trans. Inform. Theory*, **IT-37**, 897–902, 1991.
- [6] R. Dodunekova, S. M. Dodunekov, and E. Nikolova, A Survey on Proper Codes, *Discrete Appl. Math.*, **156**, 1499–1509, 2008.
- [7] R. Dodunekova and E. Nikolova, Sufficient Conditions for Monotonicity of the Undetected Error Probability for Large Channel Error Probabilities, *Probl. Inform. Transm.*, 41, 187–198, 2005.
- [8] M. Khatirinejad and P. Lisonek, Classification and Constructions of Complete Caps in Binary Spaces, Des. Codes Cryptogr., 39, 17–31, 2006.
- [9] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977.
- [10] V. I. Panchenko, On optimization of linear code with distance 4, in Proc. 8th All-Union Conf. on Coding Theory and Communications, Kuibyshev, 1981, Part 2: Coding Theory (Moscow, 1981), pp. 132–134 [in Russian].